One Health Insights into Enterococcus: Antimicrobial Resistance and Virulence in Companion Animals and Their Tutors
Abstract
1. Introduction
2. Results and Discussion
2.1. Sampling and Microbial Isolation
2.2. Molecular Characterization
2.3. Antimicrobial Resistance
2.3.1. Antimicrobial Susceptibility Testing
2.3.2. Screening for Resistance Genetic Determinants
2.4. Virulence Traits
2.4.1. Hemolytic Activity
2.4.2. Screening for Virulence Genetic Determinants
2.5. Comparison Between RAPD Profiling and Pathogenicity Patterns
3. Materials and Methods
3.1. Sampling
3.2. Microbial Isolation
3.3. Molecular Characterization
3.3.1. DNA Extraction
3.3.2. Genetic Comparison
Data Analysis
3.3.3. Species Allocation
3.4. Antimicrobial Resistance
3.4.1. Antimicrobial Susceptibility Testing
3.4.2. Screening for Resistance Genetic Determinants
3.5. Virulence Traits
3.5.1. Hemolytic Activity
3.5.2. Screening for Virulence Genetic Determinants
3.6. Statistical Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| AMR | Antimicrobial resistance |
| ARGs | Antibiotic resistance genes |
| CLSI | Clinical and Laboratory Standards Institute |
| EUCAST | European Committee on Antimicrobial Susceptibility Testing |
| MDR | Multidrug-resistant |
| MIC | Minimum Inhibitory Concentration |
| MLST | Multi-locus sequence typing |
| MRB | Maximum recovery broth |
| PBP5 | Penicillin-binding protein 5 |
| PFGE | Pulsed-field gel electrophoresis |
| RAPD | Random Amplified Polymorphic DNA |
| SBA | Slanetz and Bartley agar |
| SBAvan | Slanetz and Bartley agar supplemented with vancomycin |
| UTIs | Urinary tract infections |
| VRE | Vancomycin-resistant enterococci |
| WGS | Whole genome sequencing |
References
- Antimicrobial Resistance. Available online: https://www.who.int/news-room/fact-sheets/detail/antimicrobial-resistance (accessed on 28 September 2025).
- Zaidi, S.-Z.; Zaheer, R.; Zovoilis, A.; McAllister, T.A. Enterococci as a One Health Indicator of Antimicrobial Resistance. Can. J. Microbiol. 2024, 70, 303–335. [Google Scholar] [CrossRef] [PubMed]
- Kim, D.W.; Cha, C.J. Antibiotic Resistome from the One-Health Perspective: Understanding and Controlling Antimicrobial Resistance Transmission. Exp. Mol. Med. 2021, 53, 301–309. [Google Scholar] [CrossRef]
- Gião, J.; Leão, C.; Albuquerque, T.; Clemente, L.; Amaro, A. Antimicrobial Susceptibility of Enterococcus Isolates from Cattle and Pigs in Portugal: Linezolid Resistance Genes optrA and poxtA. Antibiotics 2022, 11, 615. [Google Scholar] [CrossRef] [PubMed]
- Higgs, C.; Sherry, N.L.; Seemann, T.; Horan, K.; Walpola, H.; Kinsella, P.; Bond, K.; Williamson, D.A.; Marshall, C.; Kwong, J.C.; et al. Optimising Genomic Approaches for Identifying Vancomycin-Resistant Enterococcus faecium Transmission in Healthcare Settings. Nat. Commun. 2022, 13, 509. [Google Scholar] [CrossRef]
- van Hal, S.J.; Willems, R.J.L.; Gouliouris, T.; Ballard, S.A.; Coque, T.M.; Hammerum, A.M.; Hegstad, K.; Pinholt, M.; Howden, B.P.; Malhotra-Kumar, S.; et al. The Interplay between Community and Hospital Enterococcus faecium Clones within Health-Care Settings: A Genomic Analysis. Lancet Microbe 2022, 3, e133–e141. [Google Scholar] [CrossRef]
- Ahmed, M.O.; Baptiste, K.E. Vancomycin-Resistant Enterococci: A Review of Antimicrobial Resistance Mechanisms and Perspectives of Human and Animal Health. Microb. Drug Resist. 2018, 24, 590–606. [Google Scholar] [CrossRef]
- WHO. Bacterial Priority Pathogens List 2024: Bacterial Pathogens of Public Health Importance, to Guide Research, Development, and Strategies to Prevent and Control Antimicrobial Resistance, 1st ed.; World Health Organization: Geneva, Switzerland, 2024; ISBN 978-92-4-009346-1. [Google Scholar]
- Shaker, A.A.; Samir, A.; Zaher, H.M.; Abdel-Moein, K.A. Emergence of Virulent Extensively Drug-Resistant Vancomycin-Resistant Enterococci Among Diarrheic Pet Animals: A Possible Public Health Threat on the Move. Vector-Borne Zoonotic Dis. 2024, 24, 600–606. [Google Scholar] [CrossRef] [PubMed]
