Next Article in Journal
Ethyl (1,3-diphenyl-1H-pyrazolo[4,3-e][1,2,4]triazolo[1,5-c]pyrimidin-5-yl)acetate
Previous Article in Journal
2-(6-Methoxynaphthalen-2-yl)propionic acid (1,3-dimethyl­butylidene)hydrazide
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Short Note

3-[1-(4-Methylphenyl)-3-oxo-1,3,4,5,6,7-hexahydro-2H-isoindol-2-yl]propanoic Acid

1
Taxus Research Laboratory, Bocskai u. 22, H-4080 Hajdúnánás, Hungary
2
Department of Chemistry, College of Nyíregyháza, H-4400 Nyíregyháza, Sóstói st. 31/B, Hungary
*
Author to whom correspondence should be addressed.
Molbank 2011, 2011(4), M742; https://doi.org/10.3390/M742
Submission received: 3 August 2011 / Accepted: 8 November 2011 / Published: 10 November 2011

Abstract

:
A simple solvent-free synthesis of 3-[1-(4-methylphenyl)-3-oxo-1,3,4,5,6,7-hexahydro-2H-isoindol-2-yl]propanoic acid 3 was achieved by fusion of cis-2-[(4-methylphenyl)carbonyl]cyclohexanecarboxylic acid 1 with 3-aminopropanoic acid 2. The structure of this new compound was confirmed by elemental analysis, IR, EI-MS, 1H-NMR and 13C-NMR spectral data.

Graphical Abstract

2,3-Dihydro-1H-isoindolin-1-one (phthalimidine) as an important hetero ring system is core unit in various naturally occurring alkaloids or synthetic compounds. Several isoindolone derivatives have a range of biological activities including anti-inflammatory (indoprofen) [1], antiarrhytmic (ubisindine) [2,3], nootropic [4], anxiolytic and sedative (pazinaclone and pagoclone) [5,6] or diuretic and antihypertensive activity (chlorthalidone) [7]. Other derivatives have potent 5-HT1A and 5-HT2c receptor antagonist [8,9], antispasmodic [10], antinociceptive (JM-1232) [11] and hypnotic activity [12] while N,N-phthaloyl derivative of α-, β- and γ-amino acids showed anticonvulsant activity [13]. The isoindolinone moiety is also an integral part of a variety of natural products, such as fumaridine, lennoxamine, nuevamine, or aristoyagonine [14,15,16].
Recently, we studied of the condensation reaction of the cis-cyclohexane-fused γ-oxocarboxylic acid 1 with several primary alkyl-, aryl- and arylalkyl amines [17] or with bifunctional amines [18] to give the corresponding hexahydroisoindolones in good yields. The reactions were performed in refluxing toluene solution in the presence of catalytic amount of p-toluenesulfonic acid (PTSA).
In continuation of previous works to develop new isoindole derivatives we investigated the reactivity of naturally occurring amino acids with γ-oxocarboxylic acids. We observed that application of the usual reaction condition (refluxing toluene) was unsuccessful for the condensation of oxocarboxylic acid and amino acid, thus we had to find a more powerful, more effective method. The current work describes the synthesis of 3-[1-(4-methylphenyl)-3-oxo-1,3,4,5,6,7-hexahydro-2H-isoindol-2-yl]propanoic acid 3, which molecule include an isoindoline and a β-alanine moiety (unit) simultaneously.
Scheme 1. Synthesis of the title compound 3.
Scheme 1. Synthesis of the title compound 3.
Molbank 2011 m742 sch001

