Next Article in Journal
2-(6-Methoxynaphthalen-2-yl)propionic acid (1,3-dimethyl­butylidene)hydrazide
Previous Article in Journal
4-Amino-N-(2-hydroxy-4-pentadecylbenzylidene)benzenesulfonamide

Molbank 2011, 2011(4), M740; https://doi.org/10.3390/M740

Short Note
N-(4-Methylsulfonamido-3-phenoxyphenyl)-9,10-dihydro-9,10-ethanoanthracene-11,12-dicarboximide
1
MNR Degree & PG College, Kukatpally, Hyderabad-500085, A. P., India
2
Centre for chemical Sciences and Technology, Institute of Science & Technology, Jawaharlal Nehru Technological University Hyderabad, Kukatpally, Hyderabad-500085, A. P., India
3
Dr. Reddy’s Laboratories Ltd., IPDO, Bachupally, Hyderabad-500085, India
*
Author to whom correspondence should be addressed.
Received: 7 September 2011 / Accepted: 30 September 2011 / Published: 14 October 2011

Abstract

:
The title compound, N-(4-methylsulfonamido-3-phenoxyphenyl)-9,10-dihydro-9,10-ethanoanthracene-11,12-dicarboximide was synthesized in high yield by reaction of N-(4-amino-2-phenoxyphenyl)methanesulfonamide and 9,10-dihydroanthracene-9,10-endo-α,β-succinic anhydride in glacial acetic acid. The structure of the compound was fully characterized by IR, 1H and 13C NMR, mass spectral analysis and elemental analysis.
Keywords:
sulfonamide; cyclic imide; nimesulide
Cyclic imides A (Scheme 1) represent an important class of bioactive molecules that shows a wide range of pharmacological activities such as androgen receptor antagonistic, anti-inflammatory, anxiolytic, antiviral, antibacterial, antitumor, antispasmodic, antinociceptive and antineoplastic properties [1,2,3,4,5,6,7,8,9,10,11,12,13].
On the other hand N-(4-nitro-2-phenoxy phenyl)methane sulfonamide or nimesulide (B, Scheme 1), a preferential cyclooxygenase-2 (COX-2) inhibitor is one of the well known non-steroidal anti-inflammatory drugs (NSAIDs) that has been utilized to treat pain and other inflammatory diseases. Because of their common anti-inflammatory properties and our interest in nimesulide (N-(4-nitro-2-phenoxy phenyl)methane sulfonamide) derivatives [14,15,16,17,18] as potential anti-inflammatory agents we decided to prepare compound C having structural features of both A and B (Scheme 1).
We estimated that combination of structural features of cyclic imide (A) with nimesulide (B) in a single molecule (C) would provide novel agents possessing potent pharmacological activities.
We report the synthesis N-(4-methylsulfonamido-3-phenoxyphenyl)-9,10-dihydro-9,10-ethanoanthracene-11,12-dicarboximide (3) as hybrid molecule derived from N-(4-nitro-2-phenoxy phenyl)methane sulfonamide, B, nimesulide by straight forward condensation of the key intermediate N-(4-amino-2-phenoxy-phenyl)-methane sulfonamide (1) and 9,10-dihydro anthracene -9,10-endo-α,β-succinic anhydride (2).
The starting compound 1 (N-(4-amino-2-phenoxy-phenyl)-methane sulfonamide) required for our study was prepared [14] in quantitative yield from N-(4-nitro-2-phenoxy phenyl)methane sulfonamide B, (nimesulide) via reducing its nitro group as shown in Scheme 2.
To a mixture of aromatic amine, (N-(4-amino-2-phenoxy-phenyl)-methane sulfonamide) 1 (278 mg, 1.0 mmol) and 9,10-dihydroanthracene 9,10-endo-α,β-succinic anhydride (2) (276 mg, 1.0 mmol) in glacial acetic acid (3 mL) was added anhydrous sodium acetate (100 mg, 1.2 mmol) and the mixture was allowed to reflux for 20 min. After completion of the reaction (as indicated by TLC) the mixture was added to crushed ice (50 g) and stirred. The solid separated was filtered and dried. The crude product was purified by column chromatography followed by re-crystallization from chloroform.
Description of the compound: White solid.
Yield: 84%.
Mp: 309–311 °C.
Rf: 0.59 (CHCl3:Ethyl acetate = 9:1).
IR υmax (KBr cm−1): 3155, 1705, 1502, 1331, 1157.
Mass (ES): m/z 538 (M+1, 100%).
1HNMR (400 MHz, DMSO-d6): δ 3.0 (s, 3H), 3.31(s, 2H), 4.81(s, 2H), 5.87(d, J 2.2 Hz, 1H), 6.29 (dd, J 8.6 and 2.2 Hz, 1H), 6.86 (dd, J 5.2 and 3.3 Hz, 2H), 7. 0 (d, J 7.6 Hz, 2H), 7.14–7.18 (m, 4H), 7.27–7.29 (m, 1H), 7.35 (d. J 8.5Hz, 1H), 7.46–7.50 (m, 4H), 9.35 (1H, NH).
13C NMR (75 MHz, CDCl3): δ 30.9 (CH3), 39.8, 45.9, 47.02, 115.6, 119.4, 120.6, 122.1, 124.3 124.9, 126.9, 127.0, 128.1, 128.2, 130.3, 138.5, 141.0, 147.2, 155.0, 175.8 (CO).
Anal. calc. for C31H24N2O5S: C, 69.39; H, 4.51; N, 5.22 . Found: C, 69.28; H, 4.46; N, 5.28.

