Role of Oxidative Stress in the Neural Control of Intra-Renal Hemodynamics in Stroke-Prone Spontaneously Hypertensive Rats
Abstract
1. Introduction
- Quantify and compare the immediate effects of RNS on cortical and medullary blood flow in anesthetized SHRSPs under baseline physiological conditions.
- Determine whether targeted, local scavenging of ROS modifies RNS-induced changes in cortical and medullary blood flow and whether pharmacological strategies that increase ROS levels potentiate or otherwise affect these responses.
- Compare these results with previously generated results, obtained in normotensive Wistar rats using the same experimental preparation, to identify how oxidative changes associated with hypertension impact neurovascular regulation of cortical and medullary blood flow.
2. Results
2.1. Effect of Vehicle Infusion on the Cortical and Medullary Blood Perfusion (CBP & MBP, Respectively)
2.2. Effect of Renal Infusion of Tempol on CBP and MBP
2.3. Effect of Renal Infusion of Tempol and Catalase on CBP & MBP
2.4. Effect of Renal Infusion of DETC on Cortical and Medullary Blood Perfusion (CBP & MBP, Respectively)
2.5. Effect of Renal Infusion of L-NAME on CBP & MBP
3. Discussion
3.1. Tempol Study
3.2. Tempol Plus Catalase Study
3.3. DETC Study
3.4. L-NAME Study
4. Materials and Methods
4.1. Drug Administration
4.1.1. Control, Tempol, DETC and L-NAME Groups (n = 10 for Each Group)
4.1.2. Tempol Plus Catalase Group (n = 10)
4.2. Experimental Protocol
4.3. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ye, C.; Zheng, F.; Wang, J.X.; Wang, X.L.; Chen, Q.; Li, Y.H.; Kang, Y.M.; Zhu, G.Q. Dysregulation of the Excitatory Renal Reflex in the Sympathetic Activation of Spontaneously Hypertensive Rat. Front. Physiol. 2021, 12, 673950. [Google Scholar] [CrossRef]
- Grisk, O. Renal denervation and hypertension—The need to investigate unintended effects and neural control of the human kidney. Auton. Neurosci. 2017, 204, 119–125. [Google Scholar] [CrossRef]
- Sata, Y.; Head, G.A.; Denton, K.; May, C.N.; Schlaich, M.P. Role of the Sympathetic Nervous System and Its Modulation in Renal Hypertension. Front. Med. 2018, 5, 82. [Google Scholar] [CrossRef]
- Cluett, J.L.; Blazek, O.; Brown, A.L.; East, C.; Ferdinand, K.C.; Fisher, N.D.L.; Ford, C.D.; Griffin, K.A.; Mena-Hurtado, C.I.; Sarathy, H.; et al. Renal Denervation for the Treatment of Hypertension: A Scientific Statement From the American Heart Association. Hypertension 2024, 81, e135–e148. [Google Scholar] [CrossRef]
- Lundin, S.; Thoren, P. Renal function and sympathetic activity during mental stress in normotensive and spontaneously hypertensive rats. Acta Physiol. Scand. 1982, 115, 115–124. [Google Scholar] [CrossRef]
- Lundin, S.; Ricksten, S.E.; Thoren, P. Renal sympathetic activity in spontaneously hypertensive rats and normotensive controls, as studied by three different methods. Acta Physiol. Scand. 1984, 120, 265–272. [Google Scholar] [CrossRef]
- Esler, M.; Lambert, G.; Jennings, G. Increased regional sympathetic nervous activity in human hypertension: Causes and consequences. J. Hypertens. Suppl. 1990, 8, S53–S57. [Google Scholar]
- Norman, R.A., Jr.; Dzielak, D.J. Role of renal nerves in onset and maintenance of spontaneous hypertension. Am. J. Physiol. 1982, 243, H284–H288. [Google Scholar] [CrossRef]
- Wang, M.; Han, W.; Zhang, M.; Fang, W.; Zhai, X.; Guan, S.; Qu, X. Long-term renal sympathetic denervation ameliorates renal fibrosis and delays the onset of hypertension in spontaneously hypertensive rats. Am. J. Transl. Res. 2018, 10, 4042–4053. [Google Scholar]
