Synthesis and Crystal Structures of Halogen-Substituted 2-Aryl-N-phenylbenzimidazoles
Abstract
:1. Introduction
2. Results and Discussion
3. Materials and Methods
3.1. General Comment
3.2. Synthesis
3.3. Crystallography Details
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Vasava, M.S.; Bhoi, M.N.; Rathwa, S.K.; Jethava, D.J.; Acharya, P.T.; Patel, D.B.; Patel, H.D. Benzimidazole: A milestone in the field of medicinal chemistry. Mini-Rev. Med. Chem. 2020, 20, 532–565. [Google Scholar] [CrossRef] [PubMed]
- Hernández-López, H.; Tejada-Rodríguez, C.J.; Leyva-Ramos, S. A Panoramic Review of Benzimidazole Derivatives and Their Potential Biological Activity. Mini-Rev. Med. Chem. 2022, 22, 1268–1280. [Google Scholar] [CrossRef]
- Pathare, B.; Bansode, T. Review—Biological Active Benzimidazole Derivatives. Results Chem. 2021, 3, 100200. [Google Scholar] [CrossRef]
- Leila, D.; Gokhan, Z.; Mir, B.B. Cholinesterases inhibitory activity of 1H-benzimidazole derivatives. Biointerface Res. Appl. Chem. 2020, 11, 10739–10745. [Google Scholar] [CrossRef]
- Panda, S.; Malik, R.; Jain, S.C. Synthetic approaches to 2-arylbenzimidazoles: A review. Curr. Org. Chem. 2012, 16, 1905–1919. [Google Scholar] [CrossRef]
- Basha, N.J. Therapeutic efficacy of benzimidazole and its analogs: An update. Polycycl. Aromat. Compd. 2022, 1–21. [Google Scholar] [CrossRef]
- G, A.C.; Gondru, R.; Li, Y.; Banothu, J. Coumarin–benzimidazole hybrids: A review of developments in medicinal chemistry. Eur. J. Med. Chem. 2022, 227, 113921. [Google Scholar] [CrossRef]
- Shatokhin, S.S.; Tuskaev, V.A.; Gagieva, S.C.; Markova, A.A.; Pozdnyakov, D.I.; Melnikova, E.K.; Bulychev, B.M.; Oganesyan, E.T. Synthesis, Cytotoxic and antioxidant activities of new n-substituted 3-(benzimidazol-2-Yl)-chromones containing 2,6-di-Tert-butylphenol fragment. J. Mol. Struct. 2022, 1249, 131683. [Google Scholar] [CrossRef]
- Mamedov, V.A.; Zhukova, N.A. Recent developments towards synthesis of (Het) arylbenzimidazoles. Synthesis 2021, 53, 1849–1878. [Google Scholar] [CrossRef]
- Sigh, K.S.; Joy, F.; Devi, P. Ruthenium(II)-catalyzed synthesis of 2-arylbenzimidazole and 2-arylbenzothiazole in water. Transit. Met. Chem. 2021, 46, 181–190. [Google Scholar] [CrossRef]
- Tzani, M.A.; Gabriel, C.; Lykakis, I.N. Selective synthesis of benzimidazoles from o-phenylenediamine and aldehydes promoted by supported gold nanoparticles. Nanomaterials 2020, 10, 2405. [Google Scholar] [CrossRef] [PubMed]
- Bhavsar, Z.A.; Acharya, P.T.; Jethava, D.J.; Patel, D.B.; Vasava, M.S.; Rajani, D.P.; Pithawala, E.; Patel, H.D. Microwave assisted synthesis, biological activities, and in silico investigation of some benzimidazole derivatives. J. Heterocycl. Chem. 2020, 57, 4215–4238. [Google Scholar] [CrossRef]
- Ridley, H.F.; Spickett, R.G.W.; Timmis, G.M. A new synthesis of benzimidazoles and aza-analogs. J. Heterocycl. Chem. 1965, 2, 453–456. [Google Scholar] [CrossRef]
