CDK8 Inhibition Increases E2F1 Transcriptional Activity and Promotes STAT3-Dependent Suppression of Mcl-1 in Triple-Negative Breast Cancer Cell Line MDA-MB-468
Abstract
1. Introduction
2. Results
2.1. Effects of Inhibiting CDK8 on E2F1 and CDK8 Proteins
2.2. Effects of Inhibiting CDK8 on STAT3 and MDA-MB-468 Cell Viability
2.3. Effect of Inhibiting CDK8 and STAT3 Knockdown on Mcl-1 Protein
3. Discussion
4. Materials and Methods
4.1. Cell Lines and Reagents
4.2. Dual-Glo Luciferase Assay
4.3. Cell Viability Assay
4.4. Western Blot Analysis
4.5. Transient siRNA Transfection
4.6. Cell Viability Assay of siRNA-Transfected Cells
4.7. Statistical Analysis
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
| CDK8 | Cyclin-Dependent Kinase 8 |
| CPT | Cryptotanshinone |
| DMSO | Dimethylsulfoxide |
| E2F1 | E2F Transcription Factor 1 |
| FBS | Fetal Bovine Serum |
| GAPDH | Glyceraldehyde-3-phosphate Dehydrogenase |
| Mcl-1 | Myeloid Cell Leukemia-1 |
| MED13 | Mediator Complex Subunit 13 |
| OSM | Oncostatin M |
| Rb | Retinoblastoma |
| RNAPII | RNA Polymerase II |
| siRNA | Small Interfering RNA |
| STAT3 | Signal Transducer and Activator of Transcription 3 |
| TNBC | Triple-Negative Breast Cancer |
References
- Galbraith, M.D.; Donner, A.J.; Espinosa, J.M. CDK8 A positive regulator of transcription. Transcription 2010, 1, 4–12. [Google Scholar] [CrossRef]
- Wu, D.; Zhang, Z.; Chen, X.; Yan, Y.; Liu, X. Angel or Devil ?—CDK8 as the new drug target. Eur. J. Med. Chem. 2021, 213, 113043. [Google Scholar] [CrossRef]
- Szilagi, Z.; Gustafsson, C.M. Emerging roles of Cdk8 in cell cycle control. Biochim. Biophys. Acta 2013, 1829, 916–920. [Google Scholar] [CrossRef]
- Tsai, K.-L.; Sato, S.; Tomomori-Sato, C.; Conaway, R.C.; Conaway, J.W.; Asturias, F.J. A conserved mediator–CDK8 kinase module association regulates mediator–RNA polymerase II interaction. Nat. Struct. Mol. Biol. 2013, 20, 611–621. [Google Scholar] [CrossRef]
- Knuesel, M.T.; Meyer, K.D.; Bernecky, C.; Taatjes, D.J. The human CDK8 subcomplex is a molecular switch that controls Mediator coactivator function. Genes Dev. 2009, 23, 439–451. [Google Scholar] [CrossRef] [PubMed]
- Zhao, J.; Ramos, R.; Demma, M. CDK8 regulates E2F1 transcriptional activity through S375 phosphorylation. Oncogene 2013, 32, 3520–3530. [Google Scholar] [CrossRef] [PubMed]
- Bancerek, J.; Poss, Z.C.; Steinparzer, I.; Sedlyarov, V.; Pfaffenwimmer, T.; Mikulic, I.; Dlöken, L.; Müller, M.; Taatjes, D.J.; Kovarik, P. CDK8 kinase phosphorylates transcription factor STAT1 to selectively regulate the interferon response. Immunity 2013, 38, 250–262. [Google Scholar] [CrossRef] [PubMed]
- Knuesel, M.T.; Meyer, K.D.; Donner, A.J.; Espinosa, J.M.; Taatjes, D.J. The human CDK8 subcomplex is a histone kinase that requires Med12 for activity and can function independently of mediator. Mol. Cell. Biol. 2009, 29, 650–661. [Google Scholar] [CrossRef]
- Firestein, R.; Hahn, W.C. Revving the Throttle on an Oncogene: CDK8 Takes the Driver Seat. Cancer Res. 2009, 69, 7899–7901. [Google Scholar] [CrossRef]
- Firestein, R.; Bass, A.; Kim, S.Y.; Dunn, I.F.; Silver, S.J.; Isil, G.; Freed, E.; Ligon, A.H.; Vena, N.; Ogino, S.; et al. CDK8 is a colorectal cancer oncogene that regulates β–catenin activity. Nature 2008, 455, 547–551. [Google Scholar] [CrossRef]
