Molecular Indicators of Isometric Exercise Efficacy in Early Rehabilitation of Older Adults After Total Hip Arthroplasty
Abstract
1. Introduction
2. Results
2.1. Clinical and Biochemical Blood Analysis Results in Standard and Experimental Rehabilitation Groups
2.2. Comparative Transcriptomic Analysis of Rectus Femoris Biopsies from the Operated Leg in Patients of the Control and Experimental Rehabilitation Groups
2.2.1. Differentially Expressed Gene (DEG) Analysis Reveals Difference Between Patients of Control and Experimental Rehabilitation Groups
2.2.2. Gene Set Enrichment Analysis
2.2.3. Comparative Analysis of DEG Associated with Selected Biological Processes for the Contrasts 1vs0, ctr12vs0, and exp12vs0
3. Discussion
4. Materials and Methods
4.1. Study Design
4.2. Clinical Laboratory Diagnostics
4.3. Percutaneous Muscle Biopsies
4.4. Isolation and Sequencing of Muscle Tissue RNA
4.5. Bioinformatics Analysis
4.6. Differential Gene Expression Analysis
4.7. Gene Set Enrichment Analysis
4.8. Statistical Analysis
5. Conclusions
6. Patents
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| IEs | Isometric exercises |
| THA | Total hip arthroplasty |
| OA | Osteoarthritis |
| DALYs | Disability-adjusted life years |
| CRP | C-reactive protein |
| ESR | Erythrocyte sedimentation rate |
| GSEA | Gene Set Enrichment Analysis |
| DEG | Differentially expressed gene |
| NO | Nitric oxide |
| AST | Aspartate aminotransferase |
| LDH | Lactate dehydrogenase |
| CPK | Creatine phosphokinase |
| PCA | Principal component analysis |
| PC | Principal component |
| NES | Normalized Enrichment Score |
| TLR | Toll-like receptor |
| BMP7 | Bone morphogenetic protein 7 |
| TGFB2 | Transforming growth factor beta 2 |
| BMP8A | Bone morphogenetic protein 8A |
| EGF | Epidermal growth factor |
| AMOT | Angiomotin protein |
| KIT | Tyrosine kinase receptor |
| CXCR1 | C-X-C motif chemokine receptor 1 |
| ENPP2 | Ectonucleotide pyrophosphotase/phosphodiesterase 2 |
| GRN | Granulin precursor |
| LPA | Lysophosphatidic acid |
| VEGF | Vascular endothelial growth factor |
| ANGPT1 | Angiopoietin-1 |
| FLT1 | Fms-related receptor tyrosine kinase 1 |
| KDR | Kinase insert domain receptor |
| NRP2 | Neuropilin-2 |
| TEK | Receptor tyrosine kinase |
| TIE2 | Receptor tyrosine kinase |
| ETA | Endothelin receptor type A |
| ADORA2B | Adenosine A2b receptor |
| EDNRA | Endothelin receptor type 1 |
| PRKG1 | Protein kinase cGMP-dependent 1 |
| nNOS | Neuronal nitric oxide synthase |
| LEC | Local Ethics Committee |
| RAS | Russian Academy of Sciences |
References
- Wang, Y.; Tang, X.; Peng, J.R.; Deng, Y.; Lan, S.; Yen, Y.; Tang, Y. Global, regional, and national burden of osteoarthritis among middle-aged and older adults: Estimates from the global burden of disease study 2021 and projections to 2050. Front. Med. 2025, 12, 1696929. [Google Scholar] [CrossRef]
- GBD 2021 Osteoarthritis Collaborators. Global, regional, and national burden of osteoarthritis, 1990–2020 and projections to 2050: A systematic analysis for the Global Burden of Disease Study 2021. Lancet Rheumatol. 2023, 5, 508–522. [Google Scholar] [CrossRef]
- Klinicheskie Rekomendatsii «Koksartroz», utv. Minzdravom Rossii, 2024 (Clinical Guidelines “Coxarthrosis” (Approved by the Ministry of Health of Russia, 2024)). Available online: https://www.consultant.ru/document/cons_doc_LAW_494527/ (accessed on 15 December 2025).
