The Significance of Circulating Microbial Signatures in the Prognosis and Immune Microenvironment of Patients with Cervical Cancer
Abstract
1. Introduction
2. Results
2.1. Circulating Microbiome Features Associated with Cervical Cancer Prognosis
2.2. MAPS as an Independent Prognostic Indicator for Patients with Cervical Cancer
2.3. The MAPS Is Closely Associated with the Clinical Features of Patients with Cervical Cancer
2.4. The Integrated Analysis Reveals Potential Immune–Microbial Interactions
2.5. The Impact of MAPS Expression on Immune Checkpoints and Drug Sensitivity
3. Discussion
4. Materials and Methods
4.1. Data Collection
4.2. The Construction of the Circulating Microbial Abundance Prognostic Score (MAPS) Model
4.3. Prognostic and Correlation Analyes of the Immune-Related DEGs
4.4. The Immune Infiltration Analysis
4.5. The Drug Sensitivity Analysis
4.6. The Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Siegel, R.L.; Miller, K.D.; Fuchs, H.E.; Jemal, A.J.C. Cancer statistics, 2022. Cancer J. Clin. 2022, 72, 7–33. [Google Scholar] [CrossRef] [PubMed]
- Gargiulo Isacco, C.; Balzanelli, M.G.; Garzone, S.; Lorusso, M.; Inchingolo, F.; Nguyen, K.C.; Santacroce, L.; Mosca, A.; Del Prete, R.J.M. Alterations of vaginal microbiota and chlamydia trachomatis as crucial co-causative factors in cervical cancer genesis procured by HPV. Microorganisms 2023, 11, 662. [Google Scholar] [CrossRef] [PubMed]
- Graham, S.V. The human papillomavirus replication cycle, and its links to cancer progression: A comprehensive review. Clin. Sci. 2017, 131, 2201–2221. [Google Scholar] [CrossRef]
- Schiffman, M.; Doorbar, J.; Wentzensen, N.; De Sanjosé, S.; Fakhry, C.; Monk, B.J.; Stanley, M.A.; Franceschi, S.J.N. Carcinogenic human papillomavirus infection. Nat. Rev. Dis. Primers 2016, 2, 16086. [Google Scholar] [CrossRef]
- Silva, J.; Cerqueira, F.; Medeiros, R. Chlamydia trachomatis infection: Implications for HPV status and cervical cancer. Arch. Gynecol. Obstet. 2014, 289, 715–723. [Google Scholar] [CrossRef] [PubMed]
- Nejman, D.; Livyatan, I.; Fuks, G.; Gavert, N.; Zwang, Y.; Geller, L.T.; Rotter-Maskowitz, A.; Weiser, R.; Mallel, G.; Gigi, E.; et al. The human tumor microbiome is composed of tumor type–specific intracellular bacteria. Science 2020, 368, 973–980. [Google Scholar] [CrossRef]
- You, L.; Zhou, J.; Xin, Z.; Hauck, J.S.; Na, F.; Tang, J.; Zhou, X.; Lei, Z.; Ying, B. Novel directions of precision oncology: Circulating microbial DNA emerging in cancer-microbiome areas. Precis. Clin. Med. 2022, 5, pbac005. [Google Scholar] [CrossRef]
- Jain, T.; Sharma, P.; Are, A.C.; Vickers, S.M.; Dudeja, V. New insights into the cancer–microbiome–immune axis: Decrypting a decade of discoveries. Front. Immunol. 2021, 12, 622064. [Google Scholar] [CrossRef]
- Qian, X.-B.; Chen, T.; Xu, Y.-P.; Chen, L.; Sun, F.-X.; Lu, M.-P.; Liu, Y.-X. A guide to human microbiome research: Study design, sample collection, and bioinformatics analysis. Chin. Med J. 2020, 133, 1844–1855. [Google Scholar] [CrossRef]
- Païssé, S.; Valle, C.; Servant, F.; Courtney, M.; Burcelin, R.; Amar, J.; Lelouvier, B. Comprehensive description of blood microbiome from healthy donors assessed by 16 S targeted metagenomic sequencing. Transfusion 2016, 56, 1138–1147. [Google Scholar] [CrossRef]
- Cullin, N.; Antunes, C.A.; Straussman, R.; Stein-Thoeringer, C.K.; Elinav, E. Microbiome and cancer. Cancer Cell. 2021, 39, 1317–1341. [Google Scholar] [CrossRef]
