Effects of Apigenin and Luteolin on Myzus persicae (Hemiptera: Aphididae) Probing Behavior
Abstract
:1. Introduction
2. Results
3. Discussion
3.1. Effects of Apigenin and Luteolin on Aphid Activities in Non-Vascular and Vascular Tissues
3.2. Effects of Apigenin and Luteolin Molecular Structures on Aphid Probing Behavior
4. Materials and Methods
4.1. Compounds, Insect and Plant Cultures, and Application of Compounds
4.2. Behavioral Responses of Aphids During Probing and Feeding: Electrical Penetration Graph Technique
4.3. Identification of EPG Waveforms and Calculation of EPG Variables
4.4. Statistical Analysis
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Shankar, E.; Goel, A.; Gupta, K.; Gupta, S. Plant flavone apigenin: An emerging anticancer agent. Curr. Parmacol. Rep. 2017, 3, 423–446. [Google Scholar] [CrossRef] [PubMed]
- Bangar, S.P.; Kajla, P.; Chaudhary, V.; Sharma, N.; Ozogul, F. Luteolin: A flavone with myriads of bioactivities and food applications. Food Biosci. 2023, 52, 102366. [Google Scholar]
- Valant-Vetschera, K.M.; Wollenweber, E. Flavones and flavonols. In Flavonoids: Chemistry, Biochemistry and Applications; Andersen, O.M., Markham, K.R., Eds.; CRC Press, Taylor Francis Group: Boca Raton, FL, USA, 2006; pp. 617–748. [Google Scholar]
- Jiang, N.; Doseff, A.I.; Grotewold, E. Flavones: From biosynthesis to health benefits. Plants 2016, 5, 27. [Google Scholar] [CrossRef] [PubMed]
- Martens, S.; Mithöfer, A. Flavones and flavone synthases. Phytochemistry 2005, 66, 2399–2407. [Google Scholar] [CrossRef]
- Mierziak, J.; Kostyn, K.; Kulma, A. Flavonoids as Important Molecules of Plant Interactions with the Environment. Molecules 2014, 19, 16240–16265. [Google Scholar] [CrossRef]
- Singh, M.; Kaur, M.; Silakari, O. Flavones: An important scaffold for medicinal chemistry. Eur. J. Med. Chem. 2014, 84, 206–239. [Google Scholar] [CrossRef]
- Simmonds, M.S.J. Flavonoid–insect interactions: Recent advances in our knowledge. Phytochemistry 2003, 64, 21–30. [Google Scholar] [CrossRef]
- Treutter, D. Significance of flavonoids in plant resistance: A review. Environ. Chem. Lett. 2006, 4, 147–157. [Google Scholar] [CrossRef]
- Shah, A.; Smith, D.L. Flavonoids in agriculture: Chemistry and roles in, biotic and abiotic stress responses, and microbial associations. Agronomy 2020, 10, 1209. [Google Scholar] [CrossRef]
- Pereira, V.; Figueira, O.; Castilho, P.C. Flavonoids as insecticides in crop protection—A Review of current research and future prospects. Plants 2024, 13, 776. [Google Scholar] [CrossRef]
- Schnarr, L.; Segatto, M.L.; Olsson, O.; Zuin, V.G.; Kümmerer, K. Flavonoids as biopesticides–Systematic assessment of sources, structures, activities and environmental fate. Sci. Total Environ. 2022, 824, 153781. [Google Scholar] [CrossRef] [PubMed]
- Riddick, E.W. Evaluating the effects of flavonoids on insects: Implications for managing pests without harming beneficials. Insects 2024, 15, 956. [Google Scholar] [CrossRef] [PubMed]
- Ghitti, E.; Rolli, E.; Crotti, E.; Borin, S. Flavonoids are intra- and inter-kingdom modulator signals. Microorganisms 2022, 10, 2479. [Google Scholar] [CrossRef]
