Altering the Hydrogen Isotopic Composition of the Essential Nutrient Water as a Promising Tool for Therapy: Perspectives and Risks
Abstract
:1. Introduction
2. Isotopic Forms of Water
3. Transportation of Water into Cells
4. Isotopic Effects
5. Molecular Basis for the Biological Effects of Deuterium-Depleted Water
6. Possible Applications of Water with Modified Hydrogen Isotope Composition in Medicine
6.1. Applications in Oncology
6.2. Restoration of Immune Function
6.3. Antianemic Effect of Deuterium-Depleted Water
6.4. Neurotropic Effect of Deuterium-Depleted Water
6.5. Possible Applications of Deuterium-Depleted Water in Endocrinology
7. Possible Mechanisms of Deuterium-Depleted Water Action
8. Conclusions
Funding
Conflicts of Interest
References
- Mosin, O.; Ignatov, I. Biological influence of deuterium on prokaryotic and eukaryotic cells. J. Med. Physiol. Biophys. 2014, 1, 52–72. [Google Scholar] [CrossRef]
- Mosin, O.; Ignatov, I. Studying the influence of heavy and deuterium depleted types of water on biological objects. J. Med. Physiol. Biophys. 2016, 22, 35–49. [Google Scholar]
- Urey, H.C.; Brickwedde, F.G.; Murphy, G.M. A hydrogen isotope of mass 2. Phys. Rev. 1932, 39, 164–165. [Google Scholar] [CrossRef]
- Zachleder, V.; Vítová, M.; Hlavová, M.; Moudříková, Š.; Mojzeš, P.; Heumann, H.; Becher, J.R.; Bišová, K. Stable isotope compounds—Production, detection, and application. Biotechnol. Adv. 2018, 36, 784–797. [Google Scholar] [CrossRef]
- Kopf, S.; Bourriquen, F.; Li, W.; Neumann, H.; Junge, K.; Beller, M. Recent Developments for the Deuterium and Tritium Labeling of Organic Molecules. Chem. Rev. 2022, 122, 6634–6718. [Google Scholar] [CrossRef]
- Kampmeyer, C.; Johansen, J.V.; Holmberg, C.; Karlson, M.; Gersing, S.K.; Bordallo, H.N.; Kragelund, B.B.; Lerche, M.H.; Jourdain, I.; Winther, J.R.; et al. Mutations in a Single Signaling Pathway Allow Cell Growth in Heavy Water. ACS Synth. Biol. 2020, 9, 733–748. [Google Scholar] [CrossRef]
- Allison, G.B.; Gat, J.R.; Leaney, F.W.J. The relationship between deuterium and oxygen-18 values in leaf water. Isot. Geosci. 1985, 58, 145–156. [Google Scholar] [CrossRef]
- Gat, J.R. Oxygen and hydrogen isotopes in the hydrologic cycle. Annu. Rev. Earth Planet. Sci. 1996, 24, 225–262. [Google Scholar] [CrossRef]
- Purcell, S.A.; Craven, S.A.; Limon-Miro, A.T.; Elliott, S.A.; Melanson, E.L.; Tandon, P.; Prado, C.M. Total energy expenditure measured using doubly labeled water in adults with major chronic diseases: A systematic review. Am. J. Clin. Nutr. 2024, 120, 1071–1084. [Google Scholar] [CrossRef]
- Roberts, S.B.; Coward, W.A.; Schlingenseipen, K.H.; Nohria, V.; Lucas, A. Comparison of the doubly labeled water (2H218O) method with indirect calorimetry and a nutrient-balance study for simultaneous determination of energy expenditure, water intake, and metabolizable energy intake in preterm infants. Am. J. Clin. Nutr. 1986, 44, 315–322. [Google Scholar] [CrossRef]
- Denker, B.M.; Smith, B.L.; Kuhajda, F.P.; Agre, P. Identification, purification, and partial characterization of a novel Mr 28,000 integral membrane protein from erythrocytes and renal tubules. J. Biol. Chem. 1988, 263, 15634–15642. [Google Scholar] [CrossRef] [PubMed]
- Benga, G. The first discovered water channel protein, later called aquaporin 1: Molecular characteristics, functions and medical implications. Mol. Asp. Med. 2012, 33, 518–534. [Google Scholar] [CrossRef]
- Smith, B.L.; Agre, P. Erythrocyte Mr 28,000 transmembrane protein exists as a multisubunit oligomer similar to channel proteins. J. Biol. Chem. 1991, 266, 6407–6415. [Google Scholar] [CrossRef] [PubMed]
- Agbani, E.O.; Poole, A.W. Aquaporins in platelet function. Platelets 2021, 32, 895–901. [Google Scholar] [CrossRef]
- van Hoek, A.N.; Verkman, A.S. Functional reconstitution of the isolated erythrocyte water channel CHIP28. J. Biol. Chem. 1992, 267, 18267–18269. [Google Scholar] [CrossRef] [PubMed]
- Qu, J.; Xu, Y.; Zhao, S.; Xiong, L.; Jing, J.; Lui, S.; Huang, J.; Shi, H. The biological impact of deuterium and therapeutic potential of deuterium-depleted water. Front. Pharmacol. 2024, 15, 1431204. [Google Scholar] [CrossRef] [PubMed]
- Lee, P.J.; Park, H.J.; Cho, N.; Kim, H.P. Aquaporin 11-Dependent Inhibition of Proliferation by Deuterium Oxide in Activated Hepatic Stellate Cells. Molecules 2018, 23, 3209. [Google Scholar] [CrossRef]
- Skorobogatov, G.A. The effect of the thermodynamic isotope effect on the distribution of isotopic molecules. Russ. Chem. Bull. 1961, 10, 1644–1651. [Google Scholar] [CrossRef]
- Blake, M.I.; Crespi, H.L.; Katz, J.J. Studies with deuterated drugs. J. Pharm. Sci. 1975, 64, 367–391. [Google Scholar] [CrossRef]
- Buchachenko, A.L. Second generation of magnetic effects in chemical reactions. Russ. Chem. Rev. 1993, 62, 1073–1082. [Google Scholar] [CrossRef]
- Buchachenko, A.L. Magnetic isotope effect. Theor. Exp. Chem. 1995, 31, 118–126. [Google Scholar] [CrossRef]
- Svidlov, A.A.; Drobotenko, M.I.; Basov, A.A.; Elkina, A.A.; Gerasimenko, E.O.; Malyshko, V.V.; Baryshev, M.G.; Dzhimak, S.S. Influence of the 2H/1H Isotope Composition of the Water Environment on the Probability of Denaturation Bubble Formation in a DNA Molecule. Phys. Wave Phen. 2021, 29, 180–185. [Google Scholar] [CrossRef]
- Mant, M.; Nagel, A.; Prowse, T. Investigating Residential History Using Stable Hydrogen and Oxygen Isotopes of Human Hair and Drinking Water. J. Forensic Sci. 2016, 61, 884–891. [Google Scholar] [CrossRef] [PubMed]
- Fransen, M.; Lismont, C.; Walton, P. The Peroxisome-Mitochondria Connection: How and Why? Int. J. Mol. Sci. 2017, 18, 1126. [Google Scholar] [CrossRef]
- Yaglova, N.V.; Timokhina, E.P.; Obernikhin, S.S.; Yaglov, V.V. Emerging Role of Deuterium/Protium Disbalance in Cell Cycle and Apoptosis. Int. J. Mol. Sci. 2023, 24, 3107. [Google Scholar] [CrossRef]
- Pope, E.C.; Bird, D.K.; Rosing, M.T. Isotope composition and volume of Earth's early oceans. Proc. Natl. Acad. Sci. USA 2012, 109, 4371–4376. [Google Scholar] [CrossRef]
- Dzhimak, S.S.; Basov, A.A.; Baryshev, M.G. Content of deuterium in biological fluids and organs: Influence of deuterium depleted water on D/H gradient and the process of adaptation. Dokl. Biochem. Biophys. 2015, 465, 370–373. [Google Scholar] [CrossRef]
- Somlyai, G.; Kovács, B.Z.; Papp, A.; Somlyai, I. A Preliminary Study Indicating Improvement in the Median Survival Time of Glioblastoma Multiforme Patients by the Application of Deuterium Depletion in Combination with Conventional Therapy. Biomedicines 2023, 11, 1989. [Google Scholar] [CrossRef]
- Rieger, B.; Arroum, T.; Borowski, M.T.; Villalta, J.; Busch, K.B. Mitochondrial F1 FO ATP synthase determines the local proton motive force at cristae rims. EMBO Rep. 2021, 22, e52727. [Google Scholar] [CrossRef]
- Spikes, T.E.; Montgomery, M.G.; Walker, J.E. Structure of the dimeric ATP synthase from bovine mitochondria. Proc. Natl. Acad. Sci. USA 2020, 117, 23519–23526. [Google Scholar] [CrossRef]
- Boros, L.G.; Somlyai, I.; Kovács, B.Z.; Puskás, L.G.; Nagy, L.I.; Dux, L.; Farkas, G.; Somlyai, G. Deuterium Depletion Inhibits Cell Proliferation, RNA and Nuclear Membrane Turnover to Enhance Survival in Pancreatic Cancer. Cancer Control 2021, 28, 1073274821999655. [Google Scholar] [CrossRef] [PubMed]
- Yasuda, T.; Nakajima, N.I.; Yanaka, T.; Gotoh, T.; Tajima, K. Heavy water toxicity via isotope effects: Stronger than high-dose radiation, neutralized by light water. PLoS Water 2025, 4, e0000292. [Google Scholar] [CrossRef]
- Uzoigwe, C.E. Nuclear Quantum Effects Explain Chemiosmosis: The Power of the Proton. Biosystems 2025, 251, 105407. [Google Scholar] [CrossRef] [PubMed]
- Somlyai, G.; Jancsó, G.; Jákli, G.; Vass, K.; Barna, B.; Lakics, V.; Gaál, T. Naturally occurring deuterium is essential for the normal growth rate of cells. FEBS Lett. 1993, 317, 1–4. [Google Scholar] [CrossRef]
- Kosenkov, A.V.; Lobyshev, V.I.; Gulyaev, M.V.; Yusubalieva, G.M.; Baklaushev, V.P. The reversible effect of deuteration on tissue fluid and biopolymers in normal and tumor tissues of mice. Biophysics 2018, 63, 820–824. [Google Scholar] [CrossRef]
- Korchinsky, N.; Davis, A.M.; Boros, L.G. Nutritional deuterium depletion and health: A scoping review. Metabolomics 2024, 20, 117. [Google Scholar] [CrossRef]
- Zubarev, R.A. Role of stable isotopes in life--testing isotopic resonance hypothesis. Genom. Proteom. Bioinform. 2011, 9, 15–20. [Google Scholar] [CrossRef]
- Ferlay, J.; Colombet, M.; Soerjomataram, I.; Parkin, D.M.; Piñeros, M.; Znaor, A.; Bray, F. Cancer statistics for the year 2020: An overview. Int. J. Cancer 2021, 149, 778–789. [Google Scholar] [CrossRef]
- Morrison, W.B. Cancer Chemotherapy: An Annotated History. J. Vet. Intern. Med. 2010, 24, 1249–1262. [Google Scholar] [CrossRef]
- Somlyai, G.; Kovacs, A.; Guller, I.; Gyongyi, Z.; Krempels, K.; Somlyai, I.; Szabó, M.; Berkényi, T.; Molnar, M. Deuterium Has a Key Role in Tumour Development—New Target in Anticancer Drug Development. Eur. J. Cancer Suppl. 2010, 8, 208. [Google Scholar] [CrossRef]
- Yavari, K.; Kooshesh, L. Deuterium Depleted Water Inhibits the Proliferation of Human MCF7 Breast Cancer Cell Lines by Inducing Cell Cycle Arrest. Nutr. Cancer 2019, 71, 1019–1029. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Zhu, B.; Liu, C.; Fang, W.; Yang, H. Deuterium-depleted water selectively inhibits nasopharyngeal carcinoma cell proliferation in vitro. Nan Fang Yi Ke Da Xue Xue Bao 2012, 32, 1394–1399. (In Chinese) [Google Scholar] [PubMed]
- Soleyman-Jahi, S.; Zendehdel, K.; Akbarzadeh, K.; Haddadi, M.; Amanpour, S.; Muhammadnejad, S. In vitro assessment of antineoplastic effects of deuterium depleted water. Asian Pac. J. Cancer Prev. 2014, 15, 2179–2183. [Google Scholar] [CrossRef] [PubMed]
- Bayrak, B.B.; Kulak, G.Y.; Yanardag, R.; Yarat, A. Short term deuterium depletion in drinking water reduced tumor induced oxidative stress in mice liver. Pathol. Res. Pract. 2022, 240, 154186. [Google Scholar] [CrossRef]
- Zhao, Z.; Liu, W. Pancreatic Cancer: A Review of Risk Factors, Diagnosis, and Treatment. Technol. Cancer Res. Treat. 2020, 19, 1533033820962117. [Google Scholar] [CrossRef]
- Kyriakopoulos, A.M.; Seneff, S. Explaining deuterium-depleted water as a cancer therapy: A narrative review. Eur. J. Cancer Prev. 2025, publication ahead of print. [Google Scholar] [CrossRef]
- Bild, W.; Năstasă, V.; Haulică, I. In vivo and in vitro research on the biological effects of deuterium-depleted water: 1. Influence of deuterium-depleted water on cultured cell growth. Rom. J. Physiol. 2004, 41, 53–67. [Google Scholar] [PubMed]
- Yaglova, N.V.; Obernikhin, S.S.; Timokhina, E.P.; Nazimova, S.V.; Yaglov, V.V. Reactive Alterations in Thymic Lymphocytopoiesis to Short-Term Decrease in Deuterium Content in the Body. Bull. Exp. Biol. Med. 2022, 173, 494–496. [Google Scholar] [CrossRef]
- Lajos, R.; Braicu, C.; Jurj, A.; Chira, S.; Cojocneanu-Petric, R.; Pileczki, V.; Berindan-Neagoe, I. A miRNAs profile evolution of triple-negative breast cancer cells in the presence of a possible adjuvant therapy and senescence inducer. JBUON 2018, 23, 692–705. [Google Scholar] [PubMed]
- Zhang, X.; Gaetani, M.; Chernobrovkin, A.; Zubarev, R.A. Anticancer Effect of Deuterium Depleted Water—Redox Disbalance Leads to Oxidative Stress. Mol. Cell. Proteom. 2019, 18, 2373–2387. [Google Scholar] [CrossRef]
- Haseli, R.; Honarvar, M.; Yavari, K.; Ghavami, M. Synergistic anticancer effects of crocin combined with deuterium-depleted water on HT-29 cells. Anti-Cancer Drugs 2023, 34, 1162–1170. [Google Scholar] [CrossRef] [PubMed]
- Yaglova, N.V.; Obernikhin, S.S.; Yaglov, V.V.; Nazimova, S.V. Time-dependent effect of deuterium depletion on tumor growth and metastasis. RusOMJ 2020, 9, e0210. [Google Scholar] [CrossRef]
- Kozlov, V.A. Determining role of thymus in immune pathogenesis of autoimmune, oncological and infectious diseases. Med. Immunol. 2023, 25, 39–58. [Google Scholar] [CrossRef]
- Yaglova, N.V.; Obernikhin, S.S.; Timokhina, E.P.; Tsomartova, D.A.; Yaglov, V.V.; Nazimova, S.V.; Tsomartova, E.S.; Ivanova, M.Y.; Chereshneva, E.V.; Lomanovskaya, T.A. Effects of Deuterium Depletion on Age-Declining Thymopoiesis In Vivo. Biomedicines 2024, 12, 956. [Google Scholar] [CrossRef]
- GBD 2021 Anaemia Collaborators. Prevalence, years lived with disability, and trends in anaemia burden by severity and cause, 1990–2021: Findings from the Global Burden of Disease Study 2021. Lancet Haematol. 2023, 10, e713–e734. [Google Scholar] [CrossRef]
- Leung, A.K.C.; Lam, J.M.; Wong, A.H.C.; Hon, K.L.; Li, X. Iron Deficiency Anemia: An Updated Review. Curr. Pediatr. Rev. 2024, 20, 339–356. [Google Scholar] [CrossRef]
- Matijasic Stjepovic, N.; Kranjcec, I.; Buljan, D.; Živić, H.; Bukovec, P.; Slukan, M. The Burden of Childhood Iron Deficiency Anemia in a Developed Country: A Croatian Tertiary Care Center Experience. Cureus 2023, 15, e50428. [Google Scholar] [CrossRef]
- Timokhina, E.P.; Yaglova, N.V.; Obernikhin, S.S.; Yaglov, V.V.; Nazimova, S.V. Effect of Long-Term Reduction of Deuterium Content in the Body on Hemoglobin Production and Parameters of Erythropoiesis. Bull. Exp. Biol. Med. 2024, 176, 824–826. [Google Scholar] [CrossRef]
- Olariu, L.; Petcu, M.; Tulcan, C.; Chis-Buiga, I.; Pup, M.; Florin, M.; Brudiu, I. Deuterium Depleted Water—Antioxidant or Prooxidant; Lucrari Stiintifice Medicina Veterinara: Timisoara, Romania, 2007. [Google Scholar]
- Strekalova, T.; Evans, M.; Chernopiatko, A.; Couch, Y.; Costa-Nunes, J.; Cespuglio, R.; Chesson, L.; Vignisse, J.; Steinbusch, H.W.; Anthony, D.C.; et al. Deuterium content of water increases depression susceptibility: The potential role of a serotonin-related mechanism. Behav. Brain Res. 2015, 277, 237–244. [Google Scholar] [CrossRef]
- Mladin, C.; Ciobica, A.; Lefter, R.; Popescu, A.; Bild, W. Deuterium depletion induces anxiolytic-like effects in rats. Arch. Biol. Sci. 2014, 66, 947–953. [Google Scholar] [CrossRef]
- Mladin, C.; Ciobica, A.; Lefter, R.; Popescu, A.; Bild, W. Deuterium-depleted water has stimulating effects on long-term memory in rats. Neurosci. Lett. 2014, 583, 154–158. [Google Scholar] [CrossRef]
- Kravtsov, A.; Kozin, S.; Basov, A.; Butina, E.; Baryshev, M.; Malyshko, V.; Moiseev, A.; Elkina, A.; Dzhimak, S. Reduction of deuterium level supports resistance of neurons to glucose deprivation and hypoxia: Study in cultures of neurons and on animals. Molecules 2022, 27, 243. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.; Lin, X.; Huang, X.; Shen, Y.; Shan, P.F. Global, regional and national burden of endocrine, metabolic, blood and immune disorders 1990-2019: A systematic analysis of the Global Burden of Disease study 2019. Front. Endocrinol. 2023, 14, 1101627. [Google Scholar] [CrossRef] [PubMed]
- Yaglova, N.V.; Obernikhin, S.S.; Timokhina, E.P.; Yaglov, V.V. Response of Pituitary-Thyroid Axis to a Short-Term Shift in Deuterium Content in the Body. Bull. Exp. Biol. Med. 2021, 171, 262–264. [Google Scholar] [CrossRef] [PubMed]
- Yaglova, N.V.; Obernikhin, S.S.; Timokhina, E.P.; Yaglov, V.V.; Tsomartova, D.A.; Nazimova, S.V.; Tsomartova, E.S.; Ivanova, M.Y.; Chereshneva, E.V.; Lomanovskaya, T.A. Bilateral shifts in deuterium supply similarly change physiology of the pituitary–thyroid Axis, but differentially influence Na+/I− symporter production. Int. J. Mol. Sci. 2023, 24, 6803. [Google Scholar] [CrossRef]
- Yavari, K.; Gholamali, M.; Yazdian, F. Decreasing of Deuterium Concentration of Water: A Possible Tool in Diabetes Therapy. Electron. J. Biol. 2017, 13, 314–319. [Google Scholar]
- Somlyai, G.; Somlyai, I.; Fórizs, I.; Czuppon, G.Y.; Papp, A.; Molnár, M. Effect of systemic subnormal deuterium level on metabolic syndrome related and other blood parameters in humans: A preliminary study. Molecules 2020, 25, 1376. [Google Scholar] [CrossRef]
- Halenova, T.; Zlatskiy, I.; Syroeshkin, A.; Maximova, T.; Pleteneva, T. Deuterium-Depleted Water as Adjuvant Therapeutic Agent for Treatment of Diet-Induced Obesity in Rats. Molecules 2019, 25, 23. [Google Scholar] [CrossRef]
- Basov, A.; Fedulova, L.; Baryshev, M.; Dzhimak, S. Deuterium-Depleted Water Influence on the Isotope 2H/1H Regulation in Body and Individual Adaptation. Nutrients 2019, 11, 1903. [Google Scholar] [CrossRef]
- Yaglova, N.V.; Obernikhin, S.S.; Timokhina, E.P.; Yaglov, V.V.; Nazimova, S.V. Changes in Secretion of the Thyroid and Pituitary Glands with a Gradual Decrease in Deuterium Body Content. Bull. Exp. Biol. Med. 2023, 174, 797–800. [Google Scholar] [CrossRef]
- Dzhimak, S.S.; Basov, A.A.; Fedulova, L.V.; Didikin, A.S.; Bikov, I.M.; Arcybasheva, O.M.; Naumov, G.N.; Baryshev, M.G. Correction of Metabolic Processes in Rats during Chronic Endotoxicosis using Isotope (D/H) Exchange Reactions. Biol. Bull. 2015, 5, 440–448. [Google Scholar] [CrossRef]
- Bild, W.; Stefanescu, I.; Haulica, I.; Lupuşoru, C.; Titescu, G.; Iliescu, R.; Nastasa, V. Research concerning the radioprotective and immunostimulating effects of deuterium-depleted water. Rom. J. Physiol. 1999, 36, 205–218. [Google Scholar] [PubMed]
- Dzhimak, S.S.; Drobotenko, M.I.; Basov, A.A.; Svidlov, A.A.; Fedulova, L.V.; Lyasota, O.M.; Baryshev, M.G. Mathematical Modeling of Open State in DNA Molecule Depending on the Deuterium Concentration in the Surrounding Liquid Media at Different Values of Hydrogen Bond Disruption Energy. Dokl. Biochem. Biophys. 2018, 483, 359–362. [Google Scholar] [CrossRef] [PubMed]
- Basov, A.; Drobotenko, M.; Svidlov, A.; Gerasimenko, E.; Malyshko, V.; Elkina, A.; Baryshev, M.; Dzhimak, S. Inequality in the frequency of the open states occurrence depends on single 2H/1H replacement in DNA. Molecules 2020, 25, 3753. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yaglova, N.V.; Obernikhin, S.S.; Timokhina, E.P.; Tsomartova, E.S.; Yaglov, V.V.; Nazimova, S.V.; Ivanova, M.Y.; Chereshneva, E.V.; Lomanovskaya, T.A.; Tsomartova, D.A. Altering the Hydrogen Isotopic Composition of the Essential Nutrient Water as a Promising Tool for Therapy: Perspectives and Risks. Int. J. Mol. Sci. 2025, 26, 4448. https://doi.org/10.3390/ijms26094448
Yaglova NV, Obernikhin SS, Timokhina EP, Tsomartova ES, Yaglov VV, Nazimova SV, Ivanova MY, Chereshneva EV, Lomanovskaya TA, Tsomartova DA. Altering the Hydrogen Isotopic Composition of the Essential Nutrient Water as a Promising Tool for Therapy: Perspectives and Risks. International Journal of Molecular Sciences. 2025; 26(9):4448. https://doi.org/10.3390/ijms26094448
Chicago/Turabian StyleYaglova, Nataliya V., Sergey S. Obernikhin, Ekaterina P. Timokhina, Elina S. Tsomartova, Valentin V. Yaglov, Svetlana V. Nazimova, Marina Y. Ivanova, Elizaveta V. Chereshneva, Tatiana A. Lomanovskaya, and Dibakhan A. Tsomartova. 2025. "Altering the Hydrogen Isotopic Composition of the Essential Nutrient Water as a Promising Tool for Therapy: Perspectives and Risks" International Journal of Molecular Sciences 26, no. 9: 4448. https://doi.org/10.3390/ijms26094448
APA StyleYaglova, N. V., Obernikhin, S. S., Timokhina, E. P., Tsomartova, E. S., Yaglov, V. V., Nazimova, S. V., Ivanova, M. Y., Chereshneva, E. V., Lomanovskaya, T. A., & Tsomartova, D. A. (2025). Altering the Hydrogen Isotopic Composition of the Essential Nutrient Water as a Promising Tool for Therapy: Perspectives and Risks. International Journal of Molecular Sciences, 26(9), 4448. https://doi.org/10.3390/ijms26094448