Experimental

In a round-bottom flask, a mixture of oxocarboxylic acid 1 (2.46 g, 0.01 mol) and an excess of 3-aminopropanoic acid (β-alanine) 2 (1.07 g, 0.012 mol) was heated at 180–200 °C for 3 hours. After cooling to room temperature the mixture was solved in chloroform and purified by column chromatography with chloroform, then EtOAc eluent on silica gel packing. The collected fractions were evaporated and the residue was treated with diethyl ether (15 mL) and kept in refrigerator overnight then was collected and recrystallized from diethyl ether to give the title compound 3 as a white crystalline solid.
Yield: 59%; m.p. 151–153 °C Rf: 0.11 (benzene-EtOH-n-hexane = 4:1:3, visualization with iodine vapor or by UV light).
IR (KBr) νmaxcm−1: 3041 (OH), 2941, 2925 (C-H aliphatic), 1735 (C=O, lactam), 1639 (C=O, carboxylic acid), 1455, 1412, 1287, 1302, 1186, 1173, 1058, 814, 803, 520.
1H NMR (400 MHz, CDCl3) (δ/ ppm): 1.57–2.05 (m, 5H, aliphatic), 2.26 (m, 3H), 2.34 (s, 3H, CH3), 2.46 (m, 1H) 2.64 (m, 1H), 3.48 (m, 1H), 3.80 (m, 1H), 4.88 (s, 1H, Ar-CH), 6.98 (d, 2H, J = 2.4 Hz, Ar-H), 7.22 (d, 2H, J = 2.4 Hz, Ar-H), 9.36 (s, br, 1H, COOH).
13C NMR (100 MHz, CDCl3) δ: 20.8, 21.7, 22.4, 22.6, 23.7, 36.9 (CH2-COOH)), 68.5 (N-CH2-), 77.6 (CH benzylic), 128.0, 130.4, 131.3, 132.8, 139.1, 156.3(C-anellation), 173.3 (C=O), 175.8 (COOH).
Elemental analysis: calculated for C18H21NO3: C, 72.22%, H, 7.07%, N, 4.68%. Found C, 72.25%, H, 7.09%, N, 4.65%.
EI-MS (70eV) m/z: 299 (M+, 82), 281 (22), 238 (100), 212 (27), 185 (18), 105 (93) 91 (71) 77 (50).

Supplementary materials

Supplementary File 1Supplementary File 2Supplementary File 3

Acknowledgments

Authors would like to thank Institute of Pharmaceutical Chemistry, University of Szeged, Hungary, for the NMR and IR spectroscopic measurements.