- Khan, Z.R.; Midega, C.A.; Bruce, T.J.; Hooper, A.M.; Pickett, J.A. Exploiting phytochemicals for developing a ‘push–pull’ crop protection strategy for cereal farmers in Africa. J. Exp. Bot. 2010, 61, 4185–4196. [Google Scholar] [CrossRef]
- Khan, Z.; Midega, C.A.; Hooper, A.; Pickett, J. Push-pull: Chemical ecology-based integrated pest management technology. J. Chem. Ecol. 2016, 42, 689–697. [Google Scholar] [CrossRef]
- Liu, Q.; Xu, R.; Yan, Z.; Jin, H.; Cui, H.; Lu, L.; Zhang, D.; Qin, B. Phytotoxic allelochemicals from roots and root exudates of Trifolium pratense. J. Agric. Food Chem. 2013, 61, 6321–6327. [Google Scholar] [CrossRef]
- Wang, Y.; Jiang, Y.; Liu, X.; Chen, Y.; Zhang, Q.; Wang, L.; Li, W. Analysis of Ginkgo biloba root exudates and inhibition of soil fungi by flavonoids and terpene lactones. Plants 2024, 13, 2122. [Google Scholar] [CrossRef]
- Were, E.; Schöne, J.; Viljoen, A.; Rasche, F. Phenolics mediate suppression of Fusarium oxysporum f. sp. cubense TR4 by legume root exudates. Rhizosphere 2022, 21, 100459. [Google Scholar]
- Johnson, S.N.; Gregory, P.J. Chemically-mediated host-plant location and selection by root-feeding insects. Physiol. Entomol. 2006, 31, 1–13. [Google Scholar] [CrossRef]
- Sharma, H.C.; Ortiz, R. Host plant resistance to insects: An eco-friendly approach for pest management and environment conservation. J. Environ. Biol. 2002, 23, 111–135. [Google Scholar]
- Kloth, K.J.; Thoen, M.P.; Bouwmeester, H.J.; Jongsma, M.A.; Dicke, M. Association mapping of plant resistance to insects. Trends Plant Sci. 2012, 17, 311–319. [Google Scholar] [CrossRef] [PubMed]
- Smith, C.M. Plant resistance to insects. In Biological and Biotechnological Control of Insect Pests; Rechcigl, J.E., Rechcigl, N.A., Eds.; CRC Press, Taylor Francis Group: Boca Raton, FL, USA, 1999; pp. 171–208. [Google Scholar]
- Hilder, V.A.; Boulter, D. Genetic engineering of crop plants for insect resistance—A critical review. Crop Prot. 1999, 18, 177–191. [Google Scholar] [CrossRef]
- Mitchell, C.; Brennan, R.M.; Graham, J.; Karley, A.J. Plant defense against herbivorous pests: Exploiting resistance and tolerance traits for sustainable crop protection. Front. Plant Sci. 2016, 7, 1132. [Google Scholar] [CrossRef] [PubMed]
- Flors, V.; Kyndt, T.; Mauch-Mani, B.; Pozo, M.J.; Ryu, C.M.; Ton, J. Enabling sustainable crop protection with induced resistance in plants. Front. Sci. 2024, 2, 1407410. [Google Scholar] [CrossRef]
- Borkakati, R.N.; Venkatesh, M.R.; Saikia, D.K.; Sasanka, S.B. A brief review on food recognition by insects: Use of sensory and behavioural mechanisms. J. Entomol. Zool. Stud. 2019, 7, 574–579. [Google Scholar]
- Anton, S.; Cortesero, A.M. Plasticity in chemical host plant recognition in herbivorous insects and its implication for pest control. Biology 2022, 11, 1842. [Google Scholar] [CrossRef]
- Ali, J.G.; Agrawal, A.A. Specialist versus generalist insect herbivores and plant defense. Trends Plant Sci. 2012, 17, 293–302. [Google Scholar] [CrossRef]
- Dethier, V.G. Evolution of feeding preferences in phytophagous insects. Evolution 1954, 8, 33–54. [Google Scholar] [CrossRef]
- Bernays, E.A. Evolution of feeding behavior in insect herbivores. Bioscience 1998, 48, 35–44. [Google Scholar] [CrossRef]