Supplementary materials

Supplementary File 1Supplementary File 2Supplementary File 3Supplementary File 4

Acknowledgments

The authors (S. Pal and K. Kavitha) thank Mr. M. N. Raju, the chairman of M. N. R. Educational Trust for his constant encouragement.

References and Notes

  1. Salvati, M.E.; Balog, A.; Shan, W.; Wei, D.D.; Pickering, D.; Attar, R.M.; Geng, J.; Rizzo, C.A.; Gottardis, M.M.; Weinmann, R.; Krystek, S.R.; Sack, J.; An, Y.; Kish, K. Structure based approach to the design of bicyclic-1H-isoindole-1,3(2H)-dione based androgen receptor antagonists. Bioorg. Med. Chem. Lett. 2005, 15, 271–276. [Google Scholar] [CrossRef] [PubMed]
  2. Sondhi, S.M.; Rani, R.; Roy, P.; Agarwal, S.K.; Saxena, A.K. Microwave-Assisted Synthesis of N-Substituted Cyclic Imides and Their Evaluation for Anticancer and Antiinflammatory Activities. Bioorg. Med. Chem. Lett. 2009, 19, 1534–1538. [Google Scholar] [CrossRef] [PubMed]
  3. Ishizumi, K.; Kojima, A.; Antoku, F. Synthesis and anxiolytic activity of N-substituted cyclic imides (1R*,2S*,3R*,4S*)-N-[4-[4-(2-pyrimidinyl)-1-piperazinyl]butyl]-2,3-bicyclo[2.2.1] heptanedicarboximide (tandospirone) and related compounds. Chem. Pharm. Bull. 1991, 39, 2288–2300. [Google Scholar] [CrossRef] [PubMed]
  4. Shibata, Y.; Shiehita, M.; Sasaki, K.; Nishimura, K.; Hashimoto, Y.; Iwasaki, S. N-Alkylphthalimides: Structural requirement of thalidomidal action on 12-O-tetradecanoylphorbol-13-acetate-induced tumor necrosis factor alpha production by human leukemia HL-60 cells. Chem. Pharm. Bull. 1995, 43, 177–179. [Google Scholar] [CrossRef] [PubMed]
  5. Jindal, D.P.; Bedi, V.; Jit, B.; Karkra, N.; Guleria, S.; Bansal, R.; Palusczak, A.; Hartmann, R.W. Synthesis and study of some new N-substituted imide derivatives as potential anticancer agents. Il Farmaco 2005, 60, 283–290. [Google Scholar] [CrossRef] [PubMed]
  6. Wang, J.J.; Wang, S.S.; Lee, C.F.; Chung, M.A.; Chern, Y.T. In vitro antitumor and antimicrobial activities of N-substituents of maleimide by adamantane and diamantane. Chemotherapy 1997, 43, 182–189. [Google Scholar] [CrossRef] [PubMed]
  7. Machado, A.L.; Lima, L.M.; Arau´jo, J.X., Jr.; Fraga, C.A.M.; Koatz, V.L.G.; Barreiro, E.J.I. Design, synthesis and antiinflammatory activity of novel phthalimide derivatives, structurally related to thalidomide. Bioorg. Med. Chem. Lett. 2005, 15, 1169–1172. [Google Scholar] [CrossRef] [PubMed]
  8. Kenji, S.; Hideko, N.; Yoshihiro, U.; Yoshikazu, S.; Kazuharu, N.; Motoji, W.; Konstanty, W.; Tadafumi, T.; Tetsuji, A.; Yuji, Y.; Kenji, K.; Hitoshi, H. Napthalimidobenzamide DB-51630: A novel DNA binding agent inducing p300 gene expression and exerting a potent anti-cancer activity. Bioorg. Med. Chem. 2005, 13, 4014–4021. [Google Scholar]