References and Notes

  1. Nannini, G.; Giraldi, P.N.; Molgora, G.; Biasoli, G.; Spinelli, F.; Logemann, W.; Dradi, E.; Zanni, G.; Buttinoni, A.; Tommasini, R. New analgesic-anti-inflammatory drugs. 1-Oxo-2-substituted isoindoline derivatives. Arzneim. Forsch. 1973, 23, 1090–1100. [Google Scholar]
  2. Okazaki, K.; Oshima, E.; Obase, H.; Oiji, Y.; Nito, M.; Kubo, K. Isoindolin-1-one derivative and antiarrhythmic agent. Eur. Patent 0,273,401, 06 July 1988. [Chem. Abstr. 1989, 109, 170232p]. [Google Scholar]
  3. Csende, F.; Porkoláb, A.; Matíz, K.; Szabó, Z.; Csorvássy, I.; Frank, L. Preparation and antiarrhythmic activity of hexahydroisoindol-1-one derivatives. Sci. Pharm. 1999, 67, 149–158. [Google Scholar]
  4. Reyes, A.; Huerta, L.; Alfaro, M.; Navarrete, A. Synthesis and nootropic activity of some 2,3-dihydro-1H-isoindol-1-one derivatives structurally related with piracetam. Chem. Biodivers. 2010, 7, 2718–2726. [Google Scholar] [CrossRef] [PubMed]
  5. Wada, T.; Fukuda, N. Effect of a new anxiolytic, DN-2327, on learning and memory in rats. Pharmacol. Biochem. Behav. 1992, 41, 573–579. [Google Scholar] [CrossRef]
  6. de Wit, H.; Vicini, L.; Haig, G.M.; Hunt, T.; Feltner, D. Evaluation of the abuse potential of pagoclone, a partial GABAA agonist. J. Clin. Psychopharmacol. 2006, 26, 268–273. [Google Scholar] [CrossRef] [PubMed]
  7. Zsotér, T.T.; Hart, F.; Radde, I.C.; Endrenyi, L. Effect of chlorthalidone on blood vessels. J. Pharmacol. Exp. Ther. 1972, 180, 723–731. [Google Scholar] [PubMed]
  8. Zhuang, Z.-P.; Kung, M.P.; Mu, M.; Kung, H.F. Isoindol-1-one analogues of 4-(2'-methoxyphenyl)-1-[2'-[N-(2"-pyridyl)-p-iodobenzamido]ethyl]piperazine (p-MPPI) as 5-HT1A receptor ligands. J. Med. Chem. 1998, 41, 157–166. [Google Scholar] [CrossRef] [PubMed]
  9. Hamprecht, D.; Micheli, F.; Tedesco, G.; Checchia, A.; Donati, D.; Petrone, M.; Terreni, S.; Wood, M. Isoindolone derivatives, a new class of 5-HT2C antagonists: Synthesis and biological evaluation. Bioorg. Med. Chem. Lett. 2007, 17, 428–433. [Google Scholar] [CrossRef] [PubMed]
  10. Mukai, T.; Yamaguchi, E.; Goto, J.; Takagi, K. Smooth muscle relaxing drugs and guinea pig ileum. Jpn. J. Pharmacol. 1981, 37, 147–157. [Google Scholar] [CrossRef]
  11. Chiba, S.; Nishiyama, T.; Yamada, Y. The antinociceptive effects and pharmacological properties of JM-1232(-): A novel isoindoline derivative. Anesth. Analg. 2009, 108, 1008–1014. [Google Scholar] [CrossRef] [PubMed]
  12. Kanamitsu, N.; Osaki, T.; Itsuji, Y.; Yoshimura, M.; Tsujimoto, H.; Soga, M. Novel water-soluble sedative-hypnotic agents: isoindolin-1-one derivatives. Chem. Pharm. Bull. 2007, 55, 1682–1688. [Google Scholar] [CrossRef] [PubMed]
  13. Usifoh, C.O.; Lambert, D.M.; Wouters, J.; Scriba, G.K.E. Synthesis and anticonvulsant activity of N,N-phthaloyl derivatives of central nervous system inhibitory amino acids. Arch. Pharm. 2001, 334, 323–331. [Google Scholar] [CrossRef]
  14. Blaskó, G.; Gula, D.J.; Shamma, M. The phthalideisoquinoline alkaloids. J. Nat. Prod. 1982, 45, 105–122. [Google Scholar] [CrossRef]
  15. Valencia, E.; Freyer, A.J.; Shamma, M.; Fajardo, V. (±)-Nuevamine, an isoindoloisoquinoline alkaloid, and (±)-lennoxamine, an isoindolobenzazepine. Tetrahedron Lett. 1984, 25, 599–602. [Google Scholar] [CrossRef]
  16. Bentley, K.W. β-Phenylethylamines and the isoquinoline alkaloids. Nat. Prod. Rep. 1986, 3, 153–169. [Google Scholar] [CrossRef]
  17. Csende, F.; Szabó, Z.; Stájer, G. Synthesis and structural study of new saturated isoindol-1-one derivatives. Heterocycles 1993, 36, 1809–1821. [Google Scholar] [CrossRef]
  18. Stájer, G.; Csende, F.; Bernáth, G.; Sohár, P. Preparation and steric structure of tricyclic and tetracyclic saturated or partially saturated 1,3-heterocycles containing a saturated isoindolone moiety. Heterocycles 1994, 37, 883–890. [Google Scholar] [CrossRef]

Share and Cite

MDPI and ACS Style

Csende, F.; Jekő, J.; Porkoláb, A. 3-[1-(4-Methylphenyl)-3-oxo-1,3,4,5,6,7-hexahydro-2H-isoindol-2-yl]propanoic Acid. Molbank 2011, 2011, M742. https://doi.org/10.3390/M742

AMA Style

Csende F, Jekő J, Porkoláb A. 3-[1-(4-Methylphenyl)-3-oxo-1,3,4,5,6,7-hexahydro-2H-isoindol-2-yl]propanoic Acid. Molbank. 2011; 2011(4):M742. https://doi.org/10.3390/M742

Chicago/Turabian Style

Csende, Ferenc, József Jekő, and Andrea Porkoláb. 2011. "3-[1-(4-Methylphenyl)-3-oxo-1,3,4,5,6,7-hexahydro-2H-isoindol-2-yl]propanoic Acid" Molbank 2011, no. 4: M742. https://doi.org/10.3390/M742

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop