Crosstalk Between Bile Acids and Intestinal Epithelium: Multidimensional Roles of Farnesoid X Receptor and Takeda G Protein Receptor 5
Abstract
1. Introduction
1.1. Physiological Functions of Bile Acids
1.2. Importance of Intestinal Epithelial Cells
1.3. Bile Acids and Bile Acid Receptors
2. Effects of Bile Acids and Bile Acid Receptors on Intestinal Epithelial Cell (IEC) Proliferation
2.1. FXR-Mediated Proliferation Regulation
2.2. Role of TGR5 in the Cell Cycle
2.3. Phasic Regulatory Effect of Bile Acid Concentration on Cell Proliferation
3. Role of Bile Acids and Bile Acid Receptors in Intestinal Epithelial Cell (IEC) Differentiation
3.1. Effect of FXR on Cell Fate Determination
3.2. Role of TGR5 in Cell Differentiation
3.3. Effects of Bile Acids on Intestinal Epithelial Stem Cell Differentiation
4. Relationship Between Bile Acids, Bile Acid Receptors, and Intestinal Epithelial Cell (IEC) Aging
4.1. Bile-Acid-Induced Oxidative Stress and DNA Damage
4.2. Relationship Between Bile Acid and Telomerase Activity
4.3. Interaction Between Bile Acid Receptors and Aging-Related Signaling Pathways (e.g., mTOR, AMPK, SIRT1)
5. Regulation of Energy Metabolism of Intestinal Epithelial Cells by Bile Acids and Bile Acid Receptors
5.1. Role of FXR in Lipid and Glucose Metabolism
5.2. TGR5-Mediated Increase in Energy Expenditure
5.3. Effects of Bile Acids on Mitochondrial Function
5.4. Interaction Between Bile Acid Receptors and Metabolism-Related Hormones (Such as GLP-1)
6. Interactions Between Bile Acids, Bile Acid Receptors, and the Gut Microbiome
Effects of Microorganisms on Bile Acid Metabolism
7. Roles of Bile Acids and Bile Acid Receptors in Intestinal Diseases
7.1. Roles in Inflammatory Bowel Disease
7.2. Roles in Colon Cancer
7.3. Roles in Irritable Bowel Syndrome
Disease Type | Bile Acid Receptor | Receptor Function | Mechanism | References |
---|---|---|---|---|
IBD | FXR ↓ | FXR regulates inflammatory response, maintains intestinal barrier function, and affects FGF19 signaling pathway. | Dysbiosis of the gut microbiota and aberrant bile acid metabolism are interconnected phenomena. | [336,337,338,339,340,341,342,343] |
TGR5 ↓ | TGR5 mitigates the accumulation of pro-inflammatory substances within the intestine. Activation of TGR5 can enhance the secretory functions of intestinal epithelial cells and promotes the release of anti-inflammatory mediators. | Diminished expression of TGR5 is associated with disruptions in intestinal motility, secretion, and immune regulation. | [70,344,345,346,347] | |
CRC | FXR ↓ | Alterations in FXR expression are posited to be intricately associated with tumor suppressive effects, anti-inflammatory responses, and metabolic regulation. | A reduction in FXR expression levels diminishes its inhibitory impact on the proliferation of intestinal cancer stem cells, thereby facilitating the progression of colon cancer. | [50,108,137,366,367,368,369,370] |
TGR5 ↑ | TGR5 is involved in the regulation of cell proliferation and may also influence the tumor microenvironment by modulating immune responses and metabolic pathways. | The activation of TGR5 has the potential to facilitate the proliferation of colon cancer cells while simultaneously inhibiting apoptosis, thereby augmenting the tumor’s survival capacity. | [371,372,373,374,375] | |
IBS | FXR ↓ | Activation of the farnesoid X receptor (FXR) has been shown to strengthen the tight junctions of intestinal epithelial cells, consequently enhancing the integrity of the intestinal barrier. | In patients with IBS, the expression of FXR is altered, resulting in the exacerbation of inflammatory processes. | [18,91,401,402,403,404] |
TGR5 ↓ | TGR5 is involved in the regulation of intestinal motility and also contributes to visceral sensitivity and immune response. | In patients with IBS, there is a downregulation of TGR5 expression levels, which is associated with diminished intestinal peristalsis, decreased neuronal excitability, altered visceral sensitivity, and a reduced release of anti-inflammatory factors. | [405,406,407,408,409,410,411] |
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
FXR | the farnesoid X receptor |
TGR5 | G protein-coupled bile acid receptor |
IBD | inflammatory bowel disease |
CRC | colorectal cancer |
IBS | irritable bowel syndrome |
GLP-1 | glucagon-like peptide-1 |
TLRs | Toll-like receptors |
NLRs | NOD-like receptors |
EGFR | epidermal growth factor receptor |
ROS | reactive oxygen species |
IEC | intestinal epithelial cell |
MCU | mitochondrial calcium uniporter |
BSH | bacterial bile acid hydrolase |
References
- Mohanty, I.; Allaband, C.; Mannochio-Russo, H.; El Abiead, Y.; Hagey, L.R.; Knight, R.; Dorrestein, P.C. The Changing Metabolic Landscape of Bile Acids—Keys to Metabolism and Immune Regulation. Nat. Rev. Gastroenterol. Hepatol. 2024, 21, 493–516. [Google Scholar] [CrossRef]
- Jones, H.; Alpini, G.; Francis, H. Bile Acid Signaling and Biliary Functions. Acta Pharm. Sin. B 2015, 5, 123–128. [Google Scholar] [CrossRef]
- VanHook, A.M. Bile Acids for Immune Tolerance. Sci. Signal 2021, 14, eabm3135. [Google Scholar] [CrossRef] [PubMed]
- Klein, A.S.; Kheirbek, M.A. From Bile Acids to Melancholia. Neuron 2024, 112, 1725–1727. [Google Scholar] [CrossRef] [PubMed]
- Ridlon, J.M.; Gaskins, H.R. Another Renaissance for Bile Acid Gastrointestinal Microbiology. Nat. Rev. Gastroenterol. Hepatol. 2024, 21, 348–364. [Google Scholar] [CrossRef] [PubMed]