- Silva, R.; Clarke, A.R. The “sequential cues hypothesis”: A conceptual model to explain host location and ranking by polyphagous herbivores. Insect Sci. 2020, 27, 1136–1147. [Google Scholar] [CrossRef]
- Visser, J.H. Host odor perception in phytophagous insects. Ann. Rev. Emomol. 1986, 31, 121–144. [Google Scholar] [CrossRef]
- Jones, L.C.; Rafter, M.A.; Walter, G.H. Host interaction mechanisms in herbivorous insects–life cycles, host specialization and speciation. Biol. J. Linn. Soc. 2022, 137, 1–14. [Google Scholar] [CrossRef]
- Chapman, R.F. Chemosensory regulation of feeding. In Regulatory Mechanisms in Insect Feeding; Chapman, R.F., de Boer, G., Eds.; Springer: Boston, MA, USA, 1995; pp. 101–136. [Google Scholar]
- Katis, N.I.; Tsitsipis, J.A.; Stevens, M.; Powell, G. Transmission of plant viruses. In Aphids as Crop Pests, 1st ed.; van Emden, H.F., Harrington, R., Eds.; CABI: Wallingford, UK, 2007; pp. 353–390. [Google Scholar]
- Brault, V.; Uzest, M.; Monsion, B.; Jacquot, E.; Blanc, S. Aphids as transport devices for plant viruses. C. R. Biol. 2010, 333, 524–538. [Google Scholar] [CrossRef] [PubMed]
- Blackman, R.; Eastop, V. Taxonomic Issues. In Aphids as Crop Pests; van Emden, H., Harrington, R., Eds.; CABI: Wallingford, UK, 2007; pp. 1–29. [Google Scholar]
- Stevens, M.; Lacomme, C. Transmission of plant viruses. In Aphids as Crop Pests; van Emden, H.F., Harrington, R., Eds.; CABI: Wallingford, UK, 2017; pp. 323–361. [Google Scholar]
- Dedryver, C.A.; Le Ralec, A.; Fabre, F. The conflicting relationships between aphids and men: A review of aphid damage and control strategies. C. R. Biol. 2010, 333, 539–553. [Google Scholar] [CrossRef]
- Bass, C.; Puinean, A.M.; Zimmer, C.T.; Denholm, I.; Field, L.M.; Foster, S.P.; Gutbrod, O.; Nauen, R.; Slater, R.; Williamson, M.S. The evolution of insecticide resistance in the peach potato aphid. Insect Biochem. Mol. Biol. 2014, 51, 41–51. [Google Scholar] [CrossRef]
- Isman, M. Botanical insecticides, deterrents, and repellents in modern agriculture and an increasingly regulated world. Annu. Rev. Entomol. 2006, 51, 45–66. [Google Scholar] [CrossRef]
- Dayan, F.E.; Cantrell, C.L.; Duke, S.O. Natural products in crop protection. Bioorg. Med. Chem. 2009, 17, 4022–4034. [Google Scholar] [CrossRef]
- Arora, S.; Husain, T.; Prasad, S. Allelochemicals as biocontrol agents: Promising aspects, challenges and opportunities. S. Afr. J. Bot. 2024, 166, 503–511. [Google Scholar] [CrossRef]
- Tlak Gajger, I.; Dar, S.A. Plant allelochemicals as sources of insecticides. Insects 2021, 12, 189. [Google Scholar] [CrossRef]
- Farhan, M.; Pan, J.; Hussain, H.; Zhao, J.; Yang, H.; Ahmad, I.; Zhang, S. Aphid-resistant plant secondary metabolites: Types, insecticidal mechanisms, and prospects for utilization. Plants 2024, 13, 2332. [Google Scholar] [CrossRef]
- Gautam, H.; Sharma, A.; Trivedi, P.K. The role of flavonols in insect resistance and stress response. Curr. Opin. Plant Biol. 2023, 73, 102353. [Google Scholar] [CrossRef] [PubMed]
- Morimoto, M.; Tanimoto, K.; Nakano, S.; Ozaki, T.; Nakano, A.; Komai, K. Insect antifeedant activity of flavones and chromones against Spodoptera litura. J. Agric. Food Chem. 2003, 51, 389–393. [Google Scholar] [CrossRef] [PubMed]
