Contrasting Effects of Platelet GPVI Deletion Versus Syk Inhibition on Mouse Jugular Vein Puncture Wound Structure
Abstract
1. Introduction
2. Results
3. Discussion
4. Materials and Methods
4.1. Mice and Reagents
4.2. Bi 1002494 Spleen Tyrosine Kinase (Syk) Inhibitor Treatment
4.3. Occlusive Clotting Tests for Gavage Effects and In Vivo Bi 1002494 Treatment Efficacy
4.4. Thrombus Preparation and Electron Microscopy [15,28,29]
4.5. Datasets
4.6. Manually Annotated Platelet Activation State Heat Mapping and Nearest Neighbor Analysis [14]
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Nieswandt, B.; Watson, S.P. Platelet-collagen interaction: Is GPVI the central receptor. Blood 2003, 102, 449–461. [Google Scholar] [PubMed]
- Mangin, P.H.; Gardiner, E.E.; Ariens, R.A.S.; Jandrot-Perus, M. Glycoprotein VI interplay with fibrin(ogen) in thrombosis. J. Throm. Haemost. 2023, 21, 1703–1713. [Google Scholar] [CrossRef] [PubMed]
- Yanaga, F.; Poole, A.; Asselin, J.; Blake, R.; Schieven, G.L.; Clark, E.A.; Law, C.L.; Watson, S.P. Syk interacts with tyrosine-phosphorylated proteins in human platelets activated by collagen and cross-linking of the Fc gamma-IIA receptor. Biochem J. 1995, 311, 471–478. [Google Scholar]
- Gibbins, J.M.; Okuma, M.; Farndale, R.; Barnes, M.; Watson, S.P. Glycoprotein VI is the collagen receptor in platelets which underlies tyrosine phosphorylation of the Fc receptor gamma-chain. FEBS Lett. 1997, 413, 255–259. [Google Scholar]
- Tsuji, M.; Ezumi, Y.; Arai, M.; Takayama, H.A. A novel association of Fc receptor gamma-chain with glycoprotein VI and their co-expression as a collagen receptor in human platelets. J. Biol. Chem. 1997, 272, 23528–23531. [Google Scholar]
- Watson, S.P.; Herbert, M.J.; Popllittt, A.T. GPVI and CLEC2 in hemostasis and vascular integrity. J. Throm. Hamost. 2010, 8, 1457–1467. [Google Scholar] [CrossRef] [PubMed]
- Reyes, J.; Watson, S.P.; Nieswandt, B. Functional significance of the platelet immune receptors GPVI and CLEC-2. J. Clin. Investig. 2019, 129, 12–23. [Google Scholar] [CrossRef]
- Sugiyama, T.; Okuma, M.; Ushikubi, F.; Sensaki, S.; Kanaji, K.; Uchino, H. A novel platelet aggregating factor found in a patient with defective collagen-induced platelet aggregation and autoimmune thrombocytopenia. Blood 1987, 69, 1712–1720. [Google Scholar] [CrossRef]
- Clemetson, J.M.; Polgar, J.; Magnenat, E.; Wells, T.N.; Clemetson, K.J. The platelet collagen receptor glycoprotein VI is a member of the immunoglobulin superfamily closely related to FcalphaR and the natural killer receptors. J. Biol. Chem. 1999, 274, 29019–29024. [Google Scholar]
- Moroi, M.; Jung, S.M.; Okuma, M.; Shinmyozu, M.K. A patient with platelets deficient in glycoprotein VI that lack both collagen-induced aggregation and adhesion. J. Clin. Investig. 1989, 84, 1440–1445. [Google Scholar] [CrossRef]
- Kehrel, B.; Wierwille, S.; Clemetson, K.J.; Anders, O.; Steiner, M.; Knight, C.G.; Farndale, R.W.; Okuma, M.; Barnes, M.J. Glycoprotein VI is a major collagen receptor for platelet activation: It recognizes the platelet-activating quaternary structure of collagen, whereas CD36, glycoprotein IIb/IIIa, and von Willebrand factor do not. Blood 1998, 91, 491–499. [Google Scholar] [CrossRef] [PubMed]
- Kato, K.; Kanaji, T.; Russell, S.; Kunicki, T.J.; Furihata, K.; Kanaji, S.; Marchese, P.; Reininger, A.; Ruggeri, Z.M.; Ware, J. The contribution of glycoprotein VI to stable platelet adhesion and thrombus formation illustrated by targeted gene deletion. Blood 2003, 102, 1701–1707. [Google Scholar] [CrossRef] [PubMed]