- Mohanty, I.; Mannochio-Russo, H.; Schweer, J.V.; El Abiead, Y.; Bittremieux, W.; Xing, S.; Schmid, R.; Zuffa, S.; Vasquez, F.; Muti, V.B.; et al. The Underappreciated Diversity of Bile Acid Modifications. Cell 2024, 187, 1801–1818.e20. [Google Scholar] [CrossRef]
- Guan, B.; Tong, J.; Hao, H.; Yang, Z.; Chen, K.; Xu, H.; Wang, A. Bile Acid Coordinates Microbiota Homeostasis and Systemic Immunometabolism in Cardiometabolic Diseases. Acta Pharm. Sin. B 2022, 12, 2129–2149. [Google Scholar] [CrossRef]
- di Gregorio, M.C.; Cautela, J.; Galantini, L. Physiology and Physical Chemistry of Bile Acids. Int. J. Mol. Sci. 2021, 22, 1780. [Google Scholar] [CrossRef]
- Cai, J.; Rimal, B.; Jiang, C.; Chiang, J.Y.L.; Patterson, A.D. Bile Acid Metabolism and Signaling, the Microbiota, and Metabolic Disease. Pharmacol. Ther. 2022, 237, 108238. [Google Scholar] [CrossRef]
- Fuchs, C.D.; Trauner, M. Role of Bile Acids and Their Receptors in Gastrointestinal and Hepatic Pathophysiology. Nat. Rev. Gastroenterol. Hepatol. 2022, 19, 432–450. [Google Scholar] [CrossRef]
- Chen, B.; Bai, Y.; Tong, F.; Yan, J.; Zhang, R.; Zhong, Y.; Tan, H.; Ma, X. Glycoursodeoxycholic Acid Regulates Bile Acids Level and Alters Gut Microbiota and Glycolipid Metabolism to Attenuate Diabetes. Gut Microbes 2023, 15, 2192155. [Google Scholar] [CrossRef]
- Yan, X.; Zhang, Y.; Peng, Y.; Li, X. The Water Extract of Radix Scutellariae, Its Total Flavonoids and Baicalin Inhibited CYP7A1 Expression, Improved Bile Acid, and Glycolipid Metabolism in T2DM Mice. J. Ethnopharmacol. 2022, 293, 115238. [Google Scholar] [CrossRef]
- Kuhre, R.E.; Albrechtsen, N.J.W.; Larsen, O.; Jepsen, S.L.; Balk-Moller, E.; Andersen, D.B.; Deacon, C.F.; Schoonjans, K.; Reimann, F.; Gribble, F.M.; et al. Bile Acids Are Important Direct and Indirect Regulators of the Secretion of Appetite- and Metabolism-Regulating Hormones from the Gut and Pancreas. Mol. Metab. 2018, 11, 84–95. [Google Scholar] [CrossRef] [PubMed]
- Cai, J.; Sun, L.; Gonzalez, F.J. Gut Microbiota-Derived Bile Acids in Intestinal Immunity, Inflammation, and Tumorigenesis. Cell Host Microbe 2022, 30, 289–300. [Google Scholar] [CrossRef] [PubMed]
- Shi, L.; Jin, L.; Huang, W. Bile Acids, Intestinal Barrier Dysfunction, and Related Diseases. Cells 2023, 12, 1888. [Google Scholar] [CrossRef]
- Fogelson, K.A.; Dorrestein, P.C.; Zarrinpar, A.; Knight, R. The Gut Microbial Bile Acid Modulation and Its Relevance to Digestive Health and Diseases. Gastroenterology 2023, 164, 1069–1085. [Google Scholar] [CrossRef]
- Guzior, D.V.; Quinn, R.A. Review: Microbial Transformations of Human Bile Acids. Microbiome 2021, 9, 140. [Google Scholar] [CrossRef] [PubMed]
- Larabi, A.B.; Masson, H.L.P.; Baumler, A.J. Bile Acids as Modulators of Gut Microbiota Composition and Function. Gut Microbes 2023, 15, 2172671. [Google Scholar] [CrossRef]
- Okumura, R.; Takeda, K. Roles of Intestinal Epithelial Cells in the Maintenance of Gut Homeostasis. Exp. Mol. Med. 2017, 49, e338. [Google Scholar] [CrossRef]
- Perrin, L.; Vignjevic, D.M. The Emerging Roles of the Cytoskeleton in Intestinal Epithelium Homeostasis. Semin. Cell Dev. Biol. 2023, 150–151, 23–27. [Google Scholar] [CrossRef]
- Cao, X.; Surma, M.A.; Simons, K. Polarized Sorting and Trafficking in Epithelial Cells. Cell Res. 2012, 22, 793–805. [Google Scholar] [CrossRef] [PubMed]
- Schuster, A.T.; Homer, C.R.; Kemp, J.R.; Nickerson, K.P.; Deutschman, E.; Kim, Y.; West, G.; Sadler, T.; Stylianou, E.; Krokowski, D.; et al. Chromosome-Associated Protein D3 Promotes Bacterial Clearance in Human Intestinal Epithelial Cells by Repressing Expression of Amino Acid Transporters. Gastroenterology 2015, 148, 1405–1416. [Google Scholar] [CrossRef]
- Zhang, D.; Jian, Y.-P.; Zhang, Y.-N.; Li, Y.; Gu, L.-T.; Sun, H.-H.; Liu, M.-D.; Zhou, H.-L.; Wang, Y.-S.; Xu, Z.-X. Short-Chain Fatty Acids in Diseases. Cell Commun. Signal. 2023, 21, 212. [Google Scholar] [CrossRef] [PubMed]
- Dray, C.; Sakar, Y.; Vinel, C.; Daviaud, D.; Masri, B.; Garrigues, L.; Wanecq, E.; Galvani, S.; Negre-Salvayre, A.; Barak, L.S.; et al. The Intestinal Glucose-Apelin Cycle Controls Carbohydrate Absorption in Mice. Gastroenterology 2013, 144, 771–780. [Google Scholar] [CrossRef]
- Groschwitz, K.R.; Hogan, S.P. Intestinal Barrier Function: Molecular Regulation and Disease Pathogenesis. J. Allergy Clin. Immunol. 2009, 124, 21–22. [Google Scholar] [CrossRef]
- Jiang, Y.; Song, J.; Xu, Y.; Liu, C.; Qian, W.; Bai, T.; Hou, X. Piezo1 Regulates Intestinal Epithelial Function by Affecting the Tight Junction Protein Claudin-1 via the ROCK Pathway. Life Sci. 2021, 275, 119254. [Google Scholar] [CrossRef] [PubMed]
- Pierre, J.F.; Peters, B.M.; La Torre, D.; Sidebottom, A.M.; Tao, Y.; Zhu, X.; Cham, C.M.; Wang, L.; Kambal, A.; Harris, K.G.; et al. Peptide YY: A Paneth Cell Antimicrobial Peptide That Maintains Candida Gut Commensalism. Science 2023, 381, 502–508. [Google Scholar] [CrossRef]
- Vlantis, K.; Polykratis, A.; Welz, P.-S.; van Loo, G.; Pasparakis, M.; Wullaert, A. TLR-Independent Anti-Inflammatory Function of Intestinal Epithelial TRAF6 Signalling Prevents DSS-Induced Colitis in Mice. Gut 2016, 65, 935–943. [Google Scholar] [CrossRef]
- Lei-Leston, A.C.; Murphy, A.G.; Maloy, K.J. Epithelial Cell Inflammasomes in Intestinal Immunity and Inflammation. Front. Immunol. 2017, 8, 1168. [Google Scholar] [CrossRef]
- Crosstalk Between Bile Acid-Activated Receptors and Microbiome in Entero-Hepatic Inflammation—PubMed. Available online: https://pubmed.ncbi.nlm.nih.gov/35074252/ (accessed on 22 April 2025).