- Stec, K.; Kordan, B.; Gabryś, B. Quercetin and rutin as modifiers of aphid probing behavior. Molecules 2021, 26, 3622. [Google Scholar] [CrossRef]
- Stec, K.; Kordan, B.; Gabryś, B. Effect of soy leaf flavonoids on pea aphid probing behavior. Insects 2021, 12, 756. [Google Scholar] [CrossRef]
- Stec, K.; Kordan, B.; Bocianowski, J.; Gabryś, B. Hesperidin as a species-specific modifier of aphid behavior. Int. J. Mol. Sci. 2024, 25, 4822. [Google Scholar] [CrossRef]
- Goławska, S.; Sprawka, I.; Łukasik, I.; Goławski, A. Are naringenin and quercetin useful chemicals in pest-management strategies? J. Pest Sci. 2014, 87, 173–180. [Google Scholar] [CrossRef]
- Stec, K.; Kozłowska, J.; Wróblewska-Kurdyk, A.; Kordan, B.; Anioł, M.; Gabryś, B. Effect of naringenin and its derivatives on the probing behavior of Myzus persicae (Sulz.). Molecules 2020, 25, 3185. [Google Scholar] [CrossRef]
- Jacob, V.; Hagai, T.; Soliman, K. Structure-activity relationships of flavonoids. Curr. Org. Chem. 2011, 15, 2641–2657. [Google Scholar] [CrossRef]
- Chen, L.; Teng, H.; Xie, Z.; Cao, H.; Cheang, W.S.; Skalicka-Woniak, K.; Georgiev, M.I.; Xiao, J. Modifications of dietary flavonoids towards improved bioactivity: An update on structure–activity relationship. Crit. Rev. Food Sci. Nutr. 2018, 58, 513–527. [Google Scholar] [CrossRef]
- Muruganathan, N.; Dhanapal, A.R.; Baskar, V.; Muthuramalingam, P.; Selvaraj, D.; Aara, H.; Shiek Abdullah, M.Z.; Sivanesan, I. Recent updates on source, biosynthesis, and therapeutic potential of natural flavonoid luteolin: A Review. Metabolites 2022, 12, 1145. [Google Scholar] [CrossRef]
- Marín, L.; Gutiérrez-del-Río, I.; Yagüe, P.; Manteca, Á.; Villar, C.J.; Lombó, F. De novo biosynthesis of apigenin, luteolin, and eriodictyol in the actinomycete Streptomyces albus and production improvement by feeding and spore conditioning. Front. Microbiol. 2017, 8, 921. [Google Scholar] [CrossRef] [PubMed]
- López-Lázaro, M. Distribution and biological activities of the flavonoid luteolin. Mini-Rev. Med. Chem. 2009, 9, 31–59. [Google Scholar] [CrossRef] [PubMed]
- Salehi, B.; Venditti, A.; Sharifi-Rad, M.; Kręgiel, D.; Sharifi-Rad, J.; Durazzo, A.; Lucarini, M.; Santini, A.; Souto, E.B.; Novellino, E.; et al. The Therapeutic Potential of Apigenin. Int. J. Mol. Sci. 2019, 20, 1305. [Google Scholar] [CrossRef]
- Boué, S.M.; Raina, A.K. Effects of plant flavonoids on fecundity, survival, and feeding of the formosan subterranean termite. J. Chem. Ecol. 2003, 29, 2575–2584. [Google Scholar] [CrossRef] [PubMed]
- Johnson, A.D.; Singh, A. Larvicidal activity and biochemical effects of apigenin against filarial vector Culex quinquefasciatus. Int. J. Life Sci. Sci. Res. 2017, 3, 1315–1321. [Google Scholar] [CrossRef]
- Xu, D.; Huang, Z.; Cen, Y.J.; Chen, Y.; Freed, S.; Hu, X.G. Antifeedant activities of secondary metabolites from Ajuga nipponensis against adult of striped flea beetles, Phyllotreta striolata. J. Pest Sci. 2009, 82, 195–202. [Google Scholar] [CrossRef]
- Pratap, B.; Singh, A. In vivo Effects of apigenin isolated from Jatropha gossypifolia plant on the biochemical profile of fish. Glob. J. Pharmacol. 2013, 7, 166–171. [Google Scholar]
- Wang, S.D.; Liu, W.; Xue, C.B.; Luo, W.C. The effects of luteolin on phenoloxidase and the growth of Spodoptera exigua (Hübner) larvae (Lepidoptera: Noctuidae). J. Pest. Sci. 2010, 35, 483–487. [Google Scholar] [CrossRef]
- Matsuda, K.; Matsuo, H. A flavonoid, luteolin-7-glucoside, as well as salicin and populin, stimulating the feeding of leaf beetles attacking salicaceous plants. Appl. Entomol. Zoolog. 1985, 20, 305–313. [Google Scholar] [CrossRef]
- Wiseman, B.R.; Gueldner, R.C.; Lynch, R.E.; Severson, R.F. Biochemical activity of centipedegrass against fall armyworm larvae. J. Chem. Ecol. 1990, 16, 2677–2690. [Google Scholar] [CrossRef]
- Goławska, S.; Sprawka, I.; Łukasik, I. Effect of saponins and apigenin mixtures on feeding behavior of the pea aphid, Acyrthosiphon pisum Harris. Biochem. Syst. Ecol. 2014, 55, 137–144. [Google Scholar] [CrossRef]
- Goławska, S.; Łukasik, I. Antifeedant activity of luteolin and genistein against the pea aphid, Acyrthosiphon pisum. J. Pest Sci. 2012, 85, 443–450. [Google Scholar] [CrossRef] [PubMed]
- Goławska, S.; Łukasik, I.; Chojnacki, A.A. Luteolin and quercetin affect aphid feeding behavior. Eur. Zool. J. 2024, 91, 318–331. [Google Scholar] [CrossRef]
- Dreyer, D.L.; Jones, K.C. Feeding deterrency of flavonoids and related phenolics towards Schizaphis graminum and Myzus persicae: Aphid feeding deterrents in wheat. Phytochemistry 1981, 20, 2489–2493. [Google Scholar] [CrossRef]
- Margaritopoulos, J.T.; Kasprowicz, L.; Malloch, G.L.; Fenton, B. Tracking the global dispersal of a cosmopolitan insect pest, the peach potato aphid. BMC Ecol. 2009, 9, 13. [Google Scholar] [CrossRef]
- Tjallingii, W.F.; Esch, T.H.H. Fine structure of aphid stylet routes in plant tissues in correlation with EPG signals. Physiol. Entomol. 1993, 18, 317–328. [Google Scholar] [CrossRef]
- Pettersson, J.; Tjallingii, W.F.; Hardie, J. Host-plant selection and feeding. In Aphids as Crop Pests; van Emden, H.F., Harrington, R., Eds.; CABI: Wallingford, UK, 2017; pp. 173–195. [Google Scholar]
- Douglas, A.E. The nutritional physiology of aphids. Advan. Insect Physiol. 2003, 31, 73–140. [Google Scholar]
- Will, T.; Van Bel, A.J.E. Physical and chemical interactions between aphids and plants. J. Exp. Bot. 2006, 57, 729–737. [Google Scholar] [CrossRef]
- Gabryś, B.; Pawluk, M. Acceptability of different species of Brassicaceae as hosts for the cabbage aphid. Entomol. Exp. Appl. 1999, 91, 105–109. [Google Scholar] [CrossRef]
- Kordan, B.; Stec, K.; Słomiński, P.; Laszczak-Dawid, A.; Wróblewska-Kurdyk, A.; Gabryś, B. Antixenosis potential in pulses against the pea aphid (Hemiptera: Aphididae). J. Econ. Entomol. 2019, 112, 465–474. [Google Scholar] [CrossRef]
- Grudniewska, A.; Kłobucki, M.; Dancewicz, K.; Szczepanik, M.; Gabryś, B.; Wawrzeńczyk, C. Synthesis and antifeedant activity of racemic and optically active hydroxy lactones with the p-menthane system. PLoS ONE 2015, 10, e0131028. [Google Scholar] [CrossRef] [PubMed]
- Dancewicz, K.; Szumny, A.; Wawrzeńczyk, C.; Gabryś, B. Repellent and antifeedant activities of citral-derived lactones against the peach potato aphid. Int. J. Mol. Sci. 2020, 21, 8029. [Google Scholar] [CrossRef] [PubMed]
- Wróblewska-Kurdyk, A.; Dancewicz, K.; Gliszczyńska, A.; Gabryś, B. New insight into the behaviour modifying activity of two natural sesquiterpenoids farnesol and nerolidol towards Myzus persicae (Sulzer)(Homoptera: Aphididae). Bull. Entomol. Res. 2020, 110, 249–258. [Google Scholar] [CrossRef] [PubMed]
