2,2-Bis(phenylselanyl)-1-(p-tolyl)vinyl 2-Oxo-2-(p-tolyl)acetate
Abstract
:1. Introduction
2. Results and Discussion
3. Experimental
3.1. General
3.2. Synthesis of 2,2-Bis(phenylselanyl)-1-(p-tolyl)Vinyl 2-Oxo-2-(p-tolyl)Acetate (2a)
3.3. X-ray Diffraction Studies
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Beletskaya, I.; Moberg, C. Element−Element Addition to Alkynes Catalyzed by the Group 10 Metals. Chem. Rev. 1999, 99, 3435–3461. [Google Scholar] [CrossRef]
- Han, L.-B.; Tanaka, M. Transition metal-catalysed addition reactions of H-heteroatom and inter-heteroatom bonds to carbon−carbon unsaturated linkages via oxidative additions. Chem. Commun. 1999, 5, 395–402. [Google Scholar] [CrossRef]
- Alonso, F.; Beletskaya, I.P.; Yus, M. Transition-Metal-Catalyzed Addition of Heteroatom−Hydrogen Bonds to Alkynes. Chem. Rev. 2004, 104, 3079–3160. [Google Scholar] [CrossRef]
- Beletskaya, I.; Moberg, C. Element−Element Additions to Unsaturated Carbon−Carbon Bonds Catalyzed by Transition Metal Complexes. Chem. Rev. 2006, 106, 2320–2354. [Google Scholar] [CrossRef] [PubMed]
- Beletskaya, I.P.; Ananikov, V.P. Transition-Metal-Catalyzed C−S, C−Se, and C−Te Bond Formation via Cross-Coupling and Atom-Economic Addition Reactions. Chem. Rev. 2011, 111, 1596–1636. [Google Scholar] [CrossRef] [PubMed]
- Ansell, M.B.; Navarro, O.; Spencer, J. Transition metal catalyzed element-element’ additions to alkynes. Coord. Chem. Rev. 2017, 336, 54–77. [Google Scholar] [CrossRef]
- Kawaguchi, S.-I.; Yamamoto, Y.; Ogawa, A. Catalytic synthesis of sulfur and phosphorus compounds via atom-economic reactions. Mendeleev Commun. 2020, 30, 129–138. [Google Scholar] [CrossRef]
- Chiummiento, L.; D’Orsi, R.; Funicello, M.; Lupattelli, P. Last Decade of Unconventional Methodologies for the Synthesis of Substituted Benzofurans. Molecules 2020, 25, 2327. [Google Scholar] [CrossRef]
- Li, G.L.; Huo, X.H.; Jiang, X.Y.; Zhang, W.B. Asymmetric synthesis of allylic compounds via hydrofunctionalisation and difunctionalisation of dienes, allenes, and alkynes. Chem. Soc. Rev. 2020, 49, 2060–2118. [Google Scholar] [CrossRef]
- Miyaura, N. Catalytic Heterofunctionalization; Togni, A., Grutzmacher, H., Eds.; Wiley-VCH: Weinheim, Germany, 2001; pp. 1–32. [Google Scholar]
- Brunet, J.J.; Neibecker, D. Catalytic Heterofunctionalization; Togni, A., Grutzmacher, H., Eds.; Wiley-VCH: Weinheim, Germany, 2001; pp. 91–141. [Google Scholar]
- Ogawa, A. Transition-Metal-Catalyzed S−H and Se−H to Unsaturated Molecules. Top. Organomet. Chem. 2013, 43, 325–360. [Google Scholar]
- Coronado, E.; Forment-Aliaga, A.; Galán-Mascarós, J.R.; Giménez-Saiz, C.; Gómez-García, C.J.; Martinéz-Ferrero, E.; Nuez, A.; Romero, F.M. Multifunctional molecular materials. Solid State Sci. 2003, 5, 917–924. [Google Scholar] [CrossRef]
- Majumdar, K.C.; Ghosh, S.; Ghosh, M. The thio-Claisen rearrangement 1980–2001. Tetrahedron 2003, 59, 7251–7271. [Google Scholar] [CrossRef]
- Martín Castro, A.M. Claisen Rearrangement over the Past Nine Decades. Chem. Rev. 2004, 104, 2939–3002. [Google Scholar] [CrossRef] [PubMed]
- Ilardi, E.A.; Stivala, C.A.; Zakarian, A. [3,3]-Sigmatropic rearrangements: Recent applications in the total synthesis of natural products. Chem. Soc. Rev. 2009, 38, 3133–3148. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Millemaggi, A.; Taylor, R.J.K. 3-Alkenyl-oxindoles: Natural products, pharmaceuticals, and recent synthetic advances in tandem/telescoped approaches. Eur. J. Org. Chem. 2010, 2010, 4527–4547. [Google Scholar] [CrossRef]