- Arendshorst, W.J.; Vendrov, A.E.; Kumar, N.; Ganesh, S.K.; Madamanchi, N.R. Oxidative Stress in Kidney Injury and Hypertension. Antioxidants 2024, 13, 1454. [Google Scholar] [CrossRef]
- Lee, J. Nitric oxide in the kidney: Its physiological role and pathophysiological implications. Electrolyte Blood Press. 2008, 6, 27–34. [Google Scholar] [CrossRef] [PubMed]
- Eppel, G.A.; Denton, K.M.; Malpas, S.C.; Evans, R.G. Nitric oxide in responses of regional kidney perfusion to renal nerve stimulation and renal ischaemia. Pflugers Arch. 2003, 447, 205–213. [Google Scholar] [CrossRef]
- Kalinovic, S.; Stamm, P.; Oelze, M.; Steven, S.; Kroller-Schon, S.; Kvandova, M.; Zielonka, J.; Munzel, T.; Daiber, A. Detection of extracellular superoxide in isolated human immune cells and in an animal model of arterial hypertension using hydropropidine probe and HPLC analysis. Free Radic. Biol. Med. 2021, 168, 214–225. [Google Scholar] [CrossRef]
- Zuccarella-Hackl, C.; von Kanel, R.; Thomas, L.; Hauser, M.; Kuebler, U.; Widmer, H.R.; Wirtz, P.H. Macrophage Superoxide Anion Production in Essential Hypertension: Associations with Biological and Psychological Cardiovascular Risk Factors. Psychosom. Med. 2016, 78, 750–757. [Google Scholar] [CrossRef] [PubMed]
- Grunfeld, S.; Hamilton, C.A.; Mesaros, S.; McClain, S.W.; Dominiczak, A.F.; Bohr, D.F.; Malinski, T. Role of superoxide in the depressed nitric oxide production by the endothelium of genetically hypertensive rats. Hypertension 1995, 26, 854–857. [Google Scholar] [CrossRef]
- Carlstrom, M. Nitric oxide signalling in kidney regulation and cardiometabolic health. Nat. Rev. Nephrol. 2021, 17, 575–590. [Google Scholar] [CrossRef]
- Kang, E.J.; Prager, O.; Lublinsky, S.; Oliveira-Ferreira, A.I.; Reiffurth, C.; Major, S.; Muller, D.N.; Friedman, A.; Dreier, J.P. Stroke-prone salt-sensitive spontaneously hypertensive rats show higher susceptibility to spreading depolarization (SD) and altered hemodynamic responses to SD. J. Cereb. Blood Flow Metab. 2023, 43, 210–230. [Google Scholar] [CrossRef]
- Makino, A.; Skelton, M.M.; Zou, A.P.; Roman, R.J.; Cowley, A.W., Jr. Increased renal medullary oxidative stress produces hypertension. Hypertension 2002, 39, 667–672. [Google Scholar] [CrossRef]
- Ahmeda, A. The effect of intra-renal administration of L-NAME on renal medullary and cortical blood flow of stroke-prone spontaneously hypertensive rats and wistar rats. J. Nat. Sci. Biol. Med. 2018, 9, 121. [Google Scholar] [CrossRef]
- Loperena, R.; Harrison, D.G. Oxidative Stress and Hypertensive Diseases. Med. Clin. N. Am. 2017, 101, 169–193. [Google Scholar] [CrossRef]
- Suzuki, H.; Swei, A.; Zweifach, B.W.; Schmid-Schonbein, G.W. In vivo evidence for microvascular oxidative stress in spontaneously hypertensive rats. Hydroethidine microfluorography. Hypertension 1995, 25, 1083–1089. [Google Scholar]
- Ahmeda, A.F.; Rae, M.G.; Johns, E.J. Effect of reactive oxygen species and nitric oxide in the neural control of intrarenal haemodynamics in anaesthetized normotensive rats. Acta Physiol. 2013, 209, 156–166. [Google Scholar] [CrossRef]
- Makino, A.; Skelton, M.M.; Zou, A.P.; Cowley, A.W., Jr. Increased renal medullary H2O2 leads to hypertension. Hypertension 2003, 42, 25–30. [Google Scholar] [PubMed]