- Xu, L.; Li, Y.; Wei, Z.; Bai, R.; Gao, G.; Sun, W.; Jiang, X.; Wang, J.; Li, X.; Pi, Y. Chenodeoxycholic Acid (CDCA) Promoted Intestinal Epithelial Cell Proliferation by Regulating Cell Cycle Progression and Mitochondrial Biogenesis in IPEC-J2 Cells. Antioxidants 2022, 11, 2285. [Google Scholar] [CrossRef]
- Zhang, W.; Qin, X.; Zhang, K.; Ma, J.; Li, M.; Jin, G.; Liu, X.; Wang, S.; Wang, B.; Wu, J.; et al. Microbial Metabolite Trimethylamine-N-Oxide Induces Intestinal Carcinogenesis through Inhibiting Farnesoid X Receptor Signaling. Cell. Oncol. 2024, 47, 1183–1199. [Google Scholar] [CrossRef]
- Modica, S.; Murzilli, S.; Salvatore, L.; Schmidt, D.R.; Moschetta, A. Nuclear Bile Acid Receptor FXR Protects against Intestinal Tumorigenesis. Cancer Res. 2008, 68, 9589–9594. [Google Scholar] [CrossRef] [PubMed]
- Guo, F.; Xu, Z.; Zhang, Y.; Jiang, P.; Huang, G.; Chen, S.; Lyu, X.; Zheng, P.; Zhao, X.; Zeng, Y.; et al. FXR Induces SOCS3 and Suppresses Hepatocellular Carcinoma. Oncotarget 2015, 6, 34606–34616. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Xu, Z.; Guo, J.; Zheng, J.; Sun, X.; Yu, J. Farnesoid X Receptor Activation Induces Antitumour Activity in Colorectal Cancer by Suppressing JAK2/STAT3 Signalling via Transactivation of SOCS3 Gene. J. Cell. Mol. Med. 2020, 24, 14549–14560. [Google Scholar] [CrossRef] [PubMed]
- Kong, L.; Dong, R.; Huang, K.; Wang, X.; Wang, D.; Yue, N.; Wang, C.; Sun, P.; Gu, J.; Luo, H.; et al. Yangonin Modulates Lipid Homeostasis, Ameliorates Cholestasis and Cellular Senescence in Alcoholic Liver Disease via Activating Nuclear Receptor FXR. Phytomedicine 2021, 90, 153629. [Google Scholar] [CrossRef]
- Florencia Mansilla, S.; Belen De la Vega, M.; Luis Calzetta, N.; Omar Siri, S.; Gottifredi, V. CDK-Independent and PCNA-Dependent Functions of P21 in DNA Replication. Genes. 2020, 11, 593. [Google Scholar] [CrossRef]
- Liu, H.M.; Chang, Z.Y.; Yang, C.W.; Chang, H.H.; Lee, T.Y. Farnesoid X Receptor Agonist GW4064 Protects Lipopolysaccharide-Induced Intestinal Epithelial Barrier Function and Colorectal Tumorigenesis Signaling through the αKlotho/βKlotho/FGFs Pathways in Mice. Int. J. Mol. Sci. 2023, 24, 16932. [Google Scholar] [CrossRef]
- Maran, R.R.M.; Thomas, A.; Roth, M.; Sheng, Z.; Esterly, N.; Pinson, D.; Gao, X.; Zhang, Y.; Ganapathy, V.; Gonzalez, F.J.; et al. Farnesoid X Receptor Deficiency in Mice Leads to Increased Intestinal Epithelial Cell Proliferation and Tumor Development. J. Pharmacol. Exp. Ther. 2009, 328, 469–477. [Google Scholar] [CrossRef]
- Elpek, G.O. Molecular Pathways in Viral Hepatitis-Associated Liver Carcinogenesis: An Update. World J. Clin. Cases WJCC 2021, 9, 4890–4917. [Google Scholar] [CrossRef]
- Yu, J.; Li, S.; Guo, J.; Xu, Z.; Zheng, J.; Sun, X. Farnesoid X Receptor Antagonizes Wnt/β-Catenin Signaling in Colorectal Tumorigenesis. Cell Death Dis. 2020, 11, 640. [Google Scholar] [CrossRef]
- Dong, X.; Cai, C.; Fu, T. FXR Suppresses Colorectal Cancer by Inhibiting the Wnt/β-Catenin Pathway via Activation of TLE3. Genes. Diseases 2023, 10, 719–722. [Google Scholar] [CrossRef]
- Sun, D.-Q.; Yuan, F.; Fu, M.-Z.; Zhong, M.-Y.; Zhang, S.-L.; Lu, Y.; Targher, G.; Byrne, C.D.; Zheng, M.-H.; Yuan, W.-J. Farnesoid X Receptor Activation Protects against Renal Fibrosis via Modulation of β-Catenin Signaling. Mol. Metab. 2024, 79, 101841. [Google Scholar] [CrossRef] [PubMed]
- Peng, Z.; Chen, J.; Drachenberg, C.B.; Raufman, J.-P.; Xie, G. Farnesoid X Receptor Represses Matrix Metalloproteinase 7 Expression, Revealing This Regulatory Axis as a Promising Therapeutic Target in Colon Cancer. J. Biol. Chem. 2019, 294, 8529–8542. [Google Scholar] [CrossRef] [PubMed]
- Peng, K.; Su, G.; Ji, J.; Yang, X.; Miao, M.; Mo, P.; Li, M.; Xu, J.; Li, W.; Yu, C. Histone Demethylase JMJD1A Promotes Colorectal Cancer Growth and Metastasis by Enhancing Wnt/β-Catenin Signaling. J. Biol. Chem. 2018, 293, 10606–10619. [Google Scholar] [CrossRef] [PubMed]
- Bhat, N.; Esteghamat, F.; Chaube, B.K.; Gunawardhana, K.; Mani, M.; Thames, C.; Jain, D.; Ginsberg, H.N.; Fernandes-Hernando, C.; Mani, A. TCF7L2 Transcriptionally Regulates Fgf15 to Maintain Bile Acid and Lipid Homeostasis through Gut-Liver Crosstalk. FASEB J. 2022, 36, e22185. [Google Scholar] [CrossRef]
- Mao, J.; Chen, X.; Wang, C.; Li, W.; Li, J. Effects and Mechanism of the Bile Acid (Farnesoid X) Receptor on the Wnt/β-Catenin Signaling Pathway in Colon Cancer. Oncol. Lett. 2020, 20, 337–345. [Google Scholar] [CrossRef]
- Zhao, Y.; Wang, Y.; Jiang, L.; Cai, W.; Yan, J. Impaired Intestinal FXR Signaling Is Involved in Aberrant Stem Cell Function Leading to Intestinal Failure-Associated Liver Disease in Pediatric Patients with Short Bowel Syndrome. FASEB J. 2024, 38, e23847. [Google Scholar] [CrossRef]
- Dong, X.; Qi, M.; Cai, C.; Zhu, Y.; Li, Y.; Coulter, S.; Sun, F.; Liddle, C.; Uboha, N.V.; Halberg, R.; et al. Farnesoid X Receptor Mediates Macrophage-Intrinsic Responses to Suppress Colitis-Induced Colon Cancer Progression. JCI Insight 2024, 9, e170428. [Google Scholar] [CrossRef]
- Fu, T.; Coulter, S.; Yoshihara, E.; Oh, T.G.; Fang, S.; Cayabyab, F.; Zhu, Q.; Zhang, T.; Leblanc, M.; Liu, S.; et al. FXR Regulates Intestinal Cancer Stem Cell Proliferation. Cell 2019, 176, 1098–1112.e18. [Google Scholar] [CrossRef]