- Philippi, J.; Schliephake, E.; Jurgens, H.U.; Jansen, G.; Ordon, F. Feeding behavior of aphids on narrow-leafed lupin (Lupinus angustifolius) genotypes varying in the content of quinolizidine alkaloids. Entomol. Exp. Appl. 2005, 156, 37–51. [Google Scholar] [CrossRef]
- Pompon, J.; Quiring, D.; Goyer, C.; Giordanengo, P.; Pelletier, Y. A phloem-sap feeder mixes phloem and xylem sap to regulate osmotic potential. J. Insect Physiol. 2011, 57, 1317–1322. [Google Scholar] [CrossRef]
- Ramírez, C.C.; Villagra, C.A.; Niemeyer, H.M. Increased xylem ingestion and decreased phloem ingestion in the aphid Acyrthosiphon pisum (Hemiptera: Aphididae) parasitised by Aphidius ervi (Hymenoptera: Braconidae). Euro. J. Entomol. 2006, 103, 263. [Google Scholar] [CrossRef]
- Paprocka, M.; Dancewicz, K.; Kordan, B.; Damszel, M.; Sergiel, I.; Biesaga, M.; Mroczek, J.; Arroyo-Garcia, R.A.; Gabryś, B. Probing behavior of Aphis fabae and Myzus persicae on three species of grapevines with analysis of grapevine leaf anatomy and allelochemicals. Euro. Zool. J. 2023, 90, 83–100. [Google Scholar] [CrossRef]
- Pompon, J.; Pelletier, Y. Changes in aphid probing behaviour as a function of insect age and plant resistance level. Bull. Entomol. Res. 2012, 102, 550–557. [Google Scholar] [CrossRef]
- Boquel, S.; Giordanengo, P.; Ameline, A. Probing behavior of apterous and alate morphs of two potato–colonizing aphids. J. Insect Sci. 2011, 11, 164. [Google Scholar] [CrossRef]
- Polonsky, J.; Bhatnagar, S.C.; Griffiths, D.C.; Pickett, J.A.; Woodcock, C.M. Activity of qassinoids as antifeedants against aphids. J. Chem. Ecol. 1989, 15, 933–998. [Google Scholar] [CrossRef]
- Gabryś, B.; Dancewicz, K.; Gliszczyńska, A.; Kordan, B.; Wawrzeńczyk, C. Systemic deterrence of aphid probing and feeding by β-damascone analogues. J. Pest. Sci. 2015, 88, 507–516. [Google Scholar] [CrossRef] [PubMed]
- Mayoral, A.M.; Tjallingii, W.F.; Castanera, P. Probing behavior of Diuraphis noxia on five cereal species with different hydroxyamic acid levels. Entomol. Exp. Appl. 1996, 78, 341–348. [Google Scholar] [CrossRef]
- Paprocka, M.; Gliszczyńska, A.; Dancewicz, K.; Gabryś, B. Novel Hydroxy- and Epoxy-cis-Jasmone and Dihydrojasmone Derivatives Affect the Foraging Activity of the Peach Potato Aphid Myzus persicae (Sulzer) (Homoptera: Aphididae). Molecules 2018, 23, 2362. [Google Scholar] [CrossRef] [PubMed]
- Garzo, E.; Álvarez, A.J.; Moreno, A.; Walker, G.P.; Tjallingii, W.F.; Fereres, A. Novel program for automatic calculation of EPG variables. J. Insect Sci. 2024, 24, 28. [Google Scholar] [CrossRef]
- Shapiro, S.S.; Wilk, M.B. An analysis of variance test for normality (complete samples). Biometrika 1965, 52, 591–611. [Google Scholar] [CrossRef]
- VSN International Genstat for Windows, 23rd ed.; VSN International: Hemel Hempstead, UK, 2023.
EPG Variable | Control | Apigenin | Luteolin | HSD0.05 | F-ANOVA | |||
---|---|---|---|---|---|---|---|---|
n 1 | Mean ± SEM | n 1 | Mean ± SEM | n 1 | Mean ± SEM | |||
No probing | ||||||||
Total duration of np | 17 | 60.2 a ± 12.9 | 19 | 73.4 a ± 9.90 | 16 | 54.2 a ± 10.3 | 31.5 | 0.454 |