- Kühn, I.; Iversen, A.; Finn, M.; Greko, C.; Burman, L.G.; Blanch, A.R.; Vilanova, X.; Manero, A.; Taylor, H.; Caplin, J.; et al. Occurrence and Relatedness of Vancomycin-Resistant Enterococci in Animals, Humans, and the Environment in Different European Regions. Appl. Environ. Microbiol. 2005, 71, 5383–5390. [Google Scholar] [CrossRef]
- Stępień-Pyśniak, D.; Bertelloni, F.; Dec, M.; Cagnoli, G.; Pietras-Ożga, D.; Urban-Chmiel, R.; Ebani, V.V. Characterization and Comparison of Enterococcus spp. Isolates from Feces of Healthy Dogs and Urine of Dogs with UTIs. Animals 2021, 11, 2845. [Google Scholar] [CrossRef]
- Wada, Y.; Irekeola, A.A.; Engku Nur Syafirah, E.A.R.; Yusof, W.; Huey, L.L.; Muhammad, S.L.; Harun, A.; Yean, C.Y.; Zaidah, A.R. Prevalence of Vancomycin-Resistant Enterococcus (VRE) in Companion Animals: The First Meta-Analysis and Systematic Review. Antibiotics 2021, 10, 138. [Google Scholar] [CrossRef]
- Torres, C.; Alonso, C.A.; Ruiz-Ripa, L.; León-Sampedro, R.; Del Campo, R.; Coque, T.M. Antimicrobial Resistance in Enterococcus spp. of Animal Origin. Microbiol. Spectr. 2018, 6, 185–227. [Google Scholar] [CrossRef] [PubMed]
- van den Bunt, G.; Top, J.; Hordijk, J.; de Greeff, S.C.; Mughini-Gras, L.; Corander, J.; van Pelt, W.; Bonten, M.J.M.; Fluit, A.C.; Willems, R.J.L. Intestinal Carriage of Ampicillin- and Vancomycin-Resistant Enterococcus faecium in Humans, Dogs and Cats in the Netherlands. J. Antimicrob. Chemother. 2018, 73, 607–614. [Google Scholar] [CrossRef]
- Bertelloni, F.; Salvadori, C.; Lotti, G.; Cerri, D.; Ebani, V.V. Antimicrobial Resistance in Enterococcus Strains Isolated from Healthy Domestic Dogs. Acta Microbiol. Immunol. Hung. 2017, 64, 301–312. [Google Scholar] [CrossRef]
- Trościańczyk, A.; Nowakiewicz, A.; Gnat, S.; Łagowski, D.; Osińska, M. Are Dogs and Cats a Reservoir of Resistant and Virulent Enterococcus faecalis Strains and a Potential Threat to Public Health? J. Appl. Microbiol. 2021, 131, 2061–2071. [Google Scholar] [CrossRef]
- Belas, A.; Menezes, J.; Gama, L.T.; Pomba, C. Sharing of Clinically Important Antimicrobial Resistance Genes by Companion Animals and Their Human Household Members. Microb. Drug Resist. 2020, 26, 1174–1185. [Google Scholar] [CrossRef]
- Sfaciotte, R.A.P.; Parussolo, L.; Melo, F.D.; Schneider, M.F.; Da Costa, U.M.; Schwarz, D.G.G.; Salbego, F.Z.; Ferraz, S.M. Vancomycin-Resistant Enterococcus (VRE) Isolates from Dogs and Cats in Veterinary Hospitals in Brazil. BMC Vet. Res. 2025, 21, 99. [Google Scholar] [CrossRef] [PubMed]
- Poeta, P.; Costa, D.; Rodrigues, J.; Torres, C. Antimicrobial Resistance and the Mechanisms Implicated in Faecal Enterococci from Healthy Humans, Poultry and Pets in Portugal. Int. J. Antimicrob. Agents 2006, 27, 131–137. [Google Scholar] [CrossRef]
- KuKanich, K.S.; Ghosh, A.; Skarbek, J.V.; Lothamer, K.M.; Zurek, L. Surveillance of Bacterial Contamination in Small Animal Veterinary Hospitals with Special Focus on Antimicrobial Resistance and Virulence Traits of Enterococci. J. Am. Vet. Med. Assoc. 2012, 240, 437–445. [Google Scholar] [CrossRef] [PubMed]
- Ben Said, L.; Dziri, R.; Sassi, N.; Lozano, C.; Ben Slama, K.; Ouzari, I.; Torres, C.; Klibi, N. Species Distribution, Antibiotic Resistance and Virulence Traits in Canine and Feline Enterococci in Tunisia. Acta Vet. Hung. 2017, 65, 173–184. [Google Scholar] [CrossRef] [PubMed]
- Kubašová, I.; Strompfová, V.; Lauková, A. Safety Assessment of Commensal Enterococci from Dogs. Folia Microbiol. 2017, 62, 491–498. [Google Scholar] [CrossRef]
- Iseppi, R.; Messi, P.; Anacarso, I.; Bondi, M.; Sabia, C.; Condò, C.; de Niederhausern, S. Antimicrobial Resistance and Virulence Traits in Enterococcus Strains Isolated from Dogs and Cats. New Microbiol. 2015, 38, 369–378. [Google Scholar] [CrossRef]
- Ben Sallem, R.; Klibi, N.; Klibi, A.; Ben Said, L.; Dziri, R.; Boudabous, A.; Torres, C.; Ben Slama, K. Antibiotic Resistance and Virulence of Enterococci Isolates from Healthy Humans in Tunisia. Ann. Microbiol. 2016, 66, 717–725. [Google Scholar] [CrossRef]