- Chen, L.; Jiao, T.; Liu, W.; Luo, Y.; Wang, J.; Guo, X.; Tong, X.; Lin, Z.; Sun, C.; Wang, K.; et al. Hepatic Cytochrome P450 8B1 and Cholic Acid Potentiate Intestinal Epithelial Injury in Colitis by Suppressing Intestinal Stem Cell Renewal. Cell Stem Cell 2022, 29, 1366–1381.e9. [Google Scholar] [CrossRef]
- Hou, Q.; Dong, Y.; Yu, Q.; Wang, B.; Le, S.; Guo, Y.; Zhang, B. Regulation of the Paneth Cell Niche by Exogenous L-Arginine Couples the Intestinal Stem Cell Function. FASEB J. 2020, 34, 10299–10315. [Google Scholar] [CrossRef] [PubMed]
- Zhou, A.; Yuan, Y.; Yang, M.; Huang, Y.; Li, X.; Li, S.; Yang, S.; Tang, B. Crosstalk Between the Gut Microbiota and Epithelial Cells Under Physiological and Infectious Conditions. Front. Cell Infect. Microbiol. 2022, 12, 832672. [Google Scholar] [CrossRef] [PubMed]
- Jensen, D.D.; Godfrey, C.B.; Niklas, C.; Canals, M.; Kocan, M.; Poole, D.P.; Murphy, J.E.; Alemi, F.; Cottrell, G.S.; Korbmacher, C.; et al. The Bile Acid Receptor TGR5 Does Not Interact with β-Arrestins or Traffic to Endosomes but Transmits Sustained Signals from Plasma Membrane Rafts. J. Biol. Chem. 2013, 288, 22942–22960. [Google Scholar] [CrossRef] [PubMed]
- Huang, H.; Lei, H.; Yang, F.; Fan, X.; Dang, Q.; Li, Y. Activation of the Bile Acid Receptor GPBAR1 (TGR5) Ameliorates Interleukin-1β (IL-1β)- Induced Chondrocytes Senescence. Biomed. Pharmacother. 2018, 106, 1713–1719. [Google Scholar] [CrossRef]
- Ji, C.-G.; Xie, X.-L.; Yin, J.; Qi, W.; Chen, L.; Bai, Y.; Wang, N.; Zhao, D.-Q.; Jiang, X.-Y.; Jiang, H.-Q. Bile Acid Receptor TGR5 Overexpression Is Associated with Decreased Intestinal Mucosal Injury and Epithelial Cell Proliferation in Obstructive Jaundice. Transl. Res. 2017, 182, 88–102. [Google Scholar] [CrossRef]
- Sakanaka, T.; Inoue, T.; Yorifuji, N.; Iguchi, M.; Fujiwara, K.; Narabayashi, K.; Kakimoto, K.; Nouda, S.; Okada, T.; Kuramoto, T.; et al. The Effects of a TGR5 Agonist and a Dipeptidyl Peptidase IV Inhibitor on Dextran Sulfate Sodium-Induced Colitis in Mice. J. Gastroenterol. Hepatol. 2015, 30 (Suppl. S1), 60–65. [Google Scholar] [CrossRef]
- Reusswig, F.; Reich, M.; Wienands, L.; Herebian, D.; Keitel-Anselmino, V.; Elvers, M. The Bile Acid Receptor TGR5 Inhibits Platelet Activation and Thrombus Formation. Platelets 2024, 35, 2322733. [Google Scholar] [CrossRef]
- Maczewsky, J.; Kaiser, J.; Gresch, A.; Gerst, F.; Düfer, M.; Krippeit-Drews, P.; Drews, G. TGR5 Activation Promotes Stimulus-Secretion Coupling of Pancreatic β-Cells via a PKA-Dependent Pathway. Diabetes 2019, 68, 324–336. [Google Scholar] [CrossRef]
- Yang, W.; Han, F.; Gu, Y.; Qu, H.; Liu, J.; Shen, J.; Leng, Y. TGR5 Agonist Inhibits Intestinal Epithelial Cell Apoptosis via cAMP/PKA/c-FLIP/JNK Signaling Pathway and Ameliorates Dextran Sulfate Sodium-Induced Ulcerative Colitis. Acta Pharmacol. Sin. 2023, 44, 1649–1664. [Google Scholar] [CrossRef]
- Xue, C.; Jia, H.; Cao, R.; Cai, W.; Hong, W.; Tu, J.; Wang, S.; Jiang, Q.; Bi, C.; Shan, A.; et al. Oleanolic Acid Improved Intestinal Immune Function by Activating and Potentiating Bile Acids Receptor Signaling in E. Coli-Challenged Piglets. J. Animal Sci. Biotechnol. 2024, 15, 79. [Google Scholar] [CrossRef]
- Casaburi, I.; Avena, P.; Lanzino, M.; Sisci, D.; Giordano, F.; Maris, P.; Catalano, S.; Morelli, C.; Andò, S. Chenodeoxycholic Acid through a TGR5-Dependent CREB Signaling Activation Enhances Cyclin D1 Expression and Promotes Human Endometrial Cancer Cell Proliferation. Cell Cycle 2012, 11, 2699–2710. [Google Scholar] [CrossRef] [PubMed]
- Nagathihalli, N.S.; Beesetty, Y.; Lee, W.; Washington, M.K.; Chen, X.; Lockhart, A.C.; Merchant, N.B. Novel Mechanistic Insights into Ectodomain Shedding of EGFR Ligands Amphiregulin and TGF-α: Impact on Gastrointestinal Cancers Driven by Secondary Bile Acids. Cancer Res. 2014, 74, 2062–2072. [Google Scholar] [CrossRef] [PubMed]
- Keitel, V.; Häussinger, D. Perspective: TGR5 (Gpbar-1) in Liver Physiology and Disease. Clin. Res. Hepatol. Gastroenterol. 2012, 36, 412–419. [Google Scholar] [CrossRef]
- Yang, H.; Luo, F.; Wei, Y.; Jiao, Y.; Qian, J.; Chen, S.; Gong, Y.; Tang, L. TGR5 Protects against Cholestatic Liver Disease via Suppressing the NF-ΚB Pathway and Activating the Nrf2/HO-1 Pathway. Ann. Transl. Med. 2021, 9, 1158. [Google Scholar] [CrossRef] [PubMed]
- Tian, F.; Xu, W.; Chen, L.; Chen, T.; Feng, X.; Chen, J.; Wei, D.; Huang, Q. Ginsenoside Compound K Increases Glucagon-like Peptide-1 Release and L-Cell Abundance in Db/Db Mice through TGR5/YAP Signaling. Int. Immunopharmacol. 2022, 113, 109405. [Google Scholar] [CrossRef]
- Sorrentino, G.; Perino, A.; Yildiz, E.; El Alam, G.; Sleiman, M.B.; Gioiello, A.; Pellicciari, R.; Schoonjans, K. Bile Acids Signal via TGR5 to Activate Intestinal Stem Cells and Epithelial Regeneration. Gastroenterology 2020, 159, 956–968. [Google Scholar] [CrossRef]
- Zhao, C.; Wu, K.; Hao, H.; Zhao, Y.; Bao, L.; Qiu, M.; He, Y.; He, Z.; Zhang, N.; Hu, X.; et al. Gut Microbiota-Mediated Secondary Bile Acid Alleviates Staphylococcus Aureus-Induced Mastitis through the TGR5-cAMP-PKA-NF-κB/NLRP3 Pathways in Mice. NPJ Biofilms Microbiomes 2023, 9, 8. [Google Scholar] [CrossRef]