Number of np | 17 | 41.2 a ± 6.60 | 19 | 41.6 a ± 5.10 | 16 | 38.8 a ± 5.80 | 16.5 | 0.936 |
Mean duration of np | 17 | 1.40 a ± 0.10 | 19 | 1.70 a ± 0.20 | 16 | 1.30 a ± 0.20 | 0.42 | 0.116 |
Probing | ||||||||
Total probing time | 17 | 419.8 a ± 12.9 | 19 | 406.6 a ± 9.9 | 16 | 425.8 a ± 10.3 | 31.5 | 0.454 |
Number of probes | 17 | 41.1 a ± 6.60 | 19 | 41.5 a ± 5.10 | 16 | 38.7 a ± 5.70 | 16.4 | 0.935 |
Number of short probes (C < 3 min) | 17 | 26.8 a ± 5.10 | 19 | 27.6 a ± 4.20 | 16 | 24.3 a ± 4.20 | 12.8 | 0.867 |
Pathway phase | ||||||||
Total duration of C | 17 | 196.0 a ± 22.7 | 19 | 208.0 a ± 19.0 | 16 | 190.6 a ± 18.0 | 56.8 | 0.817 |
Number of C | 17 | 43.7 a ± 6.70 | 19 | 45.2 a ± 4.80 | 16 | 42.0 a ± 6.00 | 16.5 | 0.927 |
Mean duration of C | 17 | 5.70 a ± 0.80 | 19 | 5.20 a ± 0.50 | 16 | 5.20 a ± 0.40 | 1.73 | 0.746 |
Proportion of probing spent in C (%) | 17 | 49.0 a ± 6.60 | 19 | 53.0 a ± 5.70 | 16 | 46.2 a ± 5.10 | 16.6 | 0.711 |
Derailed stylet activities | ||||||||
Total duration of F | 17 | 29.2 a ± 9.80 | 19 | 19.0 a ± 8.70 | 16 | 18.4 a ± 7.20 | 24.8 | 0.623 |
Number of F | 17 | 0.80 a ± 0.20 | 19 | 0.50 a ± 0.20 | 16 | 0.40 a ± 0.20 | 0.57 | 0.503 |
Mean duration of F 2 | 9 | 42.1 a ± 9.20 | 6 | 32.9 a ± 9.60 | 6 | 45.6 a ± 11.9 | 19.2 | 0.376 |
Proportion of probing spent in F 2 (%) | 9 | 12.9 a ± 3.40 | 6 | 14.2 a ± 4.60 | 6 | 12.2 a ± 3.10 | 7.07 | 0.841 |
Xylem phase | ||||||||
Total duration of G | 17 | 12.7 a ± 3.90 | 19 | 23.6 a ± 6.8 | 16 | 16.6 a ± 5.70 | 16.3 | 0.393 |
Number of G | 17 | 0.60 a ± 0.20 | 19 | 0.60 a ± 0.16 | 16 | 0.70 a ± 0.20 | 0.53 | 0.977 |
Mean duration of G 2 | 8 | 21.5 b ± 2.00 | 10 | 38.5 a ± 7.70 | 8 | 26.1 ab ± 7.50 | 13.6 | 0.04 |
Proportion of probing spent in G 2 (%) | 8 | 6.60 b ± 1.10 | 10 | 11.2 a ± 2.10 | 8 | 7.80 ab ± 1.80 | 3.70 | 0.044 |
Phloem phase: general | ||||||||
Total duration of phloem phase E (E1 + E2) | 16 | 193.2 a ± 30.4 | 16 | 185.1 a ± 25.3 | 15 | 213.3 a ± 28.7 | 76.3 | 0.752 |
Total duration of E1 | 16 | 1.80 a ± 0.30 | 16 | 7.40 a ± 4.60 | 15 | 2.70 a ± 0.60 | 7.38 | 0.252 |
Total duration of E2 | 16 | 191.5 a ± 30.6 | 16 | 177.9 a ± 26.2 | 15 | 210.9 a ± 28.9 | 77.4 | 0.693 |
Phloem phase: salivation (E1) | ||||||||
Number of E1 | 17 | 1.90 a ± 0.30 | 19 | 3.00 a ± 0.60 | 16 | 2.90 a ± 0.60 | 1.53 | 0.306 |
Mean duration of E1 2 | 16 | 0.90 a ± 0.10 | 16 | 2.30 a ± 1.50 | 15 | 0.90 a ± 0.70 | 2.44 | 0.371 |
Duration of the E1 followed by 1st E2 2 | 16 | 1.70 a ± 0.30 | 16 | 2.60 a ± 0.50 | 15 | 2.20 a ± 0.40 | 1.07 | 0.185 |
Duration of E1 followed by 1st E2 > 10 min 2 | 15 | 1.00 b ± 0.10 | 15 | 1.80 a ± 0.26 | 14 | 1.50 ab ± 0.30 | 0.60 | 0.035 |
Contribution of E1 to phloem phase (%) 2 | 16 | 3.30 a ± 1.80 | 16 | 6.10 a ± 3.60 | 15 | 5.80 a ± 4.30 | 9.08 | 0.79 |
Proportion of probing spent in E1 (%) | 16 | 0.40 a ± 0.90 | 16 | 1.80 a ± 1.20 | 15 | 0.60 a ± 0.10 | 1.88 | 0.261 |
Phloem phase: sap ingestion (E2) | ||||||||
Number of E2 | 17 | 1.80 a ± 0.30 | 19 | 2.70 a ± 0.60 | 16 | 2.60 a ± 0.60 | 1.45 | 0.39 |
Number of E2 > 10 min | 17 | 1.10 a ± 0.20 | 19 | 1.70 a ± 0.30 | 16 | 1.70 a ± 0.30 | 0.82 | 0.253 |
Mean duration of E2 2 | 16 | 155.3 a ± 35.1 | 16 | 85.5 a ± 21.0 | 15 | 137.1 a ± 32.0 | 80.9 | 0.195 |