- van Eeuwijk, J.M.M.; Stegner, D.; Lamb, D.J.; Kraft, P.; Beck, S.; Thielmann, I.; Kiefer, F.; Walzog, B.; Stoll, G.; Nieswandt, B. The novel oral Syk inhibitor, Bl1002494, protects mice from arterial thrombosis and thromboinflammatory brain infarction. Arterioscler. Thromb. Vasc. Biol. 2016, 36, 1247–1253. [Google Scholar]
- Rhee, S.W.; Pokrovskaya, I.D.; Ball, K.K.; Webb, M.W.; Kamykowski, J.A.; Zhao, O.; Driehaus, E.R.; Aronova, M.A.; Whiteheart, S.W.; Leapman, R.D.; et al. Single-platelet mapping of jugular, puncture-wound thrombi reveal the spatial evolution of platelet activation. bioRxiv 2024. [Google Scholar] [CrossRef]
- Rhee, S.W.; Pokrovskaya, I.D.; Ball, K.K.; Ling, K.; Vedanaparti, Y.; Cohen, J.; Cruz, D.R.; Zhao, O.S.; Aronova, M.A.; Zhang, G.; et al. Venous puncture wound hemostasis results in a vaulted thrombus structured by locally nucleated platelet aggregates. Commun. Biol. 2021, 4, 1090. [Google Scholar] [CrossRef]
- Wagner, D.D. Cell biology of von Willebrand factor. Annu. Rev. Cell Biol. 1990, 6, 217–246. [Google Scholar]
- Cruz, M.A.; Yuan, H.; Lee, J.R.; Ware, J.; Hardin, R.I. Interaction of the von Willebrand factor (vWF) with collagen. J. Biol. Chem. 1995, 270, 10822–10827. [Google Scholar]
- Ruggeri, Z.M. Mechanisms initiating platelet thrombus formation. Throm. Haemost. 1997, 78, 611616. [Google Scholar]
- Bergmeier, W.; Chauhan, A.K.; Wagner, D.D. Glycoprotein Ibalpha and von Willebrand factor in primary platelet adhesion and thrombus formation: Lessons from mutant mice. Throm. Haemost. 2008, 99, 264–270. [Google Scholar] [CrossRef]
- Reininger, A.J. VWF attributes—Impact on thrombus formation. Haemophilia 2008, 122, S9–S13. [Google Scholar] [CrossRef]
- Springer, T.A. von Willebrand factor, Jedi knight of the bloodstream. Blood 2014, 124, 1412–1425. [Google Scholar] [CrossRef]
- Neeves, K.B. A tail of two ITAMs: GPVI/FcRγ and FcgRIa’s role in platelet activation and thrombus stability. Res. Pract. Throm. Haemost. 2021, 5, e12564. [Google Scholar] [CrossRef]
- Harbi, M.H.; Smith, C.W.; Nicolson, P.L.R.; Watson, S.P.; Thomas, M.R. Novel antiplatelet strategies targeting GPVI, CLEC-2 and tyrosine kinases. Platelets 2022, 32, 29–41. [Google Scholar] [CrossRef] [PubMed]
- Navarro, S.; Stark, A.; Haemskerk, J.W.M.; Kuijpers, M.J.E.; Stegner, D.; Neiswandt, B. Targeting of a conserved epitope in mouse and human GPVI differently affects receptor function. Int. J. Mol. Sci. 2022, 23, 8610. [Google Scholar] [CrossRef]
- Fuentes, E. Modulation of glycoprotein VI and its downstream signaling pathways as an antiplalelet target. Int. J. Mol. Sci. 2022, 23, 9882. [Google Scholar] [CrossRef] [PubMed]
- Barnes, G.D. New targets for antithrombotic medications: Seeking to decouple thrombosis from hemostasis. J. Thromb. Haemost. 2025, 23, 1146–1159. [Google Scholar] [CrossRef] [PubMed]
- Slater, A.; Khattak, S.; Thomas, M.R. GPVI inhibition: Advancing antithrombotic therapy in cardiovascular disease. Eur. Heart J. Cardiovasc. Pharmacother. 2024, 10, 465–473. [Google Scholar] [CrossRef]
- Pokrovskaya, I.D.; Rhee, S.W.; Ball, K.K.; Kamykowski, J.A.; Zhao, O.S.; Cruz, D.R.; Cohen, J.; Aronova, M.A.; Leapman, R.D.; Storrie, B. Tethered platelet capture provides a mechanism for restricting circulating platelet activation to the wound site. Res. Pract. Thromb. Haemost. 2023, 7, 100058. [Google Scholar] [CrossRef]
- Ball, K.; Pokrovskaya, I.; Storrie, B. Puncture wound hemostasis and preparation of samples for montaged wide-area microscopy analysis. J. Vis. Exp. 2024, 207, e66479. [Google Scholar] [CrossRef]
