Dimethyl 1,4-Dihydro-2,6-dimethyl-1-(4-methylphenyl)-4-(4-methoxylphenyl)pyridine-3,5-dicarboxylate
Abstract
:Experimental Procedure
Structural Characterization
Supplementary materials
Supplementary File 1Supplementary File 2Supplementary File 3Acknowledgements
References
- Bocker, R.H.; Guengerich, F.P. Oxidation of 4-aryl- and 4-alkyl-substituted 2,6-dimethyl-3,5-bis(alkoxycarbonyl)-1,4-dihydropyridines by human liver microsomes and immunochemical evidence for the involvement of a form of cytochrome P-450. J. Med. Chem. 1986, 29, 1596–1603. [Google Scholar] [CrossRef] [PubMed]
- Bossert, F.; Meyer, H.; Wehinger, E. 4-Aryldihydropyridines, a new class of highly active calcium antagonists. Angew. Chem. Int. Ed. Engl. 1981, 20, 762–769. [Google Scholar] [CrossRef]
- Nakayama, H.; Kasoaka, Y. Chemical identification of binding sites for calcium channel antagonists. Heterocycles 1996, 42, 901–909. [Google Scholar] [CrossRef]
- Smith, W.T., Jr.; Kort, P.G. The synthesis of substituted β-arylglutaric acids. J. Am. Chem. Soc. 1950, 72, 1877–1878. [Google Scholar] [CrossRef]
- Michal, F.; Moller, W. Pyridin-Synthesen, II. Pyridin-derivate aus 2.3.4.5.6-pentaacetyl-al-d-glucose. Justus Liebigs Ann. Chem. 1963, 670, 63–68. [Google Scholar] [CrossRef]
- Shah, A.; Gevariya, H.; Motohashi, N.; Kawase, M.; Saito, S.; Sakagami, H.; Satoh, Y.; Solymosi, A.; Walfard, K.; Molnar, J. 3,5-Diacetyl-1,4-dihydropyridines: Synthesis and MDR reversal in tumor cells. Anticancer Res. 2000, 20, 373–377. [Google Scholar] [PubMed]
- Shah, A.; Gevariya, H.; Motohashi, N.; Kawase, M.; Farkas, S.; Gyorgyi, G.; Molnar, J. Interaction between 3,5-diacetyl-1,4-dihydropyridines and ampicillin, and erythromycin on different E-coli strains. Int. J. Antimicrobial Agents 2002, 20, 227–229. [Google Scholar]
- Desai, B.; Sureja, D.; Naliapara, Y.; Saxena, A.K.; Shah, A. Synthesis and QSAR studies of 4-substituted phenyl-2,6-dimethyl-3,5-bis-N-(substituted phenyl)carbamoyl-1,4-dihydropyridines as potential antitubercular agents. Bioorg. Med. Chem. 2001, 9, 1993–1998. [Google Scholar] [CrossRef]
- Hantzsch, A. Condensationprodukte aus Aldehydammoniak und Ketoniartigen Verbindungen. Chem. Ber. 1881, 14, 1637–1638. [Google Scholar] [CrossRef]
- Lachowicz, B. Solid-phase synthesis of 4-aryl-1,4-dihydropyridines via the Hantzsch three component condensation. Monatsh. Chem. 1896, 17, 343. [Google Scholar] [CrossRef]
- Breitenbucher, J.G.; Figliozzi, G. Solid-phase synthesis of 4-aryl-1,4-dihydropyridines via the Hantzsch three component condensation. Tetrahedron Lett. 2000, 41, 4311–4315. [Google Scholar] [CrossRef]
- Anderson, A.G.; Berkelhammer, G. A Study of the Primary Acid Reaction on Model Compounds of Reduced Diphosphopyridine Nucleotide1,2. J. Am. Chem. Soc. 1958, 80, 992–999. [Google Scholar] [CrossRef]
- Erickson, J.G. The reactions of aldehydes with β-anilinocrotonic esters1. J. Am. Chem. Soc. 1945, 67, 1382–1386. [Google Scholar] [CrossRef]
- Maquestiau, A.; Maeyence, A.; Eynde, J.J.V. Ultrasound-promoted aromatization of hantzsch 1,4-Dihydropyridines by clay-supported cuptic nitrate. Tetrahedron Lett. 1991, 32, 3839–3840. [Google Scholar] [CrossRef]
- Dittmer, D.C. ‘No-solvent’ organic synthesis. (organic compounds synthesis without solvents). Chem. Ind. (London) 1997, 19, 779. [Google Scholar]
- Anniyappan, M.; Muralidhran, D.; Perumal, P.T. Synthesis of Hantzsch 1,4-dihydropyridines under microwave irradiation. Synth. Commun. 2002, 32, 659–663. [Google Scholar] [CrossRef]
- Yadav, J.S.; Reddy, B.V.S.; Reddy, P.T. Unprecedented synthesis of hantzsch 1,4-dihydropyridines under biginelli reaction conditions. Synth. Commun. 2001, 31, 425–430. [Google Scholar] [CrossRef]
