Ethyl (S)-2-Benzamido-5-[(4,6-dimethylpyrimidin-2-yl)amino]pentanoate
Abstract
:1. Introduction
2. Results
3. Materials and Methods
3.1. General Information
3.2. Synthesis of Ethyl (S)-2-Benzamido-5-[(4,6-dimethylpyrimidin-2-yl)amino]pentanoate
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Sharma, V.; Chitranshi, N.; Agarwal, A.K. Significance and biological importance of pyrimidine in the microbial world. Int. J. Med. Chem. 2014, 2014, 202784. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Patil, S.B. Biological and medicinal significance of pyrimidines: A review. Int. J. Pharm. Sci. Res. 2018, 9, 44–52. [Google Scholar] [CrossRef]
- Zhang, B.; Xian, Q.; Gong, T.; Li, Y.; Li, A.; Feng, J. DBPs formation and genotoxicity during chlorination of pyrimidines and purines bases. Chem. Eng. J. 2017, 307, 884–890. [Google Scholar] [CrossRef]
- Misra, A.; Jain, S.; Kishore, D.; Dave, V.; Reddy, K.R.; Sadhu, V.; Sharma, S. A facile one pot synthesis of novel pyrimidine derivatives of 1, 5-benzodiazepines via domino reaction and their antibacterial evaluation. J. Microbiol. Methods 2019, 163, 105648. [Google Scholar] [CrossRef]
- Fang, Z.; Zheng, S.; Chan, K.F.; Yuan, W.; Guo, Q.; Wu, W.; Wong, K.Y. Design, synthesis and antibacterial evaluation of 2, 4-disubstituted-6-thiophenyl-pyrimidines. Eur. J. Med. Chem. 2019, 161, 141–153. [Google Scholar] [CrossRef]
- Borthakur, S.K.; Kalita, P.K.; Borthakur, S. Synthesis and antifungal activities of 3, 5-diphenyl-7-amino-[1,3]-thiazolo [3,2-a] pyrimidine-6-nitrile derivatives. J. Heterocycl. Chem. 2020, 57, 1261–1265. [Google Scholar] [CrossRef]
- Méndez-Arriaga, J.M.; Oyarzabal, I.; Escolano, G.; Rodríguez-Diéguez, A.; Sánchez-Moreno, M.; Salas, J.M. In vitro leishmanicidal and trypanocidal evaluation and magnetic properties of 7-amino-1, 2, 4-triazolo [1, 5-a] pyrimidine Cu (II) complexes. J. Inorg. Biochem. 2018, 180, 26–32. [Google Scholar] [CrossRef]
- Abdelgawad, M.A.; Bakr, R.B.; Azouz, A.A. Novel pyrimidine-pyridine hybrids: Synthesis, cyclooxygenase inhibition, anti-inflammatory activity and ulcerogenic liability. Bioorg. Chem. 2018, 77, 339–348. [Google Scholar] [CrossRef]
- Farghaly, A.M.; AboulWafa, O.M.; Elshaier, Y.A.; Badawi, W.A.; Haridy, H.H.; Mubarak, H.A. Design, synthesis, and antihypertensive activity of new pyrimidine derivatives endowing new pharmacophores. Med. Chem. Res. 2019, 28, 360–379. [Google Scholar] [CrossRef]
- Yates, M.K.; Chatterjee, P.; Flint, M.; Arefeayne, Y.; Makuc, D.; Plavec, J.; Seley-Radtke, K.L. Probing the effects of pyrimidine functional group switches on acyclic fleximer analogues for antiviral activity. Molecules 2019, 24, 3184. [Google Scholar] [CrossRef] [Green Version]
- Akbas, E.; Ergan, E.; Sahin, E.; Ekin, S.; Cakir, M.; Karakus, Y. Synthesis, characterization, antioxidant properties and DFT calculation of some new pyrimidine derivatives. Phosphorus Sulfur Silicon Relat. Elem. 2018, 194, 796–802. [Google Scholar] [CrossRef]
- Li, K.J.; Qu, R.Y.; Liu, Y.C.; Yang, J.F.; Devendar, P.; Chen, Q.; Yang, G.F. Design, synthesis, and herbicidal activity of pyrimidine–biphenyl hybrids as novel acetohydroxyacid synthase inhibitors. J. Agric. Food Chem. 2018, 66, 3773–3782. [Google Scholar] [CrossRef] [PubMed]