- Jackson, C.R.; Fedorka-Cray, P.J.; Davis, J.A.; Barrett, J.B.; Frye, J.G. Prevalence, Species Distribution and Antimicrobial Resistance of Enterococci Isolated from Dogs and Cats in the United States. J. Appl. Microbiol. 2009, 107, 1269–1278. [Google Scholar] [CrossRef]
- Osman, M.; Altier, C.; Cazer, C. Antimicrobial Resistance among Canine Enterococci in the Northeastern United States, 2007–2020. Front. Microbiol. 2023, 13, 1025242. [Google Scholar] [CrossRef]
- Ossiprandi, M.C.; Bottarelli, E.; Cattabiani, F.; Bianchi, E. Susceptibility to Vancomycin and Other Antibiotics of 165 Enterococcus Strains Isolated from Dogs in Italy. Comp. Immunol. Microbiol. Infect. Dis. 2008, 31, 1–9. [Google Scholar] [CrossRef]
- Kataoka, Y.; Umino, Y.; Ochi, H.; Harada, K.; Sawada, T. Antimicrobial Susceptibility of Enterococcal Species Isolated from Antibiotic-Treated Dogs and Cats. J. Vet. Med. Sci. 2014, 76, 1399–1402. [Google Scholar] [CrossRef]
- Yuan, T.; Liang, B.; Jiang, B.; Sun, S.; Zhou, Y.; Zhu, L.; Liu, J.; Guo, X.; Ji, X.; Sun, Y. Virulence Genes and Antimicrobial Resistance in Enterococcus Strains Isolated from Dogs and Cats in Northeast China. J. Vet. Med. Sci. 2023, 85, 371–378. [Google Scholar] [CrossRef]
- Rodrigues, J.; Poeta, P.; Martins, A.; Costa, D. The Importance of Pets as Reservoirs of Resistant Enterococcus Strains, with Special Reference to Vancomycin. J. Vet. Med. Ser. B 2002, 49, 278–280. [Google Scholar] [CrossRef]
- Almeida-Santos, A.C.; Duarte, B.; Tedim, A.P.; Teixeira, M.J.; Prata, J.C.; Azevedo, R.M.S.; Novais, C.; Peixe, L.; Freitas, A.R. The Healthy Human Gut Can Take It All: Vancomycin-Variable, Linezolid-Resistant Strains and Specific Bacteriocin-Species Interplay in Enterococcus spp. Appl. Environ. Microbiol. 2025, 91, e01699-24. [Google Scholar] [CrossRef] [PubMed]
- M100|Performance Standards for Antimicrobial Susceptibility Testing. Available online: https://clsi.org/shop/standards/m100/ (accessed on 2 September 2025).
- Leite-Martins, L.; Mahú, M.I.; Costa, A.L.; Bessa, L.J.; Vaz-Pires, P.; Loureiro, L.; Niza-Ribeiro, J.; De Matos, A.J.F.; Martins Da Costa, P. Prevalence of Antimicrobial Resistance in Faecal Enterococci from Vet-visiting Pets and Assessment of Risk Factors. Vet. Rec. 2015, 176, 674. [Google Scholar] [CrossRef] [PubMed]
- da Silva, L.; Grecellé, C.Z.; Frazzon, A.P.G.; Streck, A.F.; Kipper, D.; Fonseca, A.S.K.; Ikuta, N.; Lunge, V.R. Multidrug-Resistant Enterococcus faecium and Enterococcus faecalis Isolated from Dogs and Cats in Southern Brazil. Microbiol. Res. 2024, 15, 1083–1090. [Google Scholar] [CrossRef]
- Iseppi, R.; Di Cerbo, A.; Messi, P.; Sabia, C. Antibiotic Resistance and Virulence Traits in Vancomycin-Resistant Enterococci (VRE) and Extended-Spectrum β-Lactamase/AmpC-Producing (ESBL/AmpC) Enterobacteriaceae from Humans and Pets. Antibiotics 2020, 9, 152. [Google Scholar] [CrossRef]
- Kristich, C.J.; Rice, L.B.; Arias, C.A. Enterococcal Infection—Treatment and Antibiotic Resistance. In Enterococci: From Commensals to Leading Causes of Drug Resistant Infection; Gilmore, M.S., Clewell, D.B., Ike, Y., Shankar, N., Eds.; Massachusetts Eye and Ear Infirmary: Boston, MA, USA, 2014. [Google Scholar]
- Rice, L.B.; Carias, L.L.; Hutton-Thomas, R.; Sifaoui, F.; Gutmann, L.; Rudin, S.D. Penicillin-Binding Protein 5 and Expression of Ampicillin Resistance in Enterococcus faecium. Antimicrob. Agents Chemother. 2001, 45, 1480–1486. [Google Scholar] [CrossRef] [PubMed]
- European Medicines Agency. Categorisation of Antibiotics in the European Union. 2025. Available online: https://www.ema.europa.eu/en/documents/report/categorisation-antibiotics-european-union-answer-request-european-commission-updating-scientific-advice-impact-public-health-animal-health-use-antibiotics-animals_en.pdf (accessed on 2 November 2025).
- Atualização da Lista AMEG—Categorização de Antibióticos para Uso Veterinário—DGAV. 2025. Available online: https://www.dgav.pt/destaques/noticias/atualizacao-da-lista-ameg-categorizacao-de-antibioticos-para-uso-veterinario/ (accessed on 2 November 2025).