- Jensen, C.; Aagaard, P.; Overgaard, S. Recovery in mechanical muscle strength following resurfacing vs standard total hip arthroplasty–A randomised clinical trial. Osteoarthr. Cartil. 2011, 19, 1108–1116. [Google Scholar] [CrossRef]
- Vissers, M.M.; Bussmann, J.B.; Verhaar, J.A.; Arends, L.R.; Furlan, A.D.; Reijman, M. Recovery of physical functioning after total hip arthroplasty: Systematic review and meta-analysis of the literature. Phys. Ther. 2011, 91, 615–629. [Google Scholar] [CrossRef]
- Judd, D.L.; Dennis, D.A.; Thomas, A.C.; Wolfe, P.; Dayton, M.R.; Stevens-Lapsley, J.E. Muscle strength and functional recovery during the first year after THA. Clin. Orthop. Relat. Res. 2014, 472, 654–664. [Google Scholar] [CrossRef]
- Klimovitskii, V.G.; Klimovitskii, R.V.; Tyazhelov, A.A.; Goncharova, L.E. Peculiarities of the work of pelvic girdle muscles before and after hip arthroplasty. Literature review. Trauma 2019, 20, 13–19. [Google Scholar] [CrossRef]
- Epifanov, V.A.; Epifanov, A.V. Lechebnaya Fizicheskaya Kul’tura (Therapeutic Physical Education), 4th ed.; GEOTAR-Media: Moscow, Russia, 2020; pp. 569–573. [Google Scholar]
- Builova, T.M.; Bodrova, R.A.; Petrova, R.V. Rehabilitation Diagnosis Based on the International Functioning Classification (ICF) in Patients under Lower Limb Joint Endoprosthetics. Bull. Rehabil. Med. 2022, 21, 17–26. [Google Scholar] [CrossRef]
- Kironenko, T.A. Myokine Production and Monovalent Cation Concentrations in Mouse Muscle Tissue During Exercise. Master’s Dissertation, Tomsk State University, Tomsk, Russia, 2021; pp. 10–25. [Google Scholar]
- Kironenko, T.A.; Milovanova, K.G.; Zakharova, A.N.; Sidorenko, S.V.; Klimanova, E.A.; Dyakova, E.Y.; Orlova, A.A.; Negodenko, E.S.; Kalinnikova, Y.G.; Orlov, S.N.; et al. Effect of Dynamic and Static Load on the Concentration of Myokines in the Blood Plasma and Content of Sodium and Potassium in Mouse Skeletal Muscles. Biochemistry 2021, 86, 370–381. [Google Scholar] [CrossRef] [PubMed]
- Snenkman, B.S.; Nemirovskaya, T.L.; Lomonosova, Y.N. No-dependent signaling pathways in unloaded skeletal muscle. Front. Physiol. 2015, 6, 298. [Google Scholar] [CrossRef] [PubMed]
- Reza, Y.M.; Nassour, A.; Reza, A.; Kaveh, K.; Valizadeh, A.; Nasiri, M. The effect of isometric training on prevention of density reduction in injured limbs during a period of immobilization. Aust. J. Basic Appl. Sci. 2011, 5, 981–985. [Google Scholar]
- Taufik, N.H.; Tulaar, A.B.M.; Moesbar, N.; Ganie, R.A. The Effect of Isometric Exercise Plantar Flexor on Osteoblast Activity Measured by Bone Specific Alkaline Phosphatase and Callus Formation in a Patient Post Open Reduction Internal Fixation with Non-articular Tibia Fracture. Open Access Maced. J. Med. Sci. 2019, 7, 3409–3415. [Google Scholar] [CrossRef]
- Qi, C.; Song, X.; Wang, H.; Yan, Y.; Liu, B. The role of exercise-induced myokines in promoting angiogenesis. Front. Physiol. 2022, 13, 981577. [Google Scholar] [CrossRef] [PubMed]
- Maksimova, E.A.; Shevchenko, V.I.; Akatov, V.I. Biophysical Basics of the Use of Isometric Exercises in the Rehabilitation of Patients after Arthroplasty. Biophysics 2025, 70, 179–188. [Google Scholar] [CrossRef]
- Kolesnikov, S.V.; D’yachkova, G.V.; Komarova, E.S. Diverse rehabilitation measures applied for restorative treatment of total hip arthroplasty patients (own findings and literature review). Genij Ortop. 2020, 26, 254–260. [Google Scholar] [CrossRef]