- Salvagno, M.; Sterchele, E.D.; Zaccarelli, M.; Mrakic-Sposta, S.; Welsby, I.J.; Balestra, C.; Taccone, F.S. Oxidative Stress and Cerebral Vascular Tone: The Role of Reactive Oxygen and Nitrogen Species. Int. J. Mol. Sci. 2024, 25, 3007. [Google Scholar] [CrossRef] [PubMed]
- Griendling, K.K.; Sorescu, D.; Ushio-Fukai, M. NAD(P)H oxidase: Role in cardiovascular biology and disease. Circ. Res. 2000, 86, 494–501. [Google Scholar] [CrossRef]
- Thannickal, V.J.; Fanburg, B.L. Reactive oxygen species in cell signaling. Am. J. Physiol. Lung Cell. Mol. Physiol. 2000, 279, L1005–L1028. [Google Scholar]
- Majid, D.S.; Nishiyama, A. Nitric oxide blockade enhances renal responses to superoxide dismutase inhibition in dogs. Hypertension 2002, 39, 293–297. [Google Scholar] [CrossRef]
- Chaudhary, P.; Janmeda, P.; Docea, A.O.; Yeskaliyeva, B.; Abdull Razis, A.F.; Modu, B.; Calina, D.; Sharifi-Rad, J. Oxidative stress, free radicals and antioxidants: Potential crosstalk in the pathophysiology of human diseases. Front. Chem. 2023, 11, 1158198. [Google Scholar] [CrossRef] [PubMed]
- McIntyre, M.; Bohr, D.F.; Dominiczak, A.F. Endothelial function in hypertension: The role of superoxide anion. Hypertension 1999, 34, 539–545. [Google Scholar]
- Somers, M.J.; Mavromatis, K.; Galis, Z.S.; Harrison, D.G. Vascular superoxide production and vasomotor function in hypertension induced by deoxycorticosterone acetate-salt. Circulation 2000, 101, 1722–1728. [Google Scholar]
- Zou, A.P.; Cowley, A.W., Jr. Nitric oxide in renal cortex and medulla. An in vivo microdialysis study. Hypertension 1997, 29, 194–198. [Google Scholar] [CrossRef]
- Shokoji, T.; Nishiyama, A.; Fujisawa, Y.; Hitomi, H.; Kiyomoto, H.; Takahashi, N.; Kimura, S.; Kohno, M.; Abe, Y. Renal sympathetic nerve responses to tempol in spontaneously hypertensive rats. Hypertension 2003, 41, 266–273. [Google Scholar] [CrossRef]
- Ahmeda, A.F.; Rae, M.G.; Al Otaibi, M.F.; Anweigi, L.M.; Johns, E.J. Effect of tempol and tempol plus catalase on intra-renal haemodynamics in spontaneously hypertensive stroke-prone (SHSP) and Wistar rats. J. Physiol. Biochem. 2017, 73, 207–214. [Google Scholar] [CrossRef] [PubMed]
- Ahmeda, A.F.; Johns, E.J. The regulation of blood perfusion in the renal cortex and medulla by reactive oxygen species and nitric oxide in the anaesthetised rat. Acta Physiol. 2012, 204, 443–450. [Google Scholar] [CrossRef] [PubMed]
- Gibson, A.; Lilley, E. Superoxide anions, free-radical scavengers, and nitrergic neurotransmission. Gen. Pharmacol. 1997, 28, 489–493. [Google Scholar] [CrossRef] [PubMed]
- Wei, S.G.; Zhang, Z.H.; Yu, Y.; Felder, R.B. Systemically administered tempol reduces neuronal activity in paraventricular nucleus of hypothalamus and rostral ventrolateral medulla in rats. J. Hypertens. 2009, 27, 543–550. [Google Scholar] [CrossRef]
- Schnackenberg, C.G. Oxygen radicals in cardiovascular-renal disease. Curr. Opin. Pharmacol. 2002, 2, 121–125. [Google Scholar] [CrossRef]
- Anwar, S.; Alrumaihi, F.; Sarwar, T.; Babiker, A.Y.; Khan, A.A.; Prabhu, S.V.; Rahmani, A.H. Exploring Therapeutic Potential of Catalase: Strategies in Disease Prevention and Management. Biomolecules 2024, 14, 697. [Google Scholar] [CrossRef]
- Shokoji, T.; Fujisawa, Y.; Kimura, S.; Rahman, M.; Kiyomoto, H.; Matsubara, K.; Moriwaki, K.; Aki, Y.; Miyatake, A.; Kohno, M.; et al. Effects of local administrations of tempol and diethyldithio-carbamic on peripheral nerve activity. Hypertension 2004, 44, 236–243. [Google Scholar] [CrossRef]