- Morris, E.J.; Ji, J.-Y.; Yang, F.; Di Stefano, L.; Herr, A.; Moon, N.-S.; Kwon, E.-J.; Haigis, K.M.; Näär, A.M.; Dyson, N.J. E2F1 represses β-catenin transcription and is antagonized by both pRb and CDK8. Nature 2008, 455, 552–556. [Google Scholar] [CrossRef]
- Rzymski, T.; Mikula, M.; Zylkiewicz, E.; Dreas, A.; Wiklik, K.; Golas, A.; Wojcik, K.; Masiejczyk, M.; Wrobel, A.; Dolata, I.; et al. SEL120-34A is a novel CDK8 inhibitor active in AML cells with high levels of serine phosphorylation of STAT1 and STAT5 transactivation domains. Oncotarget 2017, 8, 33779–33795. [Google Scholar] [CrossRef]
- Kapoor, A.; Goldberg, M.S.; Cumberland, L.K.; Ratnakumar, K.; Segura, M.F.; Emanuel, P.O.; Menendez, S.; Vardabasso, C.; Leroy, G.; Vidal, C.I.; et al. The histone variant macroH2A suppresses melanoma progression through regulation of CDK8. Nature 2010, 468, 1105–1109. [Google Scholar] [CrossRef]
- Bragelmann, J.; Klumper, N.; Offermann, A.; Von Massenhausen, A.; Bohm, D.; Deng, M.; Queisser, A.; Sanders, C.; Syring, I.; Merseburger, A.S.; et al. Pan-cancer analysis of the mediator complex transcriptome identifies CDK19 and CDK8 as therapeutic targets in advanced prostate cancer. Clin. Cancer Res. 2017, 23, 1829–1840. [Google Scholar] [CrossRef] [PubMed]
- McDermott, M.S.J.; Chumanevich, A.A.; Lim, C.-U.; Liang, J.; Chen, M.; Altilia, S.; Oliver, D.; Rae, J.M.; Shtutman, M.; Kiaris, H.; et al. Inhibition of CDK8 mediator kinase suppresses estrogen dependent transcription and the growth of estrogen receptor positive breast cancer. Oncotarget 2017, 8, 12558–12575. [Google Scholar] [CrossRef] [PubMed]
- Sun, B.; Wingate, H.; Swisher, S.G.; Keyomarsi, K.; Hunt, K.K. Absence of pRb facilitates E2F1-induced apoptosis in breast cancer cells. Cell Cycle 2010, 9, 1122–1130. [Google Scholar] [CrossRef]
- Spear, J.M.; Lu, Z.; Russu, W.A. Pharmacological inhibition of CDK8 in triple negative breast cancer cell line MDA-MB-468 increases E2F1 protein, induces phosphorylation of STAT3 and apoptosis. Molecules 2020, 25, 5728. [Google Scholar] [CrossRef] [PubMed]
- Shallal, H.M.; Russu, W.A. Discovery, Synthesis, and Investigation of the Antitumor Activity of Novel Piperazinylpyrimidine Derivatives. Eur. J. Med. Chem. 2011, 46, 2043–2057. [Google Scholar] [CrossRef]
- Ryzmski, T.; Mikula, M.; Wiklik, K.; Brzózka, K. CDK8 Kinase—An emerging target in targeted cancer therapy. Biochim. Biophys. Acta 2015, 1854, 1617–1629. [Google Scholar] [CrossRef]
- Seelan, R.S.; Irwin, M.; van der Stoop, P.; Qian, C.; Kaelan, W.G.; Liu, W. The human p73 promoter: Characterization and identification of functional E2F binding sites. Neoplasia 2002, 4, 195–203. [Google Scholar] [CrossRef]
- Tophkhane, C.; Yang, S.-H.; Jiang, Y.; Ma, Z.; Subramaniam, D.; Anant, S.; Yogosawa, S.; Sakai, T.; Liu, W.-G.; Edgerton, S.; et al. p53 inactivation upregulates p73 expression through E2F-1 mediated transcription. PLoS ONE 2012, 7, e43564. [Google Scholar] [CrossRef]
- Martinez-Fabregas, J.; Wang, L.; Pohler, E.; Cozzani, A.; Wilmes, S.; Kazemian, M.; Mitra, S.; Moraga, I. CDK8 Fine-Tunes IL-6 Transcriptional Activities by Limiting STAT3 Resident Time at the Gene Loci. Cell Rep. 2020, 33, 108545. [Google Scholar] [CrossRef] [PubMed]