- Zhai, Z.; Liu, Y.; Niu, K.; Zeng, W.; Wang, R.; Guo, X.; Lin, C.; Hu, L. Oleanolic Acid Alleviate Intestinal Inflammation by Inhibiting Takeda G-Coupled Protein Receptor (TGR) 5 Mediated Cell Apoptosis. Food Funct. 2024, 15, 1963–1976. [Google Scholar] [CrossRef]
- Dong, S.; Zhu, M.; Wang, K.; Zhao, X.; Hu, L.; Jing, W.; Lu, H.; Wang, S. Dihydromyricetin Improves DSS-Induced Colitis in Mice via Modulation of Fecal-Bacteria-Related Bile Acid Metabolism. Pharmacol. Res. 2021, 171, 105767. [Google Scholar] [CrossRef]
- Liu, Z.; Wang, H. Probiotics Alleviate Inflammatory Bowel Disease in Mice by Regulating Intestinal Microorganisms-Bile Acid-NLRP3 Inflammasome Pathway. Acta Biochim. Pol. 2021, 68, 687–693. [Google Scholar] [CrossRef]
- Qi, Y.; Duan, G.; Wei, D.; Zhao, C.; Ma, Y. The Bile Acid Membrane Receptor TGR5 in Cancer: Friend or Foe? Molecules 2022, 27, 5292. [Google Scholar] [CrossRef]
- Sun, M.; Tan, Z.; Lin, K.; Li, X.; Zhu, J.; Zhan, L.; Zheng, H. Advanced Progression for the Heterogeneity and Homeostasis of Intestinal Stem Cells. Stem Cell Rev. Rep. 2023, 19, 2109–2119. [Google Scholar] [CrossRef]
- Meng, J.P.; Ceryak, S.; Aratsu, Z.; Jones, L.; Epstein, L.; Bouscarel, B. Biphasic Regulation by Bile Acids of Dermal Fibroblast Proliferation through Regulation of cAMP Production and COX-2 Expression Level. Am. J. Physiol. Cell Physiol. 2006, 291, C546–C554. [Google Scholar] [CrossRef] [PubMed]
- Huang, D.; Xiong, M.; Xu, X.; Wu, X.; Xu, J.; Cai, X.; Lu, L.; Zhou, H. Bile Acids Elevated by High-Fat Feeding Induce Endoplasmic Reticulum Stress in Intestinal Stem Cells and Contribute to Mucosal Barrier Damage. Biochem. Biophys. Res. Commun. 2020, 529, 289–295. [Google Scholar] [CrossRef] [PubMed]
- Dossa, A.Y.; Escobar, O.; Golden, J.; Frey, M.R.; Ford, H.R.; Gayer, C.P. Bile Acids Regulate Intestinal Cell Proliferation by Modulating EGFR and FXR Signaling. Am. J. Physiol. Gastrointest. Liver Physiol. 2016, 310, G81–G92. [Google Scholar] [CrossRef]
- Golden, J.M.; Escobar, O.H.; Nguyen, M.V.L.; Mallicote, M.U.; Kavarian, P.; Frey, M.R.; Gayer, C.P. Ursodeoxycholic Acid Protects against Intestinal Barrier Breakdown by Promoting Enterocyte Migration via EGFR- and COX-2-Dependent Mechanisms. Am. J. Physiol. Gastrointest. Liver Physiol. 2018, 315, G259–G271. [Google Scholar] [CrossRef] [PubMed]
- Rao, Y.-P.; Studer, E.J.; Stravitz, R.T.; Gupta, S.; Qiao, L.; Dent, P.; Hylemon, P.B. Activation of the Raf-1/MEK/ERK Cascade by Bile Acids Occurs via the Epidermal Growth Factor Receptor in Primary Rat Hepatocytes. Hepatology 2002, 35, 307–314. [Google Scholar] [CrossRef]
- Cai, S.-Y.; Boyer, J.L. The Role of Bile Acids in Cholestatic Liver Injury. Ann. Transl. Med. 2021, 9, atm-20-5110. [Google Scholar] [CrossRef]
- Warden, C.; Brantley, M.A. Glycine-Conjugated Bile Acids Protect RPE Tight Junctions against Oxidative Stress and Inhibit Choroidal Endothelial Cell Angiogenesis In Vitro. Biomolecules 2021, 11, 626. [Google Scholar] [CrossRef]
- Bartram, H.P.; Englert, S.; Scheppach, W.; Dusel, G.; Richter, F.; Richter, A.; Kasper, H. Antagonistic Effects of Deoxycholic Acid and Butyrate on Epithelial Cell Proliferation in the Proximal and Distal Human Colon. Z. Gastroenterol. 1994, 32, 389–392. [Google Scholar]
- Gadaleta, R.M.; Garcia-Irigoyen, O.; Moschetta, A. Bile Acids and Colon Cancer: Is FXR the Solution of the Conundrum? Mol. Aspects Med. 2017, 56, 66–74. [Google Scholar] [CrossRef] [PubMed]
- Ignacio Barrasa, J.; Olmo, N.; Pérez-Ramos, P.; Santiago-Gómez, A.; Lecona, E.; Turnay, J.; Antonia Lizarbe, M. Deoxycholic and Chenodeoxycholic Bile Acids Induce Apoptosis via Oxidative Stress in Human Colon Adenocarcinoma Cells. Apoptosis Int. J. Program. Cell Death 2011, 16, 1054–1067. [Google Scholar] [CrossRef]
- Ershad, M.; Shigenaga, M.K.; Bandy, B. Differential Protection by Anthocyanin-Rich Bilberry Extract and Resveratrol against Lipid Micelle-Induced Oxidative Stress and Monolayer Permeability in Caco-2 Intestinal Epithelial Cells. Food Funct. 2021, 12, 2950–2961. [Google Scholar] [CrossRef]
- Burban, A.; Sharanek, A.; Guguen-Guillouzo, C.; Guillouzo, A. Endoplasmic Reticulum Stress Precedes Oxidative Stress in Antibiotic-Induced Cholestasis and Cytotoxicity in Human Hepatocytes. Free Radic. Biol. Med. 2018, 115, 166–178. [Google Scholar] [CrossRef] [PubMed]
- Pallagi-Kunstár, É.; Farkas, K.; Maléth, J.; Rakonczay, Z.; Nagy, F.; Molnár, T.; Szepes, Z.; Venglovecz, V.; Lonovics, J.; Rázga, Z.; et al. Bile Acids Inhibit Na+/H+ Exchanger and Cl−/HCO₃− Exchanger Activities via Cellular Energy Breakdown and Ca2+ Overload in Human Colonic Crypts. Pflugers Arch. 2015, 467, 1277–1290. [Google Scholar] [CrossRef]
- Zou, B.; Zhang, S.; Zhao, J.; Song, G.; Weng, F.; Xu, X.; Li, F.; Jin, J.; Yan, D.; Huang, K.; et al. Glycyrrhetinic Acid Attenuates Endoplasmic Reticulum Stress-Induced Hepatocyte Apoptosis via CHOP/DR5/Caspase 8 Pathway in Cholestasis. Eur. J. Pharmacol. 2023, 961, 176193. [Google Scholar] [CrossRef] [PubMed]
- Berger, E.; Haller, D. Structure-Function Analysis of the Tertiary Bile Acid TUDCA for the Resolution of Endoplasmic Reticulum Stress in Intestinal Epithelial Cells. Biochem. Biophys. Res. Commun. 2011, 409, 610–615. [Google Scholar] [CrossRef]