- Faruque, O.; Pokrovskaya, I.D.; Ball, K.K.; Webb, M.W.; Rhee, S.W.; Storrie, B. The Syk inhibitor Bi 1002494 selectively impairs thrombus infill in a murine femoral artery occlusion model without affecting puncture wound thrombus structure. Blood VTH, 2025; in revision. [Google Scholar]
1 Min GPVI KO: 14,863 Platelets Scored | |||||
State | Blue | Cyan | Green | Yellow | Red |
Pop % | 0% | 0% | 75% | 22% | 3% |
Blue with | 0% | 0% | 100% | 0% | 0% |
Cyan with | 0% | 5% | 83% | 11% | 1% |
Green with | 0% | 0% | 83% | 17% | 1% |
Yellow with | 0% | 0% | 51% | 45% | 4% |
Red with | 0% | 0% | 17% | 40% | 43% |
5 min GPVI KO: 14,349 platelets scored | |||||
State | Blue | Cyan | Green | Yellow | Red |
Pop % | 1% | 6% | 64% | 26% | 4% |
Blue with | 0% | 17% | 57% | 20% | 7% |
Cyan with | 0% | 11% | 81% | 8% | 0% |
Green with | 0% | 4% | 83% | 12% | 0% |
Yellow with | 0% | 1% | 20% | 79% | 1% |
Red with | 1% | 0% | 7% | 34% | 58% |
20 min GPVI Knockout: 21,884 platelets scored | |||||
State | Blue | Cyan | Green | Yellow | Red |
Pop % | 0% | 3% | 79% | 15% | 3% |
Blue with | 33% | 25% | 38% | 4% | 0% |
Cyan with | 1% | 32% | 47% | 7% | 12% |
Green with | 0% | 1% | 87% | 12% | 1% |
Yellow with | 0% | 0% | 51% | 48% | 1% |
Red with | 0% | 11% | 63% | 13% | 14% |
Low to high activation state -----> |
Example 1. 05 Min Bi 1002494: 16,300 Platelets Scored | |||||
State | Blue | Cyan | Green | Yellow | Red |
Pop % | 0% | 1% | 67% | 27% | 6% |
Blue with | 0% | 0% | 0% | 0% | 0% |
Cyan with | 0% | 14% | 65% | 13% | 8% |
Green with | 0% | 1% | 77% | 21% | 2% |
Yellow with | 0% | 0% | 40% | 57% | 4% |
Red with | 0% | 1% | 29% | 28% | 42% |
Example 2. 05 min Bi 1002494: 14,127 platelets scored | |||||
State | Blue | Cyan | Green | Yellow | Red |
Pop % | 0% | 3% | 70% | 25% | 2% |
Blue with | 10% | 15% | 65% | 5% | 5% |
Cyan with | 0% | 14% | 79% | 5% | 1% |
Green with | 0% | 2% | 85% | 12% | 1% |
Yellow with | 0% | 0% | 29% | 69% | 1% |
Red with | 0% | 2% | 36% | 28% | 34% |
Example 3. 05 min Bi 1002494: 11,453 platelets scored, perpendicular to flow | |||||
State | Blue | Cyan | Green | Yellow | Red |
Pop % | 0% | 6% | 61% | 30% | 3% |
Blue with | 34% | 20% | 20% | 3% | 23% |
Cyan with | 0% | 9% | 76% | 14% | 1% |
Green with | 0% | 6% | 74% | 19% | 0% |
Yellow with | 0% | 2% | 34% | 63% | 1% |
Red with | 1% | 4% | 18% | 35% | 41% |
Low to high activation state -----> |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pokrovskaya, I.D.; Ball, K.K.; Webb, M.W.; Joshi, S.; Rhee, S.W.; Ware, J.; Storrie, B. Contrasting Effects of Platelet GPVI Deletion Versus Syk Inhibition on Mouse Jugular Vein Puncture Wound Structure. Int. J. Mol. Sci. 2025, 26, 4294. https://doi.org/10.3390/ijms26094294
Pokrovskaya ID, Ball KK, Webb MW, Joshi S, Rhee SW, Ware J, Storrie B. Contrasting Effects of Platelet GPVI Deletion Versus Syk Inhibition on Mouse Jugular Vein Puncture Wound Structure. International Journal of Molecular Sciences. 2025; 26(9):4294. https://doi.org/10.3390/ijms26094294
Chicago/Turabian StylePokrovskaya, Irina D., Kelly K. Ball, Michael W. Webb, Smita Joshi, Sung W. Rhee, Jerry Ware, and Brian Storrie. 2025. "Contrasting Effects of Platelet GPVI Deletion Versus Syk Inhibition on Mouse Jugular Vein Puncture Wound Structure" International Journal of Molecular Sciences 26, no. 9: 4294. https://doi.org/10.3390/ijms26094294
APA StylePokrovskaya, I. D., Ball, K. K., Webb, M. W., Joshi, S., Rhee, S. W., Ware, J., & Storrie, B. (2025). Contrasting Effects of Platelet GPVI Deletion Versus Syk Inhibition on Mouse Jugular Vein Puncture Wound Structure. International Journal of Molecular Sciences, 26(9), 4294. https://doi.org/10.3390/ijms26094294