- Wakahara, R.; Kunimoa, H.; Tanino, K.; Kojima, K.; Inoue, A.; Shintaku, H.; Nakajima, K. Phospho-Ser727 of STAT3 regulates STAT3 activity by enhancing dephosphorylation of phospho-Tyr705 largely through TC45. Genes Cells 2012, 17, 132–145. [Google Scholar] [CrossRef]
- Kozopas, K.M.; Yang, T.; Buchan, H.L.; Zhou, P.; Craig, R.W. Mcl-1, a gene expressed in programmed myeloid cell differentiation, has sequence similarity to BCL2. Proc. Natl. Acad. Sci. USA 1993, 90, 3516–3520. [Google Scholar] [CrossRef] [PubMed]
- Croxton, R.; Ma, Y.; Song, L.; Haura, E.B.; Cress, W.D. Direct repression of Mcl-1 promotor by E2F1. Oncogene 2002, 21, 1359–1369. [Google Scholar] [CrossRef]
- Liu, H.; Ma, Y.; Cole, S.M.; Zander, C.; Chen, K.-H.; Karras, J.; Pope, R.M. Serine phosphorylation of STAT3 is essential for Mcl-1 expression and macrophage survival. Blood 2003, 102, 344–352. [Google Scholar] [CrossRef] [PubMed]
- Kenny, P.A.; Lee, G.Y.; Myers, C.A.; Neve, R.M.; Semeiks, J.R.; Spellman, P.T.; Lorenz, K.; Lee, E.H.; Barcellos-Hoff, M.H.; Petersen, O.W.; et al. The morphologies of breast cancer cell lines in three-dimensional assays correlate with their profiles of gene expression. Mol. Oncol. 2007, 1, 84–96. [Google Scholar] [CrossRef]
- Dyson, N. The regulation of E2F1 by pRb-family proteins. Gens. Dev. 1998, 12, 2245–2262. [Google Scholar] [CrossRef]
- Campanero, M.R.; Flemington, E.K. Regulation of E2F through ubiquitin-proteasome-dependent degradation: Stabilization by the pRB tumor suppressor protein. Proc. Natl. Acad. Sci. USA 1997, 94, 2221–2226. [Google Scholar] [CrossRef]
- Tormo, E.; Bellester, S.; Adam-Artigues, A.; Burgues, O.; Alonso, E.; Bermejo, B.; Menendez, S.; Zazo, S.; Madoz-Gurpide, J.; Rovira, A.; et al. The miRNA-449 family mediates doxorubicin resistance in triple-negative breast cancer by regulating cell cycle factors. Sci. Rep. 2019, 9, 5316. [Google Scholar] [CrossRef]
- Jackson, N.M.; Ceresa, B.P. EGFR-mediated apoptosis via STAT3. Exp. Cell Res. 2017, 356, 93–103. [Google Scholar] [CrossRef]
- Shin, D.S.; Kim, H.N.; Shin, K.D.; Yoon, Y.J.; Kim, S.J.; Han, D.C.; Kwon, B.M. Cryptotanshinone inhibits constitutive signal transducer and activator of transcription 3 function through blocking the dimerization in DU145 prostate cancer cells. Cancer Res. 2009, 69, 193–202. [Google Scholar] [CrossRef] [PubMed]
- Certo, M.; Del Gaizo Moore, V.; Nishino, M.; Wei, G.; Korsmeyer, S.; Armstrong, S.A.; Letai, A. Mitochondria primed by death signals determine cellular addiction to antiapoptotic BCL-2 family members. Cancer Cell 2006, 9, 351–365. [Google Scholar] [CrossRef]
- Widden, H.; Kaczmarczyk, A.; Subedi, A.; Whitaker, R.H.; Placzek, W.J. MCL1 binds and negatively regulates the transcriptional function of tumor suppressor p73. Cell Death Dis. 2020, 11, 946. [Google Scholar] [CrossRef]
- Merino, D.; Whittle, J.R.; Vaillant, F.; Serrano, A.; Gong, J.N.; Giner, G.; Maragno, A.L.; Chanrion, M.; Schneider, E.; Pal, B.; et al. Synergistic action of the MCL-1 inhibitor S63845 with current therapies in preclinical models of triple-negative and HER2-amplified breast cancer. Sci. Transl. Med. 2017, 9, eaam7049. [Google Scholar] [CrossRef]
- Xi, M.; Chen, T.; Gao, X.; Wu, Y.; Luo, X.; Du, K.; Yu, L.; Cai, T.; Shen, R.; Sun, H. CDK8 as a therapeutic target for cancers and recent developments in discovery of CDK8 inhibitors. Eur. J. Med. Chem. 2019, 164, 77–91. [Google Scholar] [CrossRef]