- Marco-Fuertes, A.; Marin, C.; Lorenzo-Rebenaque, L.; Vega, S.; Montoro-Dasi, L. Antimicrobial Resistance in Companion Animals: A New Challenge for the One Health Approach in the European Union. Vet. Sci. 2022, 9, 208. [Google Scholar] [CrossRef]
- Micallef, S.A.; Rosenberg Goldstein, R.E.; George, A.; Ewing, L.; Tall, B.D.; Boyer, M.S.; Joseph, S.W.; Sapkota, A.R. Diversity, Distribution and Antibiotic Resistance of Enterococcus spp. Recovered from Tomatoes, Leaves, Water and Soil on U.S. Mid-Atlantic Farms. Food Microbiol. 2013, 36, 465–474. [Google Scholar] [CrossRef]
- Abriouel, H.; Omar, N.B.; Molinos, A.C.; López, R.L.; Grande, M.J.; Martínez-Viedma, P.; Ortega, E.; Cañamero, M.M.; Galvez, A. Comparative Analysis of Genetic Diversity and Incidence of Virulence Factors and Antibiotic Resistance among Enterococcal Populations from Raw Fruit and Vegetable Foods, Water and Soil, and Clinical Samples. Int. J. Food Microbiol. 2008, 123, 38–49. [Google Scholar] [CrossRef] [PubMed]
- Martins da Costa, P.; Vaz-Pires, P.; Bernardo, F. Antimicrobial Resistance in Enterococcus spp. Isolated in Inflow, Effluent and Sludge from Municipal Sewage Water Treatment Plants. Water Res. 2006, 40, 1735–1740. [Google Scholar] [CrossRef] [PubMed]
- Rand, K.H.; Houck, H.J.; Silverman, J.A. Daptomycin-Reversible Rifampicin Resistance in Vancomycin-Resistant Enterococcus faecium. J. Antimicrob. Chemother. 2007, 59, 1017–1020. [Google Scholar] [CrossRef]
- Guan, L.; Beig, M.; Wang, L.; Navidifar, T.; Moradi, S.; Motallebi Tabaei, F.; Teymouri, Z.; Abedi Moghadam, M.; Sedighi, M. Global Status of Antimicrobial Resistance in Clinical Enterococcus faecalis Isolates: Systematic Review and Meta-Analysis. Ann. Clin. Microbiol. Antimicrob. 2024, 23, 80. [Google Scholar] [CrossRef]
- Dönhöfer, A.; Franckenberg, S.; Wickles, S.; Berninghausen, O.; Beckmann, R.; Wilson, D.N. Structural Basis for TetM-Mediated Tetracycline Resistance. Proc. Natl. Acad. Sci. USA 2012, 109, 16900–16905. [Google Scholar] [CrossRef]
- Chopra, I.; Roberts, M. Tetracycline Antibiotics: Mode of Action, Applications, Molecular Biology, and Epidemiology of Bacterial Resistance. Microbiol. Mol. Biol. Rev. 2001, 65, 232–260. [Google Scholar] [CrossRef]
- Barza, M.; Brown, R.B.; Shanks, C.; Gamble, C.; Weinstein, L. Relation Between Lipophilicity and Pharmacological Behavior of Minocycline, Doxycycline, Tetracycline, and Oxytetracycline in Dogs. Antimicrob. Agents Chemother. 1975, 8, 713–720. [Google Scholar] [CrossRef]
- Nham, A.; Sikand, H.; Sullivan, E. The Use of Doxycycline for MRSA SSTIs in the Setting of Tetracycline Resistance (The DOXY-MASTER Study). Open Forum Infect. Dis. 2025, 12, P-750. [Google Scholar] [CrossRef]
- Geraldes, C.; Tavares, L.; Gil, S.; Oliveira, M. Antibiotic Heteroresistance and Persistence: An Additional Aid in Hospital Acquired Infections by Enterococcus spp.? Future Microbiol. 2024, 19, 1407–1418. [Google Scholar] [CrossRef]
- Hegstad, K.; Giske, C.G.; Haldorsen, B.; Matuschek, E.; Schønning, K.; Leegaard, T.M.; Kahlmeter, G.; Sundsfjord, A. Performance of the EUCAST Disk Diffusion Method, the CLSI Agar Screen Method, and the Vitek 2 Automated Antimicrobial Susceptibility Testing System for Detection of Clinical Isolates of Enterococci with Low- and Medium-Level VanB-Type Vancomycin Resistance: A Multicenter Study. J. Clin. Microbiol. 2014, 52, 1582–1589. [Google Scholar] [CrossRef]
- Endtz, H.P.; Van Den Braak, N.; Van Belkum, A.; Goessens, W.H.; Kreft, D.; Stroebel, A.B.; Verbrugh, H.A. Comparison of Eight Methods To Detect Vancomycin Resistance in Enterococci. J. Clin. Microbiol. 1998, 36, 592–594. [Google Scholar] [CrossRef] [PubMed]
- Delgado, M.; Neto, I.; Correia, J.H.D.; Pomba, C. Antimicrobial Resistance and Evaluation of Susceptibility Testing among Pathogenic Enterococci Isolated from Dogs and Cats. Int. J. Antimicrob. Agents 2007, 30, 98–100. [Google Scholar] [CrossRef] [PubMed]
- Aarestrup, F.M.; Agerso, Y.; Gerner-Smidt, P.; Madsen, M.; Jensen, L.B. Comparison of Antimicrobial Resistance Phenotypes and Resistance Genes in Enterococcus faecalis and Enterococcus faecium from Humans in the Community, Broilers, and Pigs in Denmark. Diagn. Microbiol. Infect. Dis. 2000, 37, 127–137. [Google Scholar] [CrossRef] [PubMed]
- Leite-Martins, L.; Meireles, D.; Bessa, L.J.; Mendes, Â.; De Matos, A.J.; Martins Da Costa, P. Spread of Multidrug-Resistant Enterococcus faecalis within the Household Setting. Microb. Drug Resist. 2014, 20, 501–507. [Google Scholar] [CrossRef]
- Magiorakos, A.-P.; Srinivasan, A.; Carey, R.B.; Carmeli, Y.; Falagas, M.E.; Giske, C.G.; Harbarth, S.; Hindler, J.F.; Kahlmeter, G.; Olsson-Liljequist, B.; et al. Multidrug-Resistant, Extensively Drug-Resistant and Pandrug-Resistant Bacteria: An International Expert Proposal for Interim Standard Definitions for Acquired Resistance. Clin. Microbiol. Infect. 2012, 18, 268–281. [Google Scholar] [CrossRef] [PubMed]