- Di Monaco, M.; Vallero, F.; Tappero, R.; Cavanna, A. Rehabilitation after total hip arthroplasty: A systematic review of controlled trials on physical exercise programs. Eur. J. Phys. Rehabil. Med. 2009, 45, 303–317. [Google Scholar]
- Lowe, C.J.; Davies, L.; Sackley, C.M.; Barker, K.L. Effectiveness of land-based physiotherapy exercise following hospital discharge following hip arthroplasty for osteoarthritis: An updated systematic review. Physiotherapy 2015, 101, 252–265. [Google Scholar] [CrossRef]
- Aluganti, N.C.; Singla, D.K. The Role of Bone Morphogenetic Protein 7 (BMP-7) in Inflammation in Heart Diseases. Cells 2020, 9, 280. [Google Scholar] [CrossRef]
- Ono, Y.; Calhabeu, F.; Morgan, J.; Katagiri, T.; Amthor, H.; Zammit, P.S. BMP signalling permits population expansion by preventing premature myogenic differentiation in muscle satellite cells. Cell Death Differ. 2011, 18, 222–234. [Google Scholar] [CrossRef]
- Zhong, S.; Chen, L.; Li, X.; Wang, X.; Ji, G.; Sun, C.; Liu, Z. Bmp8a deletion leads to obesity through regulation of lipid metabolism and adipocyte differentiation. Commun. Biol. 2023, 6, 824. [Google Scholar] [CrossRef]
- Nishimasu, H.; Okudaira, S.; Hama, K.; Mihara, E.; Dohmae, N.; Inoue, A.; Ishitani, R.; Takagi, J.; Aoki, J.; Nureki, O. Crystal structure of autotaxin and insight into GPCR activation by lipid mediators. Nat. Struct. Mol. Biol. 2011, 18, 205–212. [Google Scholar] [CrossRef]
- Jian, J.; Konopka, J.; Liu, C. Insights into the role of progranulin in immunity, infection, and inflammation. J. Leukoc. Biol. 2013, 93, 199–208. [Google Scholar] [CrossRef] [PubMed]
- Lee, E.H.; Woo, J.S.; Hwang, J.H.; Park, J.H.; Cho, C.H. Angiopoietin 1 enhances the proliferation and differentiation of skeletal myoblasts. J. Cell Physiol. 2013, 228, 1038–1044. [Google Scholar] [CrossRef] [PubMed]
- Santos, S.C.; Dias, S. Internal and external autocrine VEGF/KDR loops regulate survival of subsets of acute leukemia through distinct signaling pathways. Blood 2004, 103, 3883–3889. [Google Scholar] [CrossRef]
- Eklund, L.; Olsen, B.R. Tie receptors and their angiopoietin ligands are context-dependent regulators of vascular remodeling. Exp. Cell Res. 2006, 312, 630–641. [Google Scholar] [CrossRef]
- Yang, Y.Q.; Tan, Y.Y.; Wong, R.; Wenden, A.; Zhang, L.-K.; Rabie, A.B.M. The role of vascular endothelial growth factor in ossification. Int. J. Oral. Sci. 2012, 4, 64–68. [Google Scholar] [CrossRef]
- Rauniyar, K.; Jha, S.K.; Jeltsch, M. Biology of Vascular Endothelial Growth Factor C in the Morphogenesis of Lymphatic Vessels. Front. Bioeng. Biotechnol. 2018, 6, 7. [Google Scholar] [CrossRef] [PubMed]
- Krebs, R.; Jeltsch, M. The lymphangiogenic growth factors VEGF-C and VEGF-D. LymphForsch 2013, 17, 30–37. [Google Scholar]
- Lai, X.; Lin, Y.; Huang, S.; Pu, L.; Zeng, Q.; Wang, Z.; Huang, W. Dexmedetomidine alleviates pulmonary fibrosis through the ADORA2B-Mediated MAPK signaling pathway. Respir. Res. 2023, 24, 214. [Google Scholar] [CrossRef]
- Karar, J.; Maity, A. PI3K/AKT/mTOR pathway in angiogenesis. Front. Mol. Neurosci. 2011, 4, 51. [Google Scholar] [CrossRef]
- Hilal-Dandan, R.; Brunton, L.L. Endothelin A Receptor (ETAR). In Encyclopedia of Signaling Molecules; Choi, S., Ed.; Springer: New York, NY, USA, 2012; pp. 545–551. [Google Scholar] [CrossRef]
- Zhou, Y.-Q.; Mei, W.; Li, D.-Y.; Gao, S.-J.; Sun, J.; Zhang, L.-Q.; Wu, J.-Y.; Song, F.-H.; Liu, D.-Q. Targeting the nitric oxide/cGMP signaling pathway to treat chronic pain. Neural Regen. Res. 2023, 18, 996–1003. [Google Scholar] [CrossRef]