- Cho, E.J.; Leem, S.; Kim, S.A.; Yang, J.; Lee, Y.B.; Kim, S.S.; Cheong, J.Y.; Cho, S.W.; Kim, J.W.; Kim, S.-M. Circulating microbiota-based metagenomic signature for detection of hepatocellular carcinoma. Sci. Rep. 2019, 9, 7536. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.-F.; Chen, Y.-J.; Fan, T.-C.; Chang, N.-C.; Chen, Y.-J.; Midha, M.K.; Chen, T.-H.; Yang, H.-H.; Wang, Y.-T.; Yu, A.L. Analysis of microbial sequences in plasma cell-free DNA for early-onset breast cancer patients and healthy females. BMC Med. Genom. 2018, 11, 33–41. [Google Scholar] [CrossRef]
- Kim, J.R.; Han, K.; Han, Y.; Kang, N.; Shin, T.-S.; Park, H.J.; Kim, H.; Kwon, W.; Lee, S.; Kim, Y.-K. Microbiome markers of pancreatic cancer based on bacteria-derived extracellular vesicles acquired from blood samples: A retrospective propensity score matching analysis. Biology 2021, 10, 219. [Google Scholar] [CrossRef] [PubMed]
- Xiao, Q.; Lu, W.; Kong, X.; Shao, Y.W.; Hu, Y.; Wang, A.; Bao, H.; Cao, R.; Liu, K.; Wang, X. Alterations of circulating bacterial DNA in colorectal cancer and adenoma: A proof-of-concept study. Cancer Lett. 2021, 499, 201–208. [Google Scholar] [CrossRef]
- Foresto-Neto, O.; Ghirotto, B.; Câmara, N.O.S. Renal sensing of bacterial metabolites in the gut-kidney axis. Kidney360 2021, 2, 1501–1509. [Google Scholar] [CrossRef] [PubMed]
- Pushalkar, S.; Hundeyin, M.; Daley, D.; Zambirinis, C.P.; Kurz, E.; Mishra, A.; Mohan, N.; Aykut, B.; Usyk, M.; Torres, L.E.; et al. The pancreatic cancer microbiome promotes oncogenesis by induction of innate and adaptive immune suppression. Cancer Discov. 2018, 8, 403–416. [Google Scholar] [CrossRef]
- Zitvogel, L.; Ma, Y.; Raoult, D.; Kroemer, G.; Gajewski, T.F. The microbiome in cancer immunotherapy: Diagnostic tools and therapeutic strategies. Science 2018, 359, 1366–1370. [Google Scholar] [CrossRef]
- Pardoll, D.M. The blockade of immune checkpoints in cancer immunotherapy. Nat. Rev. Cancer 2012, 12, 252–264. [Google Scholar] [CrossRef]
- Hristova, V.A.; Chan, D.W. Cancer biomarker discovery and translation: Proteomics and beyond. Expert Rev. Proteom. 2019, 16, 93–103. [Google Scholar] [CrossRef]
- Sarhadi, V.K.; Armengol, G. Molecular biomarkers in cancer. Biomolecules 2022, 12, 1021. [Google Scholar] [CrossRef] [PubMed]
- Bolyen, E.; Rideout, J.R.; Dillon, M.R.; Bokulich, N.A.; Abnet, C.C.; Al-Ghalith, G.A.; Alexander, H.; Alm, E.J.; Arumugam, M.; Asnicar, F.; et al. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat. Biotechnol. 2019, 37, 852–857. [Google Scholar] [CrossRef] [PubMed]
- Callahan, B.J.; McMurdie, P.J.; Rosen, M.J.; Han, A.W.; Johnson, A.J.A.; Holmes, S.P. DADA2: High-resolution sample inference from Illumina amplicon data. Nat. Methods 2016, 13, 581–583. [Google Scholar] [CrossRef]
- Sender, R.; Fuchs, S.; Milo, R. Revised estimates for the number of human and bacteria cells in the body. PLOS Biol. 2016, 14, e1002533. [Google Scholar] [CrossRef]
- Riquelme, E.; Zhang, Y.; Zhang, L.; Montiel, M.; Zoltan, M.; Dong, W.; Quesada, P.; Sahin, I.; Chandra, V.; San Lucas, A.; et al. Tumor microbiome diversity and composition influence pancreatic cancer outcomes. Cell 2019, 178, 795–806.e12. [Google Scholar] [CrossRef] [PubMed]
- Dohlman, A.B.; Klug, J.; Mesko, M.; Gao, I.H.; Lipkin, S.M.; Shen, X.; Iliev, I.D. A pan-cancer mycobiome analysis reveals fungal involvement in gastrointestinal and lung tumors. Cell 2022, 185, 3807–3822.e12. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, D.; Wang, M.; Jiang, H.; Feng, C.; Li, Y.X. EXPRESSION OF CONCERN: Intratumoral microbiota is associated with prognosis in patients with adrenocortical carcinoma. iMeta 2023, 2, e102. [Google Scholar] [CrossRef]