- Huang, C.; Moradi, S.; Sholeh, M.; Tabaei, F.M.; Lai, T.; Tan, B.; Meng, J.; Azizian, K. Global Trends in Antimicrobial Resistance of Enterococcus faecium: A Systematic Review and Meta-Analysis of Clinical Isolates. Front. Pharmacol. 2025, 16, 1505674. [Google Scholar] [CrossRef] [PubMed]
- Semedo, T.; Almeida Santos, M.; Martins, P.; Silva Lopes, M.F.; Figueiredo Marques, J.J.; Tenreiro, R.; Barreto Crespo, M.T. Comparative Study Using Type Strains and Clinical and Food Isolates to Examine Hemolytic Activity and Occurrence of the Cyl Operon in Enterococci. J. Clin. Microbiol. 2003, 41, 2569–2576. [Google Scholar] [CrossRef] [PubMed]
- Semedo, T.; Almeida Santos, M.; Silva Lopes, M.F.; Figueiredo Marques, J.J.; Barreto Crespo, M.T.; Tenreiro, R. Virulence Factors in Food, Clinical and Reference Enterococci: A Common Trait in the Genus? Syst. Appl. Microbiol. 2003, 26, 13–22. [Google Scholar] [CrossRef] [PubMed]
- Abdolghanizadeh, S.; Salmeh, E.; Mirzakhani, F.; Soroush, E.; Siadat, S.D.; Tarashi, S. Microbiota Insights into Pet Ownership and Human Health. Res. Vet. Sci. 2024, 171, 105220. [Google Scholar] [CrossRef]
- Kates, A.E.; Jarrett, O.; Skarlupka, J.H.; Sethi, A.; Duster, M.; Watson, L.; Suen, G.; Poulsen, K.; Safdar, N. Household Pet Ownership and the Microbial Diversity of the Human Gut Microbiota. Front. Cell. Infect. Microbiol. 2020, 10, 73. [Google Scholar] [CrossRef]
- Skoufos, S.; Stavropoulou, E.; Tsigalou, C.; Voidarou, C. (Chrysa) Microbial Interconnections in One Health: A Critical Nexus Between Companion Animals and Human Microbiomes. Microorganisms 2025, 13, 1564. [Google Scholar] [CrossRef]
- Arenas-Montes, J.; Perez-Martinez, P.; Vals-Delgado, C.; Romero-Cabrera, J.L.; Cardelo, M.P.; Leon-Acuña, A.; Quintana-Navarro, G.M.; Alcala-Diaz, J.F.; Lopez-Miranda, J.; Camargo, A.; et al. Owning a Pet Is Associated with Changes in the Composition of Gut Microbiota and Could Influence the Risk of Metabolic Disorders in Humans. Animals 2021, 11, 2347. [Google Scholar] [CrossRef]
- Wernimont, S.M.; Radosevich, J.; Jackson, M.I.; Ephraim, E.; Badri, D.V.; MacLeay, J.M.; Jewell, D.E.; Suchodolski, J.S. The Effects of Nutrition on the Gastrointestinal Microbiome of Cats and Dogs: Impact on Health and Disease. Front. Microbiol. 2020, 11, 01266. [Google Scholar] [CrossRef]
- Bogiel, T.; Mikucka, A.; Kanarek, P. Agarose Gel Electrophoresis-Based RAPD-PCR—An Optimization of the Conditions to Rapidly Detect Similarity of the Alert Pathogens for the Purpose of Epidemiological Studies. Gels 2022, 8, 760. [Google Scholar] [CrossRef]
- Adzitey, F.; Huda, N.; Ali, G.R.R. Molecular Techniques for Detecting and Typing of Bacteria, Advantages and Application to Foodborne Pathogens Isolated from Ducks. 3 Biotech 2013, 3, 97–107. [Google Scholar] [CrossRef]
- Millar, B.C.; Jiru, X.; Moore, J.E.; Earle, J.A.P. A Simple and Sensitive Method to Extract Bacterial, Yeast and Fungal DNA from Blood Culture Material. J. Microbiol. Methods 2000, 42, 139–147. [Google Scholar] [CrossRef]
- Semedo-Lemsaddek, T.; Nóbrega, C.S.; Ribeiro, T.; Pedroso, N.M.; Sales-Luís, T.; Lemsaddek, A.; Tenreiro, R.; Tavares, L.; Vilela, C.L.; Oliveira, M. Virulence Traits and Antibiotic Resistance among Enterococci Isolated from Eurasian Otter (Lutra Lutra). Vet. Microbiol. 2013, 163, 378–382. [Google Scholar] [CrossRef]
- Jackson, C.R.; Fedorka-Cray, P.J.; Barrett, J.B. Use of a Genus- and Species-Specific Multiplex PCR for Identification of Enterococci. J. Clin. Microbiol. 2004, 42, 3558–3565. [Google Scholar] [CrossRef]
- Arias, C.A.; Robredo, B.; Singh, K.V.; Torres, C.; Panesso, D.; Murray, B.E. Rapid Identification of Enterococcus hirae and Enterococcus durans by PCR and Detection of a Homologue of the E. hirae Mur-2 Gene in E. durans. J. Clin. Microbiol. 2006, 44, 1567. [Google Scholar] [CrossRef] [PubMed]
- Jurkovič, D.; Križková, L.; Dušinský, R.; Belicová, A.; Sojka, M.; Krajčovič, J.; Ebringer, L. Identification and Characterization of Enterococci from Bryndza Cheese. Lett. Appl. Microbiol. 2006, 42, 553–559. [Google Scholar] [CrossRef]
- Ke, D.; Picard, F.J.; Martineau, F.; Ménard, C.; Roy, P.H.; Ouellette, M.; Bergeron, M.G. Development of a PCR Assay for Rapid Detection of Enterococci. J. Clin. Microbiol. 1999, 37, 3497–3503. [Google Scholar] [CrossRef]
- VET01S|Performance Standards for Antimicrobial Disk and Dilution Susceptibility Tests for Bacteria Isolated From Animals. Available online: https://clsi.org/shop/standards/vet01s/ (accessed on 2 September 2025).