- Palomba, M.; Franco Coelho Dias, I.; Rosati, O.; Marini, F. Modern Synthetic Strategies with Organoselenium Reagents: A Focus on Vinyl Selenones. Molecules 2021, 26, 3148. [Google Scholar] [CrossRef]
- Ogawa, A. Comprehensive Organic Synthesis, 2nd ed.; Knochel, P., Molander, G.A., Eds.; Elsevier: Amsterdam, The Netherlands, 2014; Volume 4, pp. 392–441. [Google Scholar]
- Nomoto, A.; Ogawa, A. Preparative Uses of Organoselenium and Organotellurium Compounds. In The Chemistry of Organic Selenium and Tellurium Compounds; Rappoport, Z., Ed.; Wiley: Chichester, UK, 2012; Volume 3, pp. 623–688. [Google Scholar]
- Tsuchii, K.; Imura, M.; Kamada, N.; Hirao, T.; Ogawa, A. An Efficient Photoinduced Iodoperfluoroalkylation of Carbon−Carbon Unsaturated Compounds with Perfluoroalkyl Iodides. J. Org. Chem. 2004, 69, 6658–6665. [Google Scholar] [CrossRef]
- Kawaguchi, S.-I.; Shirai, T.; Ohe, T.; Nomoto, A.; Sonoda, M.; Ogawa, A. Highly Regioselective Simultaneous Introduction of Phosphino and Seleno Groups into Unsaturated Bonds by the Novel Combination of (Ph2P)2 and (PhSe)2 upon Photoirradiation. J. Org. Chem. 2009, 74, 1751–1754. [Google Scholar] [CrossRef]
- Tamai, T.; Nomoto, A.; Tsuchii, K.; Minamida, Y.; Mitamura, T.; Sonoda, M.; Ogawa, A. Highly selective perfluoroalkylchalcogenation of alkynes by the combination of iodoperfluoroalkanes and organic dichalcogenides upon photoirradiation. Tetrahedron 2012, 68, 10516–10522. [Google Scholar] [CrossRef]
- Kawaguchi, S.-I.; Ogawa, A. Highly selective addition of phosphorus-containing interelement compounds to alkynes. Synlett 2013, 24, 2199–2215. [Google Scholar]
- Yoshimura, A.; Takamachi, Y.; Han, L.B.; Ogawa, A. Organosulfide-Catalyzed Diboration of Terminal Alkynes under Light. Chem.-Eur. J. 2015, 21, 13930–13933. [Google Scholar] [CrossRef]
- Kodama, S.; Saeki, T.; Mihara, K.; Higashimae, S.; Kawaguchi, S.-I.; Sonoda, M.; Nomoto, A.; Ogawa, A. A Benzoyl Peroxide/Diphenyl Diselenide Binary System for Functionalization of Alkynes Leading to Alkenyl and Alkynyl Selenides. J. Org. Chem. 2017, 82, 12477–12484. [Google Scholar] [CrossRef] [PubMed]
- Tan, K.J.; Wille, U. Activation of Molecular Oxygen by SRadicals: Experimental and Computational Studies on a Novel Oxidation of Alkynes to α-Diketones. Chem. Commun. 2008, 46, 6239–6241. [Google Scholar] [CrossRef] [PubMed]
- Johannsen, I.; Henriksen, L.; Eggert, H. 77Se NMR. 2. The Basis for Application of JSe–Se and JSe–H in Structure Assignments of Mono-, Di-, and Triseleno-Substituted Alkenes. J. Org. Chem. 1986, 51, 1657–1663. [Google Scholar] [CrossRef]
- Moro, A.V.; Nogueira, C.W.; Barbosa, N.B.V.; Menezes, P.H.; Rocha, J.B.T.; Zeni, G. Highly Stereoselective One-Pot Procedure To Prepare Bis- and Tris-chalcogenide Alkenes via Addition of Disulfides and Diselenides to Terminal Alkynes. J. Org. Chem. 2005, 70, 5257–5268. [Google Scholar] [CrossRef] [PubMed]
- Schneider, C.C.; Godoi, B.; Prigol, M.; Nogueira, C.W.; Zeni, G. Highly Stereoselective One-Pot Procedure to Prepare Unsymmetrical Bis- and Tris-chalcogenide Alkenes via Addition of Chalcogens to Alkynes. Organometallics 2007, 26, 4252–4256. [Google Scholar] [CrossRef]
- CrystalStructure 4.2: Crystal Structure Analysis Package; Rigaku Corporation: Tokyo, Japan, 2000–2015.