- Salvucci, M.; Crawford, N.; Stott, K.; Bullman, S.; Longley, D.B.; Prehn, J.H. Patients with mesenchymal tumours and high Fusobacteriales prevalence have worse prognosis in colorectal cancer (CRC). Gut 2022, 71, 1600–1612. [Google Scholar]
- Mao, A.; Barck, H.; Young, J.; Paley, A.; Mao, J.-H.; Chang, H. Identification of a novel cancer microbiome signature for predicting prognosis of human breast cancer patients. Clin. Transl. Oncol. 2022, 24, 597–604. [Google Scholar] [CrossRef]
- Zhong, G.; Wei, W.; Liao, W.; Wang, R.; Peng, Y.; Zhou, Y.; Huang, X.; Xian, S.; Peng, S.; Zhang, Z.; et al. Tumor microbiome in nasopharyngeal carcinoma and its association with prognosis. Front. Oncol. 2022, 12, 859721. [Google Scholar] [CrossRef]
- Hanahan, D. Hallmarks of cancer: New dimensions. Cancer Discov. 2022, 12, 31–46. [Google Scholar] [CrossRef] [PubMed]
- Antezack, A.; Boxberger, M.; La Scola, B.; Monnet-Corti, V. Isolation and description of catonella massiliensis sp. nov., a novel catonella species, isolated from a stable periodontitis subject. Pathogens 2021, 10, 367. [Google Scholar] [CrossRef] [PubMed]
- Fåk, F.; Tremaroli, V.; Bergström, G.; Bäckhed, F. Oral microbiota in patients with atherosclerosis. Atherosclerosis 2015, 243, 573–578. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.; Tian, X. Vaccine development for human mastadenovirus. J. Thorac. Dis. 2018, 10 (Suppl. S19), S2280. [Google Scholar] [CrossRef]
- Hage, E.; Gerd Liebert, U.; Bergs, S.; Ganzenmueller, T.; Heim, A. Human mastadenovirus type 70: A novel, multiple recombinant species D mastadenovirus isolated from diarrhoeal faeces of a haematopoietic stem cell transplantation recipient. J. Gen. Virol. 2015, 96, 2734–2742. [Google Scholar] [CrossRef]
- Ashonibare, V.J.; Akorede, B.A.; Ashonibare, P.J.; Akhigbe, T.M.; Akhigbe, R.E. Gut microbiota-gonadal axis: The impact of gut microbiota on reproductive functions. Front. Immunol. 2024, 15, 1346035. [Google Scholar] [CrossRef]
- Kobayashi, H. Gut and reproductive tract microbiota: Insights into the pathogenesis of endometriosis. Biomed. Rep. 2023, 19, 43. [Google Scholar] [CrossRef]
- Ma, J.; Li, J.; Jin, C.; Yang, J.; Zheng, C.; Chen, K.; Xie, Y.; Yang, Y.; Bo, Z.; Wang, J.; et al. Association of gut microbiome and primary liver cancer: A two-sample Mendelian randomization and case–control study. Liver Int. 2023, 43, 221–233. [Google Scholar] [CrossRef]
- Roelands, J.; Kuppen, P.J.; Ahmed, E.I.; Mall, R.; Masoodi, T.; Singh, P.; Monaco, G.; Raynaud, C.; de Miranda, N.F.; Ferraro, L.; et al. An integrated tumor, immune and microbiome atlas of colon cancer. Nat. Med. 2023, 29, 1273–1286. [Google Scholar] [CrossRef]
- Sheng, D.; Yue, K.; Li, H.; Zhao, L.; Zhao, G.; Jin, C.; Zhang, L. The interaction between intratumoral microbiome and immunity is related to the prognosis of ovarian cancer. Microbiol. Spectr. 2023, 11, e03549-22. [Google Scholar] [CrossRef]
- Yang, J.; Liu, Z.; Zeng, B.; Hu, G.; Gan, R. Epstein–Barr virus-associated gastric cancer: A distinct subtype. Cancer Lett. 2020, 495, 191–199. [Google Scholar] [CrossRef] [PubMed]
- Piña-Sánchez, P. Human papillomavirus: Challenges and opportunities for the control of cervical cancer. Arch. Med. Res. 2022, 53, 753–769. [Google Scholar] [CrossRef] [PubMed]