- Geraldes, C.; Araújo, C.; Pinheiro, A.C.; Afonso, M.; Carapeto, S.; Verdial, C.; Cunha, E.; Abreu, R.; Tavares, L.; Chambel, L.; et al. Pathogenicity Potential of Enterococci Isolated from a Veterinary Biological Isolation and Containment Unit. Front. Vet. Sci. 2024, 11, 1458069. [Google Scholar] [CrossRef]
- Macovei, L.; Zurek, L. Ecology of Antibiotic Resistance Genes: Characterization of Enterococci from Houseflies Collected in Food Settings. Appl. Environ. Microbiol. 2006, 72, 4028–4035. [Google Scholar] [CrossRef] [PubMed]
- Yean, C.Y.; Yin, L.S.; Lalitha, P.; Ravichandran, M. A Nanoplex PCR Assay for the Rapid Detection of Vancomycin and Bifunctional Aminoglycoside Resistance Genes in Enterococcus Species. BMC Microbiol. 2007, 7, 112. [Google Scholar] [CrossRef] [PubMed]
- Aminov, R.I.; Garrigues-Jeanjean, N.; Mackie, R.I. Molecular Ecology of Tetracycline Resistance: Development and Validation of Primers for Detection of Tetracycline Resistance Genes Encoding Ribosomal Protection Proteins. Appl. Environ. Microbiol. 2001, 67, 22–32. [Google Scholar] [CrossRef]
- Elsayed, S.; Hamilton, N.; Boyd, D.; Mulvey, M. Improved Primer Design for Multiplex PCR Analysis of Vancomycin-Resistant spp. J. Clin. Microbiol. 2001, 39, 2367–2368. [Google Scholar] [CrossRef] [PubMed]
- Carlos, A.R.; Semedo-Lemsaddek, T.; Barreto-Crespo, M.T.; Tenreiro, R. Transcriptional Analysis of Virulence-Related Genes in Enterococci from Distinct Origins. J. Appl. Microbiol. 2010, 108, 1563–1575. [Google Scholar] [CrossRef] [PubMed]
- Eaton, T.J.; Gasson, M.J. Molecular Screening of Enterococcus Virulence Determinants and Potential for Genetic Exchange between Food and Medical Isolates. Appl. Environ. Microbiol. 2001, 67, 1628–1635. [Google Scholar] [CrossRef] [PubMed]




| Source | E. faecalis, n (%) | E. faecium, n (%) | E. hirae, n (%) | Enterococcus sp., n (%) |
|---|---|---|---|---|
| Companion animals (n = 31) | 19 (61.2) | 9 (29.0) | 3 (9.7) | 0 (0) |
| Tutors (n = 48) | 25 (52.1) | 17 (35.4) | 4 (8.3) | 2 (4.2) |
| Total (n = 79) | 44 (55.7) | 26 (32.9) | 7 (8.9) | 2 (2.5) |
| Antimicrobials Classes and Agents | Resistant n (%) | Intermediate n (%) | Susceptible n (%) | |||||||
|---|---|---|---|---|---|---|---|---|---|---|
| Class | Agent | Animals n = 31 | Tutors n = 48 | Total n = 79 | Animals n = 31 | Tutors n = 48 | Total n = 79 | Animals n = 31 | Tutors n = 48 | Total n = 79 |
| Aminoglycosides | CN | 0 (0.0) | 1 (2.1) | 1 (1.3) | 0 (0.0) | 0 (0.0) | 0 (0.0) | 31 (100) | 47 (97.9) | 78 (98.7) |
| S | 3 (9.7) | 0 (0.0) | 3 (3.8) | 0 (0.0) | 2 (4.2) | 2 (2.5) | 28 (90.3) | 46 (95.8) | 74 (93.7) | |
| Ansamycins | RIF | 17 (56.6) | 13 (27.1) | 30 (38.5) | 4 (13.3) | 7 (14.6) | 11 (14.1) | 9 (30.0) | 28 (58.3) | 37 (47.4) |
| Fluoroquinolones | ENR | 1 (3.2) | 0 (0.0) | 1 (1.3) | 18 (58.1) | 15 (31.2) | 33 (41.8) | 12 (38.7) | 33 (68.8) | 45 (57) |
| LEV | 0 (0.0) | 0 (0.0) | 0 (0.0) | 0 (0.0) | 0 (0.0) | 0 (0.0) | 31 (100) | 48 (100) | 79 (100) | |
| Glycopeptides | TEC | 0 (0.0) | 0 (0.0) | 0 (0.0) | 0 (0.0) | 0 (0.0) | 0 (0.0) | 31 (100) | 48 (100) | 79 (100) |
| VA * | 16 (53.3) | 0 (0.0) | 16 (20.5) | 10 (33.3) | 2 (4.2) | 12 (15.4) | 4 (13.3) | 46 (95.8) | 50 (64.1) | |
| Macrolides | E | 9 (29.0) | 14 (29.2) | 23 (29.1) | 15 (48.4) | 14 (29.2) | 29 (36.7) | 7 (22.6) | 20 (41.7) | 27 (34.2) |