- Liu, R.; Li, X.; Huang, Z.; Zhao, D.; Ganesh, B.S.; Lai, G.; Pandak, W.M.; Hylemon, P.B.; Bajaj, J.S.; Sanyal, A.J.; et al. C/EBP Homologous Protein-Induced Loss of Intestinal Epithelial Stemness Contributes to Bile Duct Ligation-Induced Cholestatic Liver Injury in Mice. Hepatology 2018, 67, 1441–1457. [Google Scholar] [CrossRef]
- Palmeira, C.M.; Rolo, A.P. Mitochondrially-Mediated Toxicity of Bile Acids. Toxicology 2004, 203, 1–15. [Google Scholar] [CrossRef]
- Ticho, A.L.; Malhotra, P.; Dudeja, P.K.; Gill, R.K.; Alrefai, W.A. Bile Acid Receptors and Gastrointestinal Functions. Liver Res. 2019, 3, 31–39. [Google Scholar] [CrossRef]
- Kisthardt, S.C.; Thanissery, R.; Pike, C.M.; Foley, M.H.; Theriot, C.M. The Microbial-Derived Bile Acid Lithocholate and Its Epimers Inhibit Clostridioides Difficile Growth and Pathogenicity While Sparing Members of the Gut Microbiota. J. Bacteriol. 2023, 205, e00180-23. [Google Scholar] [CrossRef] [PubMed]
- Christiansen, C.B.; Trammell, S.A.J.; Albrechtsen, N.J.W.; Schoonjans, K.; Albrechtsen, R.; Gillum, M.P.; Kuhre, R.E.; Holst, J.J. Bile Acids Drive Colonic Secretion of Glucagon-like-Peptide 1 and Peptide-YY in Rodents. Am. J. Physiol.-Gastroint. Liver Physiol. 2019, 316, G574–G584. [Google Scholar] [CrossRef]
- O’Leary, C.E.; Sbierski-Kind, J.; Kotas, M.E.; Wagner, J.C.; Liang, H.-E.; Schroeder, A.W.; de Tenorio, J.C.; von Moltke, J.; Ricardo-Gonzalez, R.R.; Eckalbar, W.L.; et al. Bile Acid-Sensitive Tuft Cells Regulate Biliary Neutrophil Influx. Sci. Immunol. 2022, 7, eabj1080. [Google Scholar] [CrossRef] [PubMed]
- Zhou, H.; Zhou, S.-Y.; Gillilland, M.; Li, J.-Y.; Lee, A.; Gao, J.; Zhang, G.; Xu, X.; Owyang, C. Bile Acid Toxicity in Paneth Cells Contributes to Gut Dysbiosis Induced by High-Fat Feeding. JCI Insight 2020, 5, e138881. [Google Scholar] [CrossRef]
- Oswald, S. Organic Anion Transporting Polypeptide (OATP) Transporter Expression, Localization and Function in the Human Intestine. Pharmacol. Ther. 2019, 195, 39–53. [Google Scholar] [CrossRef] [PubMed]
- Ho, R.H.; Leake, B.F.; Urquhart, B.L.; Gregor, J.C.; Dawson, P.A.; Kim, R.B. Functional Characterization of Genetic Variants in the Apical Sodium-Dependent Bile Acid Transporter (ASBT; SLC10A2). J. Gastroenterol. Hepatol. 2011, 26, 1740–1748. [Google Scholar] [CrossRef]
- Wang, Q.; Xu, K.; Cai, X.; Wang, C.; Cao, Y.; Xiao, J. Rosmarinic Acid Restores Colonic Mucus Secretion in Colitis Mice by Regulating Gut Microbiota-Derived Metabolites and the Activation of Inflammasomes. J. Agric. Food Chem. 2023, 71, 4571–4585. [Google Scholar] [CrossRef]
- Song, P.; Rockwell, C.E.; Cui, J.Y.; Klaassen, C.D. Individual Bile Acids Have Differential Effects on Bile Acid Signaling in Mice. Toxicol. Appl. Pharmacol. 2015, 283, 57–64. [Google Scholar] [CrossRef]
- Májer, F.; Sharma, R.; Mullins, C.; Keogh, L.; Phipps, S.; Duggan, S.; Kelleher, D.; Keely, S.; Long, A.; Radics, G.; et al. New Highly Toxic Bile Acids Derived from Deoxycholic Acid, Chenodeoxycholic Acid and Lithocholic Acid. Bioorg Med. Chem. 2014, 22, 256–268. [Google Scholar] [CrossRef]
- Zheng, Y.; Yue, C.; Zhang, H.; Chen, H.; Liu, Y.; Li, J. Deoxycholic Acid and Lithocholic Acid Alleviate Liver Injury and Inflammation in Mice with Klebsiella Pneumoniae-Induced Liver Abscess and Bacteremia. J. Inflammation Res. 2021, 14, 777–789. [Google Scholar] [CrossRef]
- Zhou, W.; Ramachandran, D.; Mansouri, A.; Dailey, M.J. Glucose Stimulates Intestinal Epithelial Crypt Proliferation by Modulating Cellular Energy Metabolism. J. Cell. Physiol. 2018, 233, 3465–3475. [Google Scholar] [CrossRef] [PubMed]
- Salvi, P.S.; Cowles, R.A. Butyrate and the Intestinal Epithelium: Modulation of Proliferation and Inflammation in Homeostasis and Disease. Cells 2021, 10, 1775. [Google Scholar] [CrossRef] [PubMed]
- Calibasi-Kocal, G.; Mashinchian, O.; Basbinar, Y.; Ellidokuz, E.; Cheng, C.-W.; Yilmaz, Ö.H. Nutritional Control of Intestinal Stem Cells in Homeostasis and Tumorigenesis. Trends Endocrinol. Metab. 2021, 32, 20–35. [Google Scholar] [CrossRef]
- Kim, K.-S.; Peck, B.C.; Hung, Y.-H.; Koch-Laskowski, K.; Wood, L.; Dedhia, P.H.; Spence, J.R.; Seeley, R.J.; Sethupathy, P.; Sandoval, D.A. Vertical Sleeve Gastrectomy Induces Enteroendocrine Cell Differentiation of Intestinal Stem Cells through Bile Acid Signaling. JCI Insight 2022, 7, e154302. [Google Scholar] [CrossRef]
- Id Boufker, H.; Lagneaux, L.; Fayyad-Kazan, H.; Badran, B.; Najar, M.; Wiedig, M.; Ghanem, G.; Laurent, G.; Body, J.-J.; Journé, F. Role of Farnesoid X Receptor (FXR) in the Process of Differentiation of Bone Marrow Stromal Cells into Osteoblasts. Bone 2011, 49, 1219–1231. [Google Scholar] [CrossRef] [PubMed]
- Weber, A.A.; Mennillo, E.; Yang, X.; van der Schoor, L.W.E.; Jonker, J.W.; Chen, S.; Tukey, R.H. Regulation of Intestinal UDP-Glucuronosyltransferase 1A1 by the Farnesoid X Receptor Agonist Obeticholic Acid Is Controlled by Constitutive Androstane Receptor through Intestinal Maturation. Drug Metab. Dispos. 2021, 49, 12–19. [Google Scholar] [CrossRef]
- Yu, J.; Yang, K.; Zheng, J.; Zhao, P.; Xia, J.; Sun, X.; Zhao, W. Activation of FXR and Inhibition of EZH2 Synergistically Inhibit Colorectal Cancer through Cooperatively Accelerating FXR Nuclear Location and Upregulating CDX2 Expression. Cell Death Dis. 2022, 13, 388. [Google Scholar] [CrossRef]