- Cotterill, I.C.; Usyatinsky, A.Y.; Arnold, J.M.; Clark, D.S.; Dordick, J.S.; Michels, P.C.; Khmelnitsky, Y.L. Microwave assisted combinatorial chemistry synthesis of substituted pyridines. Tetrahedron Lett. 1998, 39, 1117–1120. [Google Scholar] [CrossRef]
- Perreuex, L.; Loupy, A. A tentative rationalization of microwave effects in organic synthesis according to the reaction medium, and mechanistic considerations. Tetrahedron 2001, 57, 9199–9223. [Google Scholar] [CrossRef]
- Varma, R.S.; Chatterjee, A.K.; Varma, M. Alumina-mediated microwave thermolysis: A new approach to deprotection of benzyl esters. Tetrahedron Lett. 1993, 34, 4603–4606. [Google Scholar] [CrossRef]
- Selvi, S.T.; Nadaraj, V.; Mohan, S.; Sasi, R.; Hema, M. Solvent free microwave synthesis and evaluation of antimicrobial activity of pyrimido[4,5-b]- and pyrazolo[3,4-b]quinolines. Bioorg. Med. Chem. 2006, 14, 3896–3903. [Google Scholar] [CrossRef] [PubMed]
- Kim, K.M.; Ryu, E.K. Unusual iodine catalyzed lactonization of gamma-methyl-gamma,delta-pentenoic acids: A facile synthesis of gamma,gamma-dimethyl-gamma-butyrolactones. Tetrahedron Lett. 1996, 37, 1441–1444. [Google Scholar] [CrossRef]
- Firouzabadi, H.; Iranpoor, N.; Hazarkhani, H. Iodine catalyzes efficient and chemoselective thioacetalization of carbonyl functions, transthioacetalization of O,O- and S,O-acetals and acylals. J. Org. Chem. 2001, 66, 7527–7529. [Google Scholar] [CrossRef] [PubMed]
- Firouzabadi, H.; Iranpoor, N.; Sobhani, S. A high yielding preparation of alpha-trimethylsilyloxyphosphonates by silylation of alpha-hydroxyphosphonates with HMDS catalyzed by iodine. Tetrahedron Lett. 2002, 43, 3653–3655. [Google Scholar] [CrossRef]
- Bandgar, B.P.; Shaikh, K.A. Molecular iodine-catalyzed efficient and highly rapid synthesis of bis(indolyl)methanes under mild conditions. Tetrahedron Lett. 2003, 44, 1959–1961. [Google Scholar] [CrossRef]
- Banik, B.K.; Mukhopadhyay, C.; Venkatraman, M.S.; Becker, F.F. A facile reduction of aromatic nitro compounds to aromatic amines by samarium and iodine. Tetrahedron Lett. 1998, 39, 7243–7246. [Google Scholar] [CrossRef]
- Banik, B.K.; Zegrocka, O.; Banik, I.; Hackfeld, L.; Becker, F.F. Samarium-induced iodine-catalyzed reduction of imines: synthesis of amine derivatives. Tetrahedron Lett. 1999, 40, 6731–6734. [Google Scholar] [CrossRef]
- Ko, S.; Sastry, M.N.V.; Lin, C.; Yao, C.F. Molecular iodine-catalyzed one-pot synthesis of 4-substituted-1,4-dihydropyridine derivatives via Hantzsch reaction. Tetrahedron Lett. 2005, 46, 5771–5774. [Google Scholar] [CrossRef]
© 2009 by the authors; licensee Molecular Diversity Preservation International, Basel, Switzerland. This article is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Zhang, W.; Pan, N.; Liu, Q. Dimethyl 1,4-Dihydro-2,6-dimethyl-1-(4-methylphenyl)-4-(4-methoxylphenyl)pyridine-3,5-dicarboxylate. Molbank 2009, 2009, M646. https://doi.org/10.3390/M646
Zhang W, Pan N, Liu Q. Dimethyl 1,4-Dihydro-2,6-dimethyl-1-(4-methylphenyl)-4-(4-methoxylphenyl)pyridine-3,5-dicarboxylate. Molbank. 2009; 2009(4):M646. https://doi.org/10.3390/M646
Chicago/Turabian StyleZhang, Wenwen, Ning Pan, and Qingjian Liu. 2009. "Dimethyl 1,4-Dihydro-2,6-dimethyl-1-(4-methylphenyl)-4-(4-methoxylphenyl)pyridine-3,5-dicarboxylate" Molbank 2009, no. 4: M646. https://doi.org/10.3390/M646
APA StyleZhang, W., Pan, N., & Liu, Q. (2009). Dimethyl 1,4-Dihydro-2,6-dimethyl-1-(4-methylphenyl)-4-(4-methoxylphenyl)pyridine-3,5-dicarboxylate. Molbank, 2009(4), M646. https://doi.org/10.3390/M646