| Nitrofurans | F | 1 (3.2) | 0 (0.0) | 1 (1.3) | 1 (3.2) | 0 (0.0) | 1 (1.3) | 29 (93.5) | 48 (100) | 77 (97.5) |
| Oxazolidinones | LZD | 0 (0.0) | 0 (0.0) | 0 (0.0) | 0 (0.0) | 0 (0.0) | 0 (0.0) | 31 (100) | 48 (100) | 79 (100) |
| Penicillins | AMC | 0 (0.0) | 0 (0.0) | 0 (0.0) | 0 (0.0) | 0 (0.0) | 0 (0.0) | 31 (100) | 48 (100) | 79 (100) |
| AMP | 31 (100) | 0 (0.0) | 31 (39.2) | 0 (0.0) | 0 (0.0) | 0 (0.0) | 0 (0.0) | 48 (100) | 48 (60.8) | |
| Phenicols | C | 0 (0.0) | 3 (6.2) | 3 (3.8) | 0 (0.0) | 0 (0.0) | 0 (0.0) | 31 (100) | 45 (93.8) | 76 (96.2) |
| Streptogramins | QDA a | 20 (64.5) | 19 (39.6) | 39 (49.4) | 5 (16.1) | 7 (14.6) | 12 (15.2) | 6 (19.4) | 22 (45.8) | 28 (35.4) |
| Tetracyclines | DXT | 3 (9.7) | 0 (0.0) | 3 (3.8) | 3 (9.7) | 2 (4.2) | 5 (6.3) | 25 (80.6) | 46 (95.8) | 71 (89.9) |
| TE | 9 (29.0) | 7 (14.6) | 16 (20.3) | 1 (3.2) | 13 (27.1) | 14 (17.7) | 21 (67.7) | 28 (58.3) | 49 (62.0) | |
| Source | Species | Antibiotic, n Resistance (%) | |||||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| CN | S | RIF | ENR | LEV | TEC | VA | E | F | LZD | AMC | AMP | C | QDA * | DXT | TE | ||
| Companion animals, n = 31 | E. faecalis (n = 19) | 0 (0.0) | 3 (15.8) | 9 (47.4) | 0 (0.0) | 0 (0.0) | 0 (0.0) | 0 (0.0) | 7 (36.8) | 0 (0.0) | 0 (0.0) | 0 (0.0) | 19 (100) | 0 (0.0) | 19 (100) * | 3 (15.8) | 8 (42.1) |
| E. faecium (n = 9) | 0 (0.0) | 0 (0.0) | 6 (75.0) | 1 (11.1) | 0 (0.0) | 0 (0.0) | 0 (0.0) | 2 (22.2) | 1 (11.1) | 0 (0.0) | 0 (0.0) | 9 (100) | 0 (0.0) | 0 (0.0) | 0 (0.0) | 1 (11.1) | |
| E. hirae (n = 3) | 0 (0.0) | 0 (0.0) | 2 (66.7) | 0 (0.0) | 0 (0.0) | 0 (0.0) | 0 (0.0) | 0 (0.0) | 0 (0.0) | 0 (0.0) | 0 (0.0) | 3 (100) | 0 (0.0) | 1 (33.3) | 0 (0.0) | 0 (0.0) | |
| Total | 0 (0.0) | 3 (9.7) | 17 (56.7) | 1 (3.2) | 0 (0.0) | 0 (0.0) | 0 (0.0) | 9 (29.0) | 1 (3.2) | 0 (0.0) | 0 (0.0) | 0 (0.0) | 0 (0.0) | 20 (64.5) | 3 (9.7) | 9 (29.0) | |
| Tutors, n = 48 | E. faecalis (n = 25) | 1 (4.0) | 0 (0.0) | 5 (20.0) | 0 (0.0) | 0 (0.0) | 0 (0.0) | 0 (0.0) | 3 (12.0) | 0 (0.0) | 0 (0.0) | 0 (0.0) | 0 (0.0) | 2 (15.8) | 17 (68.0) * | 0 (0.0) | 5 (20.0) |
| E. faecium (n = 17) | 0 (0.0) | 0 (0.0) | 8 (47.1) | 0 (0.0) | 0 (0.0) | 0 (0.0) | 0 (0.0) | 10 (58.8) | 0 (0.0) | 0 (0.0) | 0 (0.0) | 0 (0.0) | 0 (0.0) | 0 (0.0) | 0 (0.0) | 1 (5.9) | |
| E. hirae (n = 4) | 0 (0.0) | 0 (0.0) | 0 (0.0) | 0 (0.0) | 0 (0.0) | 0 (0.0) | 0 (0.0) | 0 (0.0%) | 0 (0.0) | 0 (0.0) | 0 (0.0) | 0 (0.0) | 0 (0.0) | 0 (0.0) | 0 (0.0) | 0 (0.0) | |
| Enterococcus sp. (n = 2) | 0 (0.0) | 0 (0.0) | 0 (0.0) | 0 (0.0) | 0 (0.0) | 0 (0.0) | 0 (0.0) | 1 (50) | 0 (0.0) | 0 (0.0) | 0 (0.0) | 0 (0.0) | 1 (50) | 2 (100) | 0 (0.0) | 1 (50.0) | |
| Total | 1 (2.1) | 0 (0.0) | 13 (27.1) | 0 (0.0) | 0 (0.0) | 0 (0.0) | 0 (0.0) | 14 (29.2) | 0 (0.0) | 0 (0.0) | 0 (0.0) | 0 (0.0) | 3 (6.2) | 19 (39.6) | 0 (0.0) | 7 (14.6) | |
| Antimicrobial or Class | Resistance Gene | Companion Animals ngenotype/nphenotype (%) | Tutors ngenotype/nphenotype (%) | Total ngenotype/nphenotype (%) |
|---|---|---|---|---|
| Gentamicin (high-level) | aacA-aphD | 0 (0) | 1/1 (100) | 1/1 (100) |
| Erythromycin | erm(B) | 4/9 (44.4) | 3/14 (21.4) | 7/23 (30.4) |
| Tetracyclines | tet(M) | 5/9 (55.6) | 0/7 (0) | 5/16 (31.2) |
| Vancomycin | vanA | 0/16 * (0) | 0/0 (0) | 0/16 (0) |
| vanB | ||||
| vanC |