- Chen, M.; Lu, C.; Lu, H.; Zhang, J.; Qin, D.; Liu, S.; Li, X.; Zhang, L. Farnesoid X Receptor via Notch1 Directs Asymmetric Cell Division of Sox9+ Cells to Prevent the Development of Liver Cancer in a Mouse Model. Stem Cell Res. Ther. 2021, 12, 232. [Google Scholar] [CrossRef] [PubMed]
- Alvarado, D.M.; Chen, B.; Iticovici, M.; Thaker, A.I.; Dai, N.; VanDussen, K.L.; Shaikh, N.; Lim, C.K.; Guillemin, G.J.; Tarr, P.I.; et al. Epithelial Indoleamine 2,3-Dioxygenase 1 Modulates Aryl Hydrocarbon Receptor and Notch Signaling to Increase Differentiation of Secretory Cells and Alter Mucus-Associated Microbiota. Gastroenterology 2019, 157, 1093–1108.e11. [Google Scholar] [CrossRef]
- Carulli, A.J.; Keeley, T.M.; Demitrack, E.S.; Chung, J.; Maillard, I.; Samuelson, L.C. Notch Receptor Regulation of Intestinal Stem Cell Homeostasis and Crypt Regeneration. Dev. Biol. 2015, 402, 98–108. [Google Scholar] [CrossRef]
- Liu, J.; Liu, K.; Wang, Y.; Shi, Z.; Xu, R.; Zhang, Y.; Li, J.; Liu, C.; Xue, B. Death Receptor 5 Is Required for Intestinal Stem Cell Activity during Intestinal Epithelial Renewal at Homoeostasis. Cell Death Dis. 2024, 15, 27. [Google Scholar] [CrossRef] [PubMed]
- Verzi, M.P.; Shivdasani, R.A. Epigenetic Regulation of Intestinal Stem Cell Differentiation. Am. J. Physiol. Gastrointest. Liver Physiol. 2020, 319, G189–G196. [Google Scholar] [CrossRef]
- Pope, J.L.; Bhat, A.A.; Sharma, A.; Ahmad, R.; Krishnan, M.; Washington, M.K.; Beauchamp, R.D.; Singh, A.B.; Dhawan, P. Claudin-1 Regulates Intestinal Epithelial Homeostasis through the Modulation of Notch-Signalling. Gut 2014, 63, 622–634. [Google Scholar] [CrossRef]
- Fu, T.; Li, Y.; Oh, T.G.; Cayabyab, F.; He, N.; Tang, Q.; Coulter, S.; Truitt, M.; Medina, P.; He, M.; et al. FXR Mediates ILC-Intrinsic Responses to Intestinal Inflammation. Proc. Natl. Acad. Sci. USA 2022, 119, e2213041119. [Google Scholar] [CrossRef] [PubMed]
- Nell, P.; Kattler, K.; Feuerborn, D.; Hellwig, B.; Rieck, A.; Salhab, A.; Lepikhov, K.; Gasparoni, G.; Thomitzek, A.; Belgasmi, K.; et al. Identification of an FXR-Modulated Liver-Intestine Hybrid State in iPSC-Derived Hepatocyte-like Cells. J. Hepatol. 2022, 77, 1386–1398. [Google Scholar] [CrossRef]
- Zhao, L.; Xuan, Z.; Song, W.; Zhang, S.; Li, Z.; Song, G.; Zhu, X.; Xie, H.; Zheng, S.; Song, P. A Novel Role for Farnesoid X Receptor in the Bile Acid-mediated Intestinal Glucose Homeostasis. J. Cell. Mol. Med. 2020, 24, 12848–12861. [Google Scholar] [CrossRef]
- Maeda, T.; Miyata, M.; Yotsumoto, T.; Kobayashi, D.; Nozawa, T.; Toyama, K.; Gonzalez, F.J.; Yamazoe, Y.; Tamai, I. Regulation of Drug Transporters by the Farnesoid X Receptor in Mice. Mol. Pharm. 2004, 1, 281–289. [Google Scholar] [CrossRef] [PubMed]
- Tian, F.; Huang, S.; Xu, W.; Chen, L.; Su, J.; Ni, H.; Feng, X.; Chen, J.; Wang, X.; Huang, Q. Compound K Attenuates Hyperglycemia by Enhancing Glucagon-like Peptide-1 Secretion through Activating TGR5 via the Remodeling of Gut Microbiota and Bile Acid Metabolism. J. Ginseng Res. 2022, 46, 780–789. [Google Scholar] [CrossRef]
- Guo, Q.; Hou, X.; Cui, Q.; Li, S.; Shen, G.; Luo, Q.; Wu, H.; Chen, H.; Liu, Y.; Chen, A.; et al. Pectin Mediates the Mechanism of Host Blood Glucose Regulation through Intestinal Flora. Crit. Rev. Food Sci. Nutr. 2024, 64, 6714–6736. [Google Scholar] [CrossRef]
- Bunnett, N.W. Neuro-Humoral Signalling by Bile Acids and the TGR5 Receptor in the Gastrointestinal Tract. J. Physiol. 2014, 592, 2943–2950. [Google Scholar] [CrossRef]
- Sun, X.; Yang, Q.; Rogers, C.J.; Du, M.; Zhu, M.-J. AMPK Improves Gut Epithelial Differentiation and Barrier Function via Regulating Cdx2 Expression. Cell Death Differ. 2017, 24, 819–831. [Google Scholar] [CrossRef]
- Chang, Z.-Y.; Liu, H.-M.; Leu, Y.-L.; Hsu, C.-H.; Lee, T.-Y. Modulation of Gut Microbiota Combined with Upregulation of Intestinal Tight Junction Explains Anti-Inflammatory Effect of Corylin on Colitis-Associated Cancer in Mice. Int. J. Mol. Sci. 2022, 23, 2667. [Google Scholar] [CrossRef] [PubMed]
- Song, M.; Zhang, F.; Fu, Y.; Yi, X.; Feng, S.; Liu, Z.; Deng, D.; Yang, Q.; Yu, M.; Zhu, C.; et al. Tauroursodeoxycholic Acid (TUDCA) Improves Intestinal Barrier Function Associated with TGR5-MLCK Pathway and the Alteration of Serum Metabolites and Gut Bacteria in Weaned Piglets. J. Anim. Sci. Biotechnol. 2022, 13, 73. [Google Scholar] [CrossRef] [PubMed]
- Han, B.; Lv, X.; Liu, G.; Li, S.; Fan, J.; Chen, L.; Huang, Z.; Lin, G.; Xu, X.; Huang, Z.; et al. Gut Microbiota-Related Bile Acid Metabolism-FXR/TGR5 Axis Impacts the Response to Anti-A4β7-Integrin Therapy in Humanized Mice with Colitis. Gut Microbes 2023, 15, 2232143. [Google Scholar] [CrossRef] [PubMed]
- Xie, Y.; Shang, S.; Luan, W.; Ma, J.; Yang, H.; Qian, Q.; Wu, Z.; Li, X. Apple Polyphenol Extracts Attenuated Depressive-Like Behaviors of High-Sucrose Diet Feeding Mice by Farnesoid X Receptor-Mediated Modulation of Bile Acid Circulation within the Liver-Gut-Brain Axis. J. Agric. Food Chem. 2024, 72, 25118–25134. [Google Scholar] [CrossRef]
- Jia, W.; Xie, G.; Jia, W. Bile Acid-Microbiota Crosstalk in Gastrointestinal Inflammation and Carcinogenesis. Nat. Rev. Gastroenterol. Hepatol. 2018, 15, 111–128. [Google Scholar] [CrossRef]
- Lund, M.L.; Egerod, K.L.; Engelstoft, M.S.; Dmytriyeva, O.; Theodorsson, E.; Patel, B.A.; Schwartz, T.W. Enterochromaffin 5-HT Cells—A Major Target for GLP-1 and Gut Microbial Metabolites. Mol. Metab. 2018, 11, 70–83. [Google Scholar] [CrossRef]