- Mughees, M.; Tacam, M.; Tan, A.W.; Pitner, M.K.; Iles, L.R.; Hu, X.; Villodre, E.S.; Debeb, B.G.; Kogawa, T.; Lim, B.; et al. Inhibition of MCL-1 and MEK Overcomes MEK Inhibitor Resistance in Triple-Negative and Inflammatory Breast Cancers. Mol. Cancer Ther. 2025, 24, 1453–1465. [Google Scholar] [CrossRef] [PubMed]
- Li, X.-Y.; Luo, Q.-F.; Wei, C.-K.; Li, D.-F.; Li, J.; Fang, L. MiRNA-107 inhibits proliferation and migration by targeting CDK8 in breast cancer. Int. J. Clin. Med. 2014, 7, 32–40. [Google Scholar]
- Campbell, K.J.; Dhayade, S.; Ferrari, N.; Sims, A.H.; Johnson, E.; Mason, S.M.; Dickson, A.; Ryan, K.M.; Kalna, G.; Edwards, J.; et al. MCL-1 is a prognostic indicator and drug target in breast cancer. Cell Death Dis. 2018, 9, 19. [Google Scholar] [CrossRef]
- Winder, M.L.; Campbell, K.J. Mcl-1 is a clinically targetable vulnerability in breast cancer. Cell Cycle 2022, 21, 1439–1455. [Google Scholar] [CrossRef] [PubMed]
- Campbell, K.J.; Mason, S.M.; Winder, M.L.; Willemsen, R.B.E.; Cloix, C.; Lawson, H.; Rooney, N.; Dhayade, S.; Sims, A.H.; Blyth, K.; et al. Breast cancer dependence on MCL-1 is due to its canonical anti-apoptotic function. Cell Death Differ. 2021, 28, 2589–2600. [Google Scholar] [CrossRef] [PubMed]
- Ding, X.; Liang, J.; Sharko, A.C.; Hillmire, T.A.; Li, J.; Loskutov, J.; Mack, Z.T.; Ji, H.; Schools, G.P.; Cai, C.; et al. Mediator kinase inhibitors suppress triple-negative breast cancer growth and extend tumor suppression by mTOR and AKT inhibitors. Proc. Natl. Acad. Sci. USA 2024, 121, e2414501121. [Google Scholar] [CrossRef] [PubMed]
- Neuman, E.; Flemington, E.K.; Sellers, W.R.; Kaelin, W.G. Transcription of the E2F-1 gene is rendered cell cycle dependent by E2F DNA-binding sites within its promoter. Mol. Cell. Biol. 1994, 14, 6607–6615, Erratum in Mol. Cell. Biol. 1995, 15, 4660. [Google Scholar] [PubMed]






Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Do, S.; Li, S.; Xiong, R.; Spear, J.M.; Lu, Z.; Chan, W.K.; Russu, W.A. CDK8 Inhibition Increases E2F1 Transcriptional Activity and Promotes STAT3-Dependent Suppression of Mcl-1 in Triple-Negative Breast Cancer Cell Line MDA-MB-468. Int. J. Mol. Sci. 2026, 27, 897. https://doi.org/10.3390/ijms27020897
Do S, Li S, Xiong R, Spear JM, Lu Z, Chan WK, Russu WA. CDK8 Inhibition Increases E2F1 Transcriptional Activity and Promotes STAT3-Dependent Suppression of Mcl-1 in Triple-Negative Breast Cancer Cell Line MDA-MB-468. International Journal of Molecular Sciences. 2026; 27(2):897. https://doi.org/10.3390/ijms27020897
Chicago/Turabian StyleDo, Sandra, Shengxi Li, Rui Xiong, Jensen M. Spear, Zhixin Lu, William K. Chan, and Wade A. Russu. 2026. "CDK8 Inhibition Increases E2F1 Transcriptional Activity and Promotes STAT3-Dependent Suppression of Mcl-1 in Triple-Negative Breast Cancer Cell Line MDA-MB-468" International Journal of Molecular Sciences 27, no. 2: 897. https://doi.org/10.3390/ijms27020897
APA StyleDo, S., Li, S., Xiong, R., Spear, J. M., Lu, Z., Chan, W. K., & Russu, W. A. (2026). CDK8 Inhibition Increases E2F1 Transcriptional Activity and Promotes STAT3-Dependent Suppression of Mcl-1 in Triple-Negative Breast Cancer Cell Line MDA-MB-468. International Journal of Molecular Sciences, 27(2), 897. https://doi.org/10.3390/ijms27020897