- Tsao, S.W.; Tsang, C.M.; Lo, K.W. Epstein–Barr virus infection and nasopharyngeal carcinoma. Philos. Trans. R. Soc. B Biol. Sci. 2017, 372, 20160270. [Google Scholar] [CrossRef]
- Swanton, C.; Bernard, E.; Abbosh, C.; André, F.; Auwerx, J.; Balmain, A.; Bar-Sagi, D.; Bernards, R.; Bullman, S.; DeGregori, J.; et al. Embracing cancer complexity: Hallmarks of systemic disease. Cell 2024, 187, 1589–1616. [Google Scholar] [CrossRef] [PubMed]
- Narunsky-Haziza, L.; Sepich-Poore, G.D.; Livyatan, I.; Asraf, O.; Martino, C.; Nejman, D.; Gavert, N.; Stajich, J.E.; Amit, G.; González, A.; et al. Pan-cancer analyses reveal cancer-type-specific fungal ecologies and bacteriome interactions. Cell 2022, 185, 3789–3806.e17. [Google Scholar] [CrossRef]
- Ridzuan, F.; Zainon, W.M.N.W. A review on data cleansing methods for big data. Procedia Comput. Sci. 2019, 161, 731–738. [Google Scholar] [CrossRef]
Microorganisms | p-Value | Coefficient | HR (95%CI) |
---|---|---|---|
Mastadenovirus | <0.001 | 1.073946 | 2.93 (1.6420–5.2174) |
Lambdapapillomavirus | 0.0011 | 1.002244 | 2.72 (1.4933–4.9704) |
Stanieria | 0.0069 | 0.820008 | 2.27 (1.2531–4.1141) |
Staphylothermus | 0.003 | −1.05276 | 0.35 (0.1742–0.6990) |
Oceanimonas | 0.0055 | −0.45548 | 0.63 (0.4596–0.8749) |
Anaplasma | 0.0245 | −0.8252 | 0.44 (0.2135–0.8991) |
Aureimonas | <0.001 | −0.7516 | 0.47 (0.3182–0.6990) |
Catonella | 0.0071 | 0.445796 | 1.56 (1.1289–2.1605) |
Xylella | 0.0048 | −1.13326 | 0.32 (0.1464–0.7080) |
Amycolatopsis | 0.0142 | 0.296814 | 1.35 (1.0613–1.7059) |
Rhodothermus | 0.0425 | 0.503593 | 1.65 (1.0171–2.6919) |
Apibacter | <0.001 | −0.89583 | 0.41 (0.2471–0.6746) |
Saccharomonospora | 0.0443 | −0.50069 | 0.61 (0.3721–0.9873) |
Halonatronum | <0.001 | 1.410899 | 4.1 (2.0107–8.3588) |
Leifsonia | 0.0148 | 0.582502 | 1.79 (1.1208–2.8603) |
Genes | p-Value | HR (95%CI) |
---|---|---|
CHIT1 | 0.01631 | 0.71 (0.5346–0.9385) |
CXCL2 | <0.001 | 1.02 (1.009–1.021) |
CXCL8 | <0.001 | 1.01 (1.003–1.007) |
EPGN | 0.002013 | 1.07 (1.023–1.108) |
EREG | 0.0001732 | 1.12 (1.055–1.187) |
FAM3B | 0.02064 | 0.96 (0.9297–0.994) |
IL1A | <0.001 | 1.02 (1.013–1.036) |
IL1B | <0.001 | 1.04 (1.02–1.051) |
IL12A | 0.004497 | 0.46 (0.2687–0.7857) |
STC1 | 0.004388 | 1.01 (1.003–1.015) |
TNF | <0.001 | 1.09 (1.048–1.123) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wen, H.; Zhang, Y.; Liu, Y.; Long, H.; Yao, Y. The Significance of Circulating Microbial Signatures in the Prognosis and Immune Microenvironment of Patients with Cervical Cancer. Int. J. Mol. Sci. 2025, 26, 4293. https://doi.org/10.3390/ijms26094293
Wen H, Zhang Y, Liu Y, Long H, Yao Y. The Significance of Circulating Microbial Signatures in the Prognosis and Immune Microenvironment of Patients with Cervical Cancer. International Journal of Molecular Sciences. 2025; 26(9):4293. https://doi.org/10.3390/ijms26094293
Chicago/Turabian StyleWen, Huakai, Yumeng Zhang, Yongwei Liu, Haixia Long, and Yuhua Yao. 2025. "The Significance of Circulating Microbial Signatures in the Prognosis and Immune Microenvironment of Patients with Cervical Cancer" International Journal of Molecular Sciences 26, no. 9: 4293. https://doi.org/10.3390/ijms26094293
APA StyleWen, H., Zhang, Y., Liu, Y., Long, H., & Yao, Y. (2025). The Significance of Circulating Microbial Signatures in the Prognosis and Immune Microenvironment of Patients with Cervical Cancer. International Journal of Molecular Sciences, 26(9), 4293. https://doi.org/10.3390/ijms26094293