- Lavrova, M.A.; Mishurinskiy, S.A.; Smirnov, D.E.; Kalle, P.; Krivogina, E.V.; Kozyukhin, S.A.; Emets, V.V.; Mariasina, S.S.; Dolzhenko, V.D.; Bezzubov, S.I. Cyclometalated Ru (Ii) Complexes with tunable redox and optical properties for dye-sensitized solar cells. Dalt. Trans. 2020, 49, 16935–16945. [Google Scholar] [CrossRef] [PubMed]
- Aroso, R.T.; Guedes, R.C.; Pereira, M.M. Synthesis of computationally designed 2,5(6) -benzimidazole derivatives via pd-catalyzed reactions for potential, e. coli dna gyrase b inhibition. Molecules 2021, 26, 1326. [Google Scholar] [CrossRef]
- Yellol, J.; Pérez, S.A.; Buceta, A.; Yellol, G.; Donaire, A.; Szumlas, P.; Bednarski, P.J.; Makhloufi, G.; Janiak, C.; Espinosa, A.; et al. Novel c,n-cyclometalated benzimidazole ruthenium(ii) and iridium(iii) complexes as antitumor and antiangiogenic agents: A structure–activity relationship study. J. Med. Chem. 2015, 58, 7310–7327. [Google Scholar] [CrossRef]
- Munnik, B.L.; Kaschula, C.H.; Watson, D.J.; Wiesner, L.; Loots, L.; Chellan, P. Synthesis and study of organometallic pgm complexes containing 2-(2-pyridyl) benzimidazole as antiplasmodial agents. Inorg. Chim. Acta 2022, 540, 121039. [Google Scholar] [CrossRef]
- Laha, P.; Husain, A.; Patra, S. Tuning the emission maxima of iridium systems using benzimidazole-based cyclometallating Framework. J. Mol. Liq. 2022, 349, 118446. [Google Scholar] [CrossRef]
- Buil, M.L.; Esteruelas, M.A.; López, A.M. Recent advances in synthesis of molecular heteroleptic osmium and iridium phosphorescent emitters. Eur. J. Inorg. Chem. 2021, 2021, 4731–4761. [Google Scholar] [CrossRef]
- Bezzubov, S.I.; Kiselev, Y.M.; Churakov, A.V.; Kozyukhin, S.A.; Sadovnikov, A.A.; Grinberg, V.A.; Emets, V.V.; Doljenko, V.D. Iridium (III) 2-phenylbenzimidazole complexes: Synthesis, structure, optical properties, and applications in dye-sensitized solar cells. Eur. J. Inorg. Chem. 2016, 2016, 347–354. [Google Scholar] [CrossRef]
- Wang, L.; Cui, P.; Lystrom, L.; Lu, J.; Kilina, S.; Sun, W. Heteroleptic cationic iridium (iii) complexes bearing phenanthroline derivatives with extended π-conjugation as potential broadband reverse saturable absorbers. New J. Chem. 2019, 44, 456–465. [Google Scholar] [CrossRef]
- Bezzubov, S.I.; Zharinova, I.S.; Khusyainova, A.A.; Kiselev, Y.M.; Taydakov, I.V.; Varaksina, E.A.; Metlin, M.T.; Tobohova, A.S.; Korshunov, V.M.; Kozyukhin, S.A.; et al. Aromatic beta-diketone as a novel anchoring ligand in iridium (iii) complexes for dye-sensitized solar cells. Eur. J. Inorg. Chem. 2020, 2020, 3277–3286. [Google Scholar] [CrossRef]
- Largeron, M.; Nguyen, K. Recent advances in the synthesis of benzimidazole derivatives from the oxidative coupling of primary amines. Synthesis 2018, 50, 241–253. [Google Scholar] [CrossRef]
- Brunen, S.; Grell, Y.; Steinlandt, P.S.; Harms, K.; Meggers, E. Bis-cyclometalated indazole and benzimidazole chiral-at-iridium complexes: Synthesis and asymmetric catalysis. Molecules 2021, 26, 1822. [Google Scholar] [CrossRef] [PubMed]