- Bhatti, M.Z.; Ali, A.; Duong, H.Q.; Chen, J.; Rahman, F.U. Anticancer activity and mechanism of bis-pyrimidine based dimetallic Ru (II)(η6-p-cymene) complex in human non-small cell lung cancer via p53-dependent pathway. J. Inorg. Biochem. 2019, 194, 52–64. [Google Scholar] [CrossRef] [PubMed]
- Nimkar, A.; Ramana, M.M.; Betkar, R.; Ranade, P.; Mundhe, B. CsOH/γ-Al 2 O 3: A heterogeneous reusable basic catalyst for one-pot synthesis of 2-amino-4, 6-diaryl pyrimidines. New J. Chem. 2016, 40, 2541–2546. [Google Scholar] [CrossRef]
- Schütznerová, E.; Přibylka, A.; Krchňák, V. Nα-Amino acid containing privileged structures: Design, synthesis and use in solid-phase peptide synthesis. Org. Biomol. Chem. 2018, 16, 5359–5362. [Google Scholar] [CrossRef]
- Wang, Q.; Zhang, S.; Guo, F.; Zhang, B.; Hu, P.; Wang, Z. Natural α-amino acids applied in the synthesis of imidazo [1, 5-a] N-heterocycles under mild conditions. J. Org. Chem. 2012, 77, 11161–11166. [Google Scholar] [CrossRef]
- Martin, N.I.; Liskamp, R.M. Preparation of N G-substituted L-arginine analogues suitable for solid phase peptide synthesis. J. Org. Chem. 2008, 73, 7849–7851. [Google Scholar] [CrossRef]
- Morris, S.M., Jr. Arginine metabolism revisited. J. Nutr. 2016, 146, 2579S–2586S. [Google Scholar] [CrossRef]
- Bouchet, A.; Lairion, F.; Disalvo, E.A. Role of guanidinium group in the insertion of L-arginine in DMPE and DMPC lipid interphases. Biochim. Biophys. Acta Biomembr. 2010, 1798, 616–623. [Google Scholar] [CrossRef] [Green Version]
- Fitch, C.A.; Platzer, G.; Okon, M.; Garcia-Moreno, E.B.; McIntosh, L.P. Arginine: Its pKa value revisited. Protein. Sci. 2015, 24, 752–761. [Google Scholar] [CrossRef] [Green Version]
- Meloni, B.P.; Mastaglia, F.L.; Knuckey, N.W. Cationic arginine-rich peptides (CARPs): A novel class of neuroprotective agents with a multimodal mechanism of action. Front. Neurol. 2020, 11, 108. [Google Scholar] [CrossRef]
- Cossy, J.; Belotti, D. A short synthesis of argatroban: A potent selective thrombin inhibitor. Bioorg. Med. Chem. Lett. 2001, 11, 1989–1992. [Google Scholar] [CrossRef]
- Aniskova, T.; Grinev, V.; Yegorova, A. Synthesis of compounds of the pyrimidine series based on the reactions of 3-arylmethylidenefuran-2 (3H)-ones with N,N-binucleophilic reagents. Molecules 2017, 22, 1251. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nie, A.; Wang, J.; Huang, Z. Microwave-assisted solution-phase parallel synthesis of 2, 4, 6-trisubstituted pyrimidines. J. Comb. Chem 2006, 8, 646–648. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Leyva-Acuña, M.A.; Delgado-Vargas, F.; López-Angulo, G.; Montes-Avila, J. Ethyl (S)-2-Benzamido-5-[(4,6-dimethylpyrimidin-2-yl)amino]pentanoate. Molbank 2020, 2020, M1166. https://doi.org/10.3390/M1166
Leyva-Acuña MA, Delgado-Vargas F, López-Angulo G, Montes-Avila J. Ethyl (S)-2-Benzamido-5-[(4,6-dimethylpyrimidin-2-yl)amino]pentanoate. Molbank. 2020; 2020(4):M1166. https://doi.org/10.3390/M1166
Chicago/Turabian StyleLeyva-Acuña, Mario A., Francisco Delgado-Vargas, Gabriela López-Angulo, and Julio Montes-Avila. 2020. "Ethyl (S)-2-Benzamido-5-[(4,6-dimethylpyrimidin-2-yl)amino]pentanoate" Molbank 2020, no. 4: M1166. https://doi.org/10.3390/M1166
APA StyleLeyva-Acuña, M. A., Delgado-Vargas, F., López-Angulo, G., & Montes-Avila, J. (2020). Ethyl (S)-2-Benzamido-5-[(4,6-dimethylpyrimidin-2-yl)amino]pentanoate. Molbank, 2020(4), M1166. https://doi.org/10.3390/M1166