- Sheldrick, G.M. A Short History of SHELX. Acta Crystallogr. Sect. A 2008, 64, 112–122. [Google Scholar] [CrossRef] [Green Version]
Entry | 1a/(PhSe)2/BPO | Solvent | Condition | Yields (%) a | ||
---|---|---|---|---|---|---|
(mmol) | 2a | 3a | 4a | |||
1 | 0.20/0.20/0.40 | Benzene | 80 °C, 16 h | 48 | – | – |
2 | 0.20/0.40/0.40 | Benzene | 80 °C, 16 h | 43 | 25 | 5 |
3 | 0.20/0.2/0.40 | Benzene | 80 °C, 24 h | 40 | 23 | 2 |
4 | 0.30/0.10/0.60 | Benzene | 80 °C, 24 h | Trace | 48 | – |
5 b,c | 0.20/0.20/0.40 | Et2O | 80 °C, 16 h | 22 | 7 | 21 |
6 | 0.20/0.20/0.40 | Toluene | 80 °C, 16 h | 9 | – | – |
7 | 0.20/0.20/0.40 | THF | 80 °C, 16 h | N.D. | 11 | 16 |
8 | 0.20/0.20/0.40 | Benzene (1 mL) | 80 °C, 16 h | 51 | N.D. | 6 |
9 b,c | 0.20/0.20/0.40 | Benzene (1 mL) | 80 °C, 16 h | 63 | N.D. | 6 |
10 | 0.20/0.20/0.40 | Benzene | 100 °C, 16 h | 6 | 43 | Trace |
11 | 0.20/0.20/0.40 | Benzene (1 mL) | 100 °C, 16 h | 27 | N.D. | 7 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kodama, S.; Hung, V.T.; Saeki, T.; Mihara, K.; Yamamoto, Y.; Sonoda, M.; Nomoto, A.; Ogawa, A. 2,2-Bis(phenylselanyl)-1-(p-tolyl)vinyl 2-Oxo-2-(p-tolyl)acetate. Molbank 2021, 2021, M1283. https://doi.org/10.3390/M1283
Kodama S, Hung VT, Saeki T, Mihara K, Yamamoto Y, Sonoda M, Nomoto A, Ogawa A. 2,2-Bis(phenylselanyl)-1-(p-tolyl)vinyl 2-Oxo-2-(p-tolyl)acetate. Molbank. 2021; 2021(4):M1283. https://doi.org/10.3390/M1283
Chicago/Turabian StyleKodama, Shintaro, Vu Thai Hung, Tomokazu Saeki, Kei Mihara, Yuki Yamamoto, Motohiro Sonoda, Akihiro Nomoto, and Akiya Ogawa. 2021. "2,2-Bis(phenylselanyl)-1-(p-tolyl)vinyl 2-Oxo-2-(p-tolyl)acetate" Molbank 2021, no. 4: M1283. https://doi.org/10.3390/M1283
APA StyleKodama, S., Hung, V. T., Saeki, T., Mihara, K., Yamamoto, Y., Sonoda, M., Nomoto, A., & Ogawa, A. (2021). 2,2-Bis(phenylselanyl)-1-(p-tolyl)vinyl 2-Oxo-2-(p-tolyl)acetate. Molbank, 2021(4), M1283. https://doi.org/10.3390/M1283