  9. Mayer, A.; Neuenhofer, S. Luminescent labels - more than just an alternative to radioisotopes. Angew. Chem. Int. Ed. 1994, 33, 1044–1072. [Google Scholar] [CrossRef]
  10. Miguel, F.B.; Gema, D.; Beatriz, S.; Cynthia, R.; Simmon, R.; Teresa, B. Synthesis and antitumour activity of new dendritic polyamines–(imide–DNA-intercalator) conjugates: potent Lck inhibitors. Eur. J. Med. Chem. 2002, 37, 541–551. [Google Scholar]
  11. Miyachi, H.; Azuma, A.; Ogasawara, A.; Uchimura, E.; Watanabe, N.; Kobayashi, Y.; Kato, F.; Kato, M.; Hashimoto, H. Novel biological response modifiers: Phthalimides with tumor necrosis factor-alpha production-regulating activity. J. Med. Chem. 1997, 40, 2858–2865. [Google Scholar] [CrossRef] [PubMed]
  12. Mederski, W.W.K.R.; Baumgarth, M.; Germann, M.; Kux, D.; Weitzel, T. A Convenient Synthesis of 4-Aminoaryl Substituted Cyclic Imides. Tetrahedron Lett. 2003, 44, 2133–2136. [Google Scholar] [CrossRef]
  13. Cremlyn, R.; Swinbourne, F.; Nunes, R. Diels Alder Reactions using N-(p-Chlorosulfonyl)-Maleimide a dienophile. Phosphorous Sulfur Relat. Elem. 1987, 33, 65. [Google Scholar] [CrossRef]
  14. Pericherla, S.; Mareddy, J.; Rani, D.P.G.; Gollapudi, P.V.; Pal, S. Chemical Modifications of Nimesulide. J. Braz. Chem. Soc. 2007, 18, 384–390. [Google Scholar] [CrossRef]
  15. Reddy, L.V.; Nakka, M.; Suman, A.; Ghosh, S.; Helliwell, M.; Mukkanti, K.; Mukherjee, A.K.; Pal, S. Synthesis of Novel Quinoline Analogues of Nimesulide: An Unusual Observation. J. Heterocycl. Chem. 2011, 48, 555–562. [Google Scholar]
  16. Durgadas, S.; Chatare, V.K.; Mukkanti, K.; Pal, S. Palladium-mediated synthesis of novel nimesulide derivatives. Appl. Organomet. Chem. 2010, 24, 680–684. [Google Scholar] [CrossRef]
  17. Kankanala, K.; Reddy, V.R.; Mukkanti, K.; Pal, S. Lewis Acid Free High Speed Synthesis of Nimesulide-Based Novel N-Substituted Cyclic Imides. J. Braz. Chem. Soc. 2010, 21, 1060–1064. [Google Scholar] [CrossRef]
  18. Reddy, L.V.; Kethavath, M.; Nakka, M.; Beevi, S.S.; Mangamoori, L.N.; Mukkanti, K.; Pal, S. Design and Synthesis of Novel Cytotoxic Agents Based on Combined Framework of Quinoline and Nimesulide. J. Heterocycl. Chem. 2011. [CrossRef]
Scheme 1. Design of hybrid molecule.
Scheme 1. Design of hybrid molecule.
Molbank 2011 m740 sch001
Scheme 2. Synthesis of the title compound 3.
Scheme 2. Synthesis of the title compound 3.
Molbank 2011 m740 sch002
Back to TopTop