- Walkowska, A.; Kompanowska-Jezierska, E.; Sadowski, J. Nitric oxide and renal nerves: Comparison of effects on renal circulation and sodium excretion in anesthetized rats. Kidney Int. 2004, 66, 705–712. [Google Scholar] [CrossRef]
- Tan, Y.C.; Abdul Sattar, M.; Ahmeda, A.F.; Abdul Karim Khan, N.; Murugaiyah, V.; Ahmad, A.; Hassan, Z.; Kaur, G.; Abdulla, M.H.; Johns, E.J. Apocynin and catalase prevent hypertension and kidney injury in Cyclosporine A-induced nephrotoxicity in rats. PLoS ONE 2020, 15, e0231472. [Google Scholar] [CrossRef]





| Stimulation | Parameter | Vehicle | Tempol | Tempol Plus Catalase | DETC | L-NAME |
|---|---|---|---|---|---|---|
| 0.5 Hz | BP (mmHg) | 120 ± 3 | 129 ± 6 | 120 ± 6 | 130 ± 16 | 137 ± 4 |
| HR (B/min) | 210 ± 17 | 205 ± 11 | 189 ± 18 | 187 ± 12 | 185 ± 20 | |
| CBP (PU) | 111 ± 15 | 112 ± 11 | 108 ± 22 | 105 ± 20 | 111 ± 19 | |
| MBP (PU) | 63 ± 14 | 59 ± 8 | 52 ± 6 | 54 ± 5 | 56 ± 8 | |
| 1.0 Hz | BP (mmHg) | 121 ± 3 | 129 ± 6 | 120 ± 7 | 129 ± 16 | 140 ± 5 |
| HR (B/min) | 208 ± 17 | 203 ± 11 | 190 ± 18 | 187 ± 12 | 203 ± 16 | |
| CBP (PU) | 108 ± 13 | 111 ± 12 | 114 ± 23 | 106 ± 20 | 110 ± 19 | |
| MBP (PU) | 60 ± 12 | 57 ± 8 | 53 ± 6 | 55 ± 5 | 56 ± 8 | |
| 2.0 Hz | BP (mmHg) | 102 ± 3 | 129 ± 5 | 121 ± 7 | 129 ± 16 | 138 ± 5 |
| HR (B/min) | 200 ± 17 | 199 ± 11 | 187 ± 17 | 187 ± 12 | 189 ± 22 | |
| CBP (PU) | 109 ± 14 | 110 ± 12 | 115 ± 23 | 105 ± 21 | 109 ± 19 | |
| MBP (PU) | 60 ± 14 | 59 ± 8 | 52 ± 6 | 54 ± 5 | 57 ± 8 | |
| 4.0 Hz | BP (mmHg) | 122 ± 2 | 130 ± 6 | 122 ± 8 | 127 ± 16 | 140 ± 5 |
| HR (B/min) | 203 ± 17 | 201 ± 11 | 187 ± 18 | 187 ± 12 | 193 ± 19 | |
| CBP (PU) | 107 ± 13 | 109 ± 12 | 112 ± 23 | 101 ± 19 | 107 ± 18 | |
| MBP (PU) | 61 ± 14 | 50 ± 8 | 51 ± 5 | 55 ± 6 | 54 ± 8 | |
| 6.0 Hz | BP (mmHg) | 122 ± 3 | 132 ± 6 | 124 ± 8 | 127 ± 17 | 140 ± 5 |
| HR (B/min) | 209 ± 16 | 202 ± 11 | 188 ± 18 | 168 ± 24 | 201 ± 17 | |
| CBP (PU) | 107 ± 14 | 109 ± 12 | 108 ± 22 | 98 ± 20 | 103 ± 20 | |
| MBP (PU) | 64 ± 15 | 55 ± 9 | 52 ± 5 | 53 ± 6 | 50 ± 6 | |
| 8.0 Hz | BP (mmHg) | 124 ± 3 | 132 ± 5 | 126 ± 8 | 125 ± 18 | 140 ± 5 |
| HR (B/min) | 211 ± 17 | 200 ± 11 | 190 ± 19 | 166 ± 26 | 198 ± 17 | |
| CBP (PU) | 109 ± 14 | 107 ± 11 | 105 ± 20 | 95 ± 21 | 99 ± 21 | |
| MBP (PU) | 60 ± 17 | 57 ± 8 | 51 ± 6 | 53 ± 7 | 54 ± 7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Ahmeda, A.; Ahmeda, Z.; Mohamed, Y.S.; Rae, M.G. Role of Oxidative Stress in the Neural Control of Intra-Renal Hemodynamics in Stroke-Prone Spontaneously Hypertensive Rats. Int. J. Mol. Sci. 2026, 27, 558. https://doi.org/10.3390/ijms27020558
Ahmeda A, Ahmeda Z, Mohamed YS, Rae MG. Role of Oxidative Stress in the Neural Control of Intra-Renal Hemodynamics in Stroke-Prone Spontaneously Hypertensive Rats. International Journal of Molecular Sciences. 2026; 27(2):558. https://doi.org/10.3390/ijms27020558
Chicago/Turabian StyleAhmeda, Ahmad, Zakarya Ahmeda, Yehia S. Mohamed, and Mark G. Rae. 2026. "Role of Oxidative Stress in the Neural Control of Intra-Renal Hemodynamics in Stroke-Prone Spontaneously Hypertensive Rats" International Journal of Molecular Sciences 27, no. 2: 558. https://doi.org/10.3390/ijms27020558
APA StyleAhmeda, A., Ahmeda, Z., Mohamed, Y. S., & Rae, M. G. (2026). Role of Oxidative Stress in the Neural Control of Intra-Renal Hemodynamics in Stroke-Prone Spontaneously Hypertensive Rats. International Journal of Molecular Sciences, 27(2), 558. https://doi.org/10.3390/ijms27020558