- Merlen, G.; Kahale, N.; Ursic-Bedoya, J.; Bidault-Jourdainne, V.; Simerabet, H.; Doignon, I.; Tanfin, Z.; Garcin, I.; Péan, N.; Gautherot, J.; et al. TGR5-Dependent Hepatoprotection through the Regulation of Biliary Epithelium Barrier Function. Gut 2020, 69, 146–157. [Google Scholar] [CrossRef]
- Liu, T.-C.; Kern, J.T.; Jain, U.; Sonnek, N.M.; Xiong, S.; Simpson, K.F.; VanDussen, K.L.; Winkler, E.S.; Haritunians, T.; Malique, A.; et al. Western Diet Induces Paneth Cell Defects through Microbiome Alterations and Farnesoid X Receptor and Type I Interferon Activation. Cell Host Microbe 2021, 29, 988–1001.e6. [Google Scholar] [CrossRef]
- Hung, C.-T.; Ma, C.; Panda, S.K.; Trsan, T.; Hodel, M.; Frein, J.; Foster, A.; Sun, S.; Wu, H.-T.; Kern, J.; et al. Western Diet Reduces Small Intestinal Intraepithelial Lymphocytes via FXR-Interferon Pathway. Mucosal Immunol. 2024, 17, 1019–1028. [Google Scholar] [CrossRef]
- Wei, W.; Pan, S.; Ma, Y.; Xiao, Y.; Yang, Y.; He, S.; Bravo, A.; Soberón, M.; Liu, K. GATAe Transcription Factor Is Involved in Bacillus Thuringiensis Cry1Ac Toxin Receptor Gene Expression Inducing Toxin Susceptibility. Insect Biochem. Mol. Biol. 2020, 118, 103306. [Google Scholar] [CrossRef] [PubMed]
- Jensen, S.K.; Paerregaard, S.I.; Brandum, E.P.; Jorgensen, A.S.; Hjorto, G.M.; Jensen, B.A.H. Rewiring Host-Microbe Interactions and Barrier Function during Gastrointestinal Inflammation. Gastroenterol. Rep. 2022, 10, goac008. [Google Scholar] [CrossRef] [PubMed]
- Lee, V.H.; Gulati, A.S. Implications of Paneth Cell Dysfunction on Gastrointestinal Health and Disease. Curr. Opin. Gastroenterol. 2022, 38, 535–540. [Google Scholar] [CrossRef]
- Wang, Q.; Wang, F.; Zhou, Y.; Li, X.; Xu, S.; Jin, Q.; Li, W. Bacillus Amyloliquefaciens SC06 Relieving Intestinal Inflammation by Modulating Intestinal Stem Cells Proliferation and Differentiation via AhR/STAT3 Pathway in LPS-Challenged Piglets. J. Agric. Food Chem. 2024, 72, 6096–6109. [Google Scholar] [CrossRef]
- Wang, Q.; Wang, F.; Tang, L.; Wang, Y.; Zhou, Y.; Li, X.; Jin, M.; Fu, A.; Li, W. Bacillus Amyloliquefaciens SC06 Alleviated Intestinal Damage Induced by Inflammatory via Modulating Intestinal Microbiota and Intestinal Stem Cell Proliferation and Differentiation. Int. Immunopharmacol. 2024, 130, 111675. [Google Scholar] [CrossRef] [PubMed]
- Xu, P.; Xi, Y.; Kim, J.-W.; Zhu, J.; Zhang, M.; Xu, M.; Ren, S.; Yang, D.; Ma, X.; Xie, W. Sulfation of Chondroitin and Bile Acids Converges to Antagonize Wnt/β-Catenin Signaling and Inhibit APC Deficiency-Induced Gut Tumorigenesis. Acta Pharm. Sin. B 2024, 14, 1241–1256. [Google Scholar] [CrossRef]
- Pineiro-Llanes, J.; da Silva, L.; Huang, J.; Cristofoletti, R. Comparative Study of Basement-Membrane Matrices for Human Stem Cell Maintenance and Intestinal Organoid Generation. J. Vis. Exp. JoVE 2024, 205, e66277. [Google Scholar] [CrossRef]
- Vllasaliu, D.; Falcone, F.H.; Stolnik, S.; Garnett, M. Basement Membrane Influences Intestinal Epithelial Cell Growth and Presents a Barrier to the Movement of Macromolecules. Exp. Cell Res. 2014, 323, 218–231. [Google Scholar] [CrossRef]
- Hahn, U.; Stallmach, A.; Hahn, E.G.; Riecken, E.O. Basement Membrane Components Are Potent Promoters of Rat Intestinal Epithelial Cell Differentiation in Vitro. Gastroenterology 1990, 98, 322–335. [Google Scholar] [CrossRef]
- Kim, T.-Y.; Kim, S.; Kim, Y.; Lee, Y.-S.; Lee, S.; Lee, S.-H.; Kweon, M.-N. A High-Fat Diet Activates the BAs-FXR Axis and Triggers Cancer-Associated Fibroblast Properties in the Colon. Cell Mol. Gastroenterol. Hepatol. 2022, 13, 1141–1159. [Google Scholar] [CrossRef]
- Wu, N.; Sun, H.; Zhao, X.; Zhang, Y.; Tan, J.; Qi, Y.; Wang, Q.; Ng, M.; Liu, Z.; He, L.; et al. MAP3K2-Regulated Intestinal Stromal Cells Define a Distinct Stem Cell Niche. Nature 2021, 592, 606–610. [Google Scholar] [CrossRef] [PubMed]
- Abdelkarim, M.; Caron, S.; Duhem, C.; Prawitt, J.; Dumont, J.; Lucas, A.; Bouchaert, E.; Briand, O.; Brozek, J.; Kuipers, F.; et al. The Farnesoid X Receptor Regulates Adipocyte Differentiation and Function by Promoting Peroxisome Proliferator-Activated Receptor-Gamma and Interfering with the Wnt/Beta-Catenin Pathways. J. Biol. Chem. 2010, 285, 36759–36767. [Google Scholar] [CrossRef] [PubMed]
- Wild, S.L.; Elghajiji, A.; Grimaldos Rodriguez, C.; Weston, S.D.; Burke, Z.D.; Tosh, D. The Canonical Wnt Pathway as a Key Regulator in Liver Development, Differentiation and Homeostatic Renewal. Genes 2020, 11, 1163. [Google Scholar] [CrossRef] [PubMed]
- Previs, R.A.; Coleman, R.L.; Harris, A.L.; Sood, A.K. Molecular Pathways: Translational and Therapeutic Implications of the Notch Signaling Pathway in Cancer. Clin. Cancer Res. Off. J. Am. Assoc. Cancer Res. 2015, 21, 955–961. [Google Scholar] [CrossRef]
- Pajcini, K.V.; Speck, N.A.; Pear, W.S. Notch Signaling in Mammalian Hematopoietic Stem Cells. Leukemia 2011, 25, 1525–1532. [Google Scholar] [CrossRef]
- Obata, Y.; Takahashi, D.; Ebisawa, M.; Kakiguchi, K.; Yonemura, S.; Jinnohara, T.; Kanaya, T.; Fujimura, Y.; Ohmae, M.; Hase, K.; et al. Epithelial Cell-Intrinsic Notch Signaling Plays an Essential Role in the Maintenance of Gut Immune