| Identification | Primer | Primer Sequence (5′-3′) | Product Length (bp) | Reference |
|---|---|---|---|---|
| E. faecalis | FL1 FL2 | F-ACTTATGTGACTAACTTAACC R-TAATGGTGAATCTTGGTTTGG | 360 | [69] |
| E. faecium | FM1 FM2 | F-GAAAAAACAATAGAAGAATTAT R-TGCTTTTTTGAATTCTTCTTTA | 215 | [69] |
| E. hirae | MUR1 MUR2 | F-CGTCAGTACCCTTCTTTTGCAGAGTC R-GCATTATTACCAGTGTTAGTGGTTG | 521 | [70] |
| E. durans | DU1 DU2 | F-GCATTATTACCAGTGTTAGTGGTTG R-TGAATCATATTGGTATGCAGTCCG | 186 | [71] |
| Enterococcus spp. | Ent1 Ent2 | F-TACTGACAAACCATTCATGATG R-AACTTCGTCACCAACGCGAAC | 112 | [72] |
| Gene | Resistance to | Primer Sequence (5′-3′) | Product Length (bp) | Reference |
|---|---|---|---|---|
| erm(B) | Erythromycin | F-GAAAAGGTACTCAACCAAATA R-AGTAACGGTACTTAAATTGTTTAC | 639 | [75] |
| aacA-aphD | High-level gentamicin | F-GATTGCCAGAACATGAATTACACGA R-CATAACCACTACCGATTATTTCAAT | 156 | [76] |
| tet(M) | Tetracycline, doxycycline | F-ACAGAAAGCTTATTATATAAC R-TGGCGTGTCTATGATGTTCAC | 155 | [77] |
| vanA | Vancomycin | F-TTGGGGGTTGCTCAGAGGAG R-CTTCGTTCAGTACAATGCGG | 931 | [76] |
| vanB | F-AAGCTATGCAAGAAGCCATG R-CCGACAATCAAATCATCCTC | 536 | [78] | |
| vanC | F-GCAGGTTCTGCCTTATGTATGAA R-ATGAAATGGCGTCACAAGCA | 339 | [76] |
| Gene | Role in Virulence | Primer Sequence (5′-3′) | Product Length (bp) | Reference |
|---|---|---|---|---|
| agg | Aggregation protein with a role in adherence to eucaryotic cells and cell aggregation and conjugation | F-CGGTACAGTTGGCAGTGTTTCG R-GGCTTGTGGGTCTTTGGCAGAG | 775 | [79] |
| gelE | Extracellular metalloendopeptidase, hydrolyzes gelatin, collagen, hemoglobin and other compounds | F-ACCCCGTATCATTGGTTT R-ACGCATTGCTTTTCCATC | 419 | [80] |
| cylA | Activation of cytolysin which lyses a range of eukaryotic and Gram-positive cells | F-CGGGGATTGATAGGCTTCATCC R-TAACCATCTGGAAAGTCAGCAG | 628 | [79] |
| esp | Cell wall protein involved in immune evasion, which may be associated with cyl genes located on a pathogenicity island | F-5′ TTGCTAATGCTAGTCCACGACC R-5′ GCGTCAACACTTGCATTGCCGAA | 933 | [80] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Monteiro Marques, J.; Pita, B.; Pinto, D.; Barreto-Crespo, M.T.; Mato, R.; Semedo-Lemsaddek, T. One Health Insights into Enterococcus: Antimicrobial Resistance and Virulence in Companion Animals and Their Tutors. Int. J. Mol. Sci. 2026, 27, 654. https://doi.org/10.3390/ijms27020654
Monteiro Marques J, Pita B, Pinto D, Barreto-Crespo MT, Mato R, Semedo-Lemsaddek T. One Health Insights into Enterococcus: Antimicrobial Resistance and Virulence in Companion Animals and Their Tutors. International Journal of Molecular Sciences. 2026; 27(2):654. https://doi.org/10.3390/ijms27020654
Chicago/Turabian StyleMonteiro Marques, Joana, Beatriz Pita, Daniel Pinto, Maria Teresa Barreto-Crespo, Rosario Mato, and Teresa Semedo-Lemsaddek. 2026. "One Health Insights into Enterococcus: Antimicrobial Resistance and Virulence in Companion Animals and Their Tutors" International Journal of Molecular Sciences 27, no. 2: 654. https://doi.org/10.3390/ijms27020654
APA StyleMonteiro Marques, J., Pita, B., Pinto, D., Barreto-Crespo, M. T., Mato, R., & Semedo-Lemsaddek, T. (2026). One Health Insights into Enterococcus: Antimicrobial Resistance and Virulence in Companion Animals and Their Tutors. International Journal of Molecular Sciences, 27(2), 654. https://doi.org/10.3390/ijms27020654