- Solanki, K.; Rajpoot, S.; Bezsonov, E.E.; Orekhov, A.N.; Saluja, R.; Wary, A.; Axen, C.; Wary, K.; Baig, M.S. The expanding roles of neuronal nitric oxide synthase (NOS1). PeerJ 2022, 10, e13651. [Google Scholar] [CrossRef]
- Konnyu, K.J.; Pinto, D.; Cao, W.; Aaron, R.K.; Panagiotou, O.A.; Bhuma, M.R.; Adam, G.P.; Balk, E.M.; Thoma, L.M. Rehabilitation for Total Hip Arthroplasty: A Systematic Review. Am. J. Phys. Med. Rehabil. 2023, 102, 11–18. [Google Scholar] [CrossRef]
- Tugni, C.; Sansoni, J.; Vanacore, N.; Valente, D.; Galeoto, G. Rehabilitation effects in patients with total hip replacement: A systematic review and meta-analysis. Minerva Ortop. Traumatol. 2019, 70, 205–218. [Google Scholar] [CrossRef]
- Sineokii, A.D.; Pliev, D.G.; Guatsaev, M.S.; Efimov, N.N.; Stafeev, D.V.; Mikhailov, K.S.; Nesinov, A.A. Comparative analysis of biochemical parameters of muscle tissue alteration depending on approaches for total hip arthroplasty. Sovrem. Probl. Nauki Obraz. 2020, 4, 146. [Google Scholar]
- Tikhilov, P.M.; Andreev, D.V.; Goncharov, M.Y.; Shneider, O.V. Comparative analysis of biochemical parameters of muscle tissue alteration depending on approaches for total hip arthroplasty. Traumatol. Ortop. Ross. 2013, 1, 37–43. [Google Scholar] [CrossRef]
- Laurence, A.S. Serum myoglobin and creatine kinase following surgery. Br. J. Anaesth. 2000, 84, 763–766. [Google Scholar] [CrossRef]
- Antonov, A.A.; Reshetnikova, V.V.; Dolzhikova, Y.I.; Solod, E.I.; Lazarev, A.F.; Antonov, A.K.; Gorenkov, R.V.; Simonova, A.V.; Talipov, I.A. Inflammatory markers in the early postoperative period in patients who underwent total hip replacement with longstanding trochanter fractures of the femur. Vestn. Nats. Med.-Khir. Tsentra im. N.I. Pirogova 2022, 17, 46–50. [Google Scholar] [CrossRef]
- Domecky, P.; Rejman Patkova, A.; Mala-Ladova, K.; Maly, J. Inflammatory blood parameters as prognostic factors for implant-associated infection after primary total hip or knee arthroplasty: A systematic review. BMC Musculoskelet. Disord. 2023, 24, 383. [Google Scholar] [CrossRef]
- Huang, Z.Y.; Huang, Q.; Wang, L.Y.; Lei, Y.T.; Xu, H.; Shen, B.; Pei, F.X. Normal trajectory of Interleukin-6 and C-reactive protein in the perioperative period of total knee arthroplasty under an enhanced recovery after surgery scenario. BMC Musculoskelet. Disord. 2020, 21, 264. [Google Scholar] [CrossRef] [PubMed]
- Howard, E.E.; Pasiakos, S.M.; Blesso, C.N.; Fussell, M.A.; Rodriguez, N.R. Divergent Roles of Inflammation in Skeletal Muscle Recovery From Injury. Front. Physiol. 2020, 11, 87. [Google Scholar] [CrossRef]
- Chazaud, B. Inflammation during skeletal muscle regeneration and tissue remodeling: Application to exercise-induced muscle damage management. Immunol. Cell Biol. 2016, 94, 140–145. [Google Scholar] [CrossRef] [PubMed]
- Kwon, Y.S.; Jang, J.S.; Hwang, S.M.; Tark, H.; Kim, J.H.; Lee, J.J. Effects of surgery start time on postoperative cortisol, inflammatory cytokines, and postoperative hospital day in hip surgery: Randomized controlled trial. Medicine 2019, 98, e15820. [Google Scholar] [CrossRef]
- Park, S.H.; Das, B.B.; Casagrande, F.; Tian, Y.; Nothnagel, H.J.; Chu, M.; Kiefer, H.; Maier, K.; De Angelis, A.A.; Marassi, F.M.; et al. Structure of the chemokine receptor CXCR1 in phospholipid bilayers. Nature 2012, 491, 779–783. [Google Scholar] [CrossRef] [PubMed]
- Klinicheskie Rekomendatsii «Koksartroz», utv. Minzdravom Rossii, 2021 (Clinical Guidelines “Coxarthrosis” (Approved by the Ministry of Health of Russia, 2021)). Available online: https://www.consultant.ru/document/cons_doc_LAW_394918/ (accessed on 21 January 2026).