Proportion of probing spent in E2 (%) | 16 | 43.2 a ± 6.60 | 16 | 41.7 a ± 5.50 | 15 | 47.6 a ± 6.00 | 16.4 | 0.754 |
Control | Apigenin | Luteolin | HSD0.05 | F- ANOVA | ||||
---|---|---|---|---|---|---|---|---|
n 1 | Mean ± SEM | n 1 | Mean ± SEM | n 1 | Mean ± SEM | |||
Start of EPG | ||||||||
Time to 1st probe from start of EPG | 17 | 1.30 a ± 0.50 | 19 | 1.50 a ± 0.50 | 16 | 3.20 a ± 1.20 | 2.14 | 0.161 |
Duration of 1st probe | 17 | 2.30 ab ± 0.70 | 19 | 0.70 b ± 0.30 | 16 | 3.70 a ± 1.50 | 2.67 | 0.048 |
Before 1st phloem phase | ||||||||
Time from 1st probe to 1st E 2 | 17 | 183.1 a ± 30.5 | 19 | 199.6 a ± 35.7 | 16 | 170.9 a ± 29.3 | 92.1 | 0.820 |
Time to 1st E within the probe 3 | 16 | 35.9 a ± 9.00 | 16 | 19.8 a ± 2.60 | 16 | 25.4 a ± 4.20 | 16.2 | 0.131 |
Number of probes to 1st E1 2 | 17 | 25.4 a ± 5.70 | 19 | 28.4 a ± 4.60 | 16 | 28.5 a ± 5.40 | 14.8 | 0.891 |
Duration of no probing before 1st E 2 | 17 | 37.9 a ± 12.6 | 19 | 44.8 a ± 9.20 | 16 | 32.0 a ± 7.50 | 28.5 | 0.665 |
1st phloem phase | ||||||||
Duration of 1st phloem phase E 3 | 16 | 145.9 a ± 37.6 | 16 | 68.4 a ± 22.3 | 15 | 120.9 a ± 34.0 | 86.3 | 0.181 |
Before 1st sap ingestion phase E2 | ||||||||
Time from 1st probe to 1st E2 4 | 17 | 190.3 a ± 30.5 | 19 | 213.6 a ± 35.3 | 16 | 171.7 a ± 29.3 | 91.6 | 0.654 |
Time to 1st E2 within the probe 5 | 16 | 37.6 a ± 8.90 | 16 | 20.00 b ± 2.60 | 15 | 26.2 ab ± 4.20 | 15.99 | 0.046 |
Before 1st sap ingestion phase E2 > 10 min | ||||||||
Time from 1st probe to 1st E2 > 10 min 6 | 17 | 252.0 a ± 35.8 | 19 | 245.5 a ± 37.4 | 16 | 191.5 a ± 32.5 | 101.3 | 0.445 |
Time to 1st E2 > 10 min. within the probe 7 | 15 | 41.6 a ± 9.10 | 15 | 27.7 a ± 5.20 | 14 | 27.9 a ± 4.20 | 17.4 | 0.197 |
After 1st phloem phase | ||||||||
Number of probes after 1st E 7 | 16 | 16.7 a ± 4.80 | 16 | 15.6 a ± 3.90 | 15 | 10.9 a ± 2.30 | 10.4 | 0.510 |
Number of probes < 3 min. after 1st E 7 | 16 | 11.4 a ± 3.80 | 16 | 10.3 a ± 2.70 | 15 | 6.40 a ± 1.70 | 7.80 | 0.430 |
Potential E2 index 8 | 15 | 64.8 a ± 9.00 | 15 | 58.6 a ± 7.70 | 14 | 63.1 a ± 7.90 | 22.3 | 0.84 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wróblewska-Kurdyk, A.; Kordan, B.; Bocianowski, J.; Stec, K.; Gabryś, B. Effects of Apigenin and Luteolin on Myzus persicae (Hemiptera: Aphididae) Probing Behavior. Int. J. Mol. Sci. 2025, 26, 4452. https://doi.org/10.3390/ijms26094452
Wróblewska-Kurdyk A, Kordan B, Bocianowski J, Stec K, Gabryś B. Effects of Apigenin and Luteolin on Myzus persicae (Hemiptera: Aphididae) Probing Behavior. International Journal of Molecular Sciences. 2025; 26(9):4452. https://doi.org/10.3390/ijms26094452
Chicago/Turabian StyleWróblewska-Kurdyk, Anna, Bożena Kordan, Jan Bocianowski, Katarzyna Stec, and Beata Gabryś. 2025. "Effects of Apigenin and Luteolin on Myzus persicae (Hemiptera: Aphididae) Probing Behavior" International Journal of Molecular Sciences 26, no. 9: 4452. https://doi.org/10.3390/ijms26094452
APA StyleWróblewska-Kurdyk, A., Kordan, B., Bocianowski, J., Stec, K., & Gabryś, B. (2025). Effects of Apigenin and Luteolin on Myzus persicae (Hemiptera: Aphididae) Probing Behavior. International Journal of Molecular Sciences, 26(9), 4452. https://doi.org/10.3390/ijms26094452