- Martin, A.D.; Siamaki, A.R.; Belecki, K.; Gupton, B.F. A convergent approach to the total synthesis of telmisartan via a suzuki cross-coupling reaction between two functionalized benzimidazoles. J. Org. Chem. 2015, 80, 1915–1919. [Google Scholar] [CrossRef]
- Bezzubov, S.I.; Doljenko, V.D.; Troyanov, S.I.; Kiselev, Y.M. Tuning the photophysical and electrochemical properties of iridium(iii)2-aryl-1-phenylbenzimidazole complexes. Inorg. Chim. Acta 2014, 415, 22–30. [Google Scholar] [CrossRef]
- Smirnov, D.E.; Tatarin, S.V.; Bezzubov, S.I. Synthesis and crystal structures of n -h, n -phenyl and n -benzyl-2-(4-hexyloxyphenyl)benzimidazoles. Acta Crystallogr. Sect. E Crystallogr. Commun. 2021, 77, 618–622. [Google Scholar] [CrossRef]
- Kassim, K.; Hashim, N.Z.N.; Fadzil, A.H.; Yusof, M.S.M. 2-(4-Chlorophenyl)-1-phenyl-1 H -benzimidazole. Acta Crystallogr. Sect. E Struct. Rep. Online 2012, 68, o799. [Google Scholar] [CrossRef] [Green Version]
- Su, Y.-J.; Huang, H.-L.; Li, C.-L.; Chien, C.-H.; Tao, Y.-T.; Chou, P.-T.; Datta, S.; Liu, R.-S. Highly efficient red electrophosphorescent devices based on iridium isoquinoline complexes: Remarkable external quantum efficiency over a wide range of current. Adv. Mater. 2003, 15, 884–888. [Google Scholar] [CrossRef]
- Sheldrick, G.M. A short history of shelx. Acta Crystallogr. Sect. A Found. Cryst. 2008, 64, 112–122. [Google Scholar] [CrossRef]
- Sheldrick, G.M. SHELXT—Integrated space-group and crystal-structure determination. Acta Crystallogr. Sect. A Found. Cryst. 2015, 71, 3–8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dolomanov, O.V.; Bourhis, L.J.; Gildea, R.J.; Howard, J.A.K.; Puschmann, H. OLEX2: A complete structure solution, refinement and analysis program. J. Appl. Cryst. 2009, 42, 339–341. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Koptyaeva, A.G.; Zakharov, A.Y.; Kiseleva, M.A.; Mariasina, S.S.; Kalle, P.; Churakov, A.V.; Bezzubov, S.I. Synthesis and Crystal Structures of Halogen-Substituted 2-Aryl-N-phenylbenzimidazoles. Molbank 2022, 2022, M1498. https://doi.org/10.3390/M1498
Koptyaeva AG, Zakharov AY, Kiseleva MA, Mariasina SS, Kalle P, Churakov AV, Bezzubov SI. Synthesis and Crystal Structures of Halogen-Substituted 2-Aryl-N-phenylbenzimidazoles. Molbank. 2022; 2022(4):M1498. https://doi.org/10.3390/M1498
Chicago/Turabian StyleKoptyaeva, Anastasia G., Alexander Y. Zakharov, Marina A. Kiseleva, Sofia S. Mariasina, Paulina Kalle, Andrei V. Churakov, and Stanislav I. Bezzubov. 2022. "Synthesis and Crystal Structures of Halogen-Substituted 2-Aryl-N-phenylbenzimidazoles" Molbank 2022, no. 4: M1498. https://doi.org/10.3390/M1498
APA StyleKoptyaeva, A. G., Zakharov, A. Y., Kiseleva, M. A., Mariasina, S. S., Kalle, P., Churakov, A. V., & Bezzubov, S. I. (2022). Synthesis and Crystal Structures of Halogen-Substituted 2-Aryl-N-phenylbenzimidazoles. Molbank, 2022(4), M1498. https://doi.org/10.3390/M1498