- Maksimova, E.A.; Akatov, V.S.; Shevchenko, V.I.; Senotov, A.S.; Krasnov, K.S. RU Patent 2850112. Byull. Izobret. 2025, 31. Available online: https://fips.ru/registers-doc-view/fips_servlet?DB=RUPAT&rn=2942&DocNumber=2850112&TypeFile=html (accessed on 21 January 2026).
- Love, M.I.; Huber, W.; Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014, 15, 550. [Google Scholar] [CrossRef]
- Fang, Z.; Liu, X.; Peltz, G. GSEApy: A comprehensive package for performing gene set enrichment analysis in Python. Bioinformatics 2023, 39, btac757. [Google Scholar] [CrossRef]
- Benjamini, Y.; Hochberg, Y. Controlling the False Discovery Rate: A Practical and Powerful Approach to Multiple Testing. J. R. Stat. Soc. B 1995, 57, 289–300. [Google Scholar] [CrossRef]


) and 1 day (
) and 12 days (
) after THA. Data from four patients per group are shown, with individual patients represented by distinct colors. For each muscle sample, up to three sequencing runs were performed, and all resulting data were included in the analysis.
) and 1 day (
) and 12 days (
) after THA. Data from four patients per group are shown, with individual patients represented by distinct colors. For each muscle sample, up to three sequencing runs were performed, and all resulting data were included in the analysis.






Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Maksimova, E.A.; Krasnov, K.S.; Senotov, A.S.; Shevchenko, V.I.; Ermakov, A.M.; Zhdanova, E.S.; Akatov, V.S. Molecular Indicators of Isometric Exercise Efficacy in Early Rehabilitation of Older Adults After Total Hip Arthroplasty. Int. J. Mol. Sci. 2026, 27, 1389. https://doi.org/10.3390/ijms27031389
Maksimova EA, Krasnov KS, Senotov AS, Shevchenko VI, Ermakov AM, Zhdanova ES, Akatov VS. Molecular Indicators of Isometric Exercise Efficacy in Early Rehabilitation of Older Adults After Total Hip Arthroplasty. International Journal of Molecular Sciences. 2026; 27(3):1389. https://doi.org/10.3390/ijms27031389
Chicago/Turabian StyleMaksimova, Elena A., Kirill S. Krasnov, Anatoly S. Senotov, Victor I. Shevchenko, Artem M. Ermakov, Elizaveta S. Zhdanova, and Vladimir S. Akatov. 2026. "Molecular Indicators of Isometric Exercise Efficacy in Early Rehabilitation of Older Adults After Total Hip Arthroplasty" International Journal of Molecular Sciences 27, no. 3: 1389. https://doi.org/10.3390/ijms27031389
APA StyleMaksimova, E. A., Krasnov, K. S., Senotov, A. S., Shevchenko, V. I., Ermakov, A. M., Zhdanova, E. S., & Akatov, V. S. (2026). Molecular Indicators of Isometric Exercise Efficacy in Early Rehabilitation of Older Adults After Total Hip Arthroplasty. International Journal of Molecular Sciences, 27(3), 1389. https://doi.org/10.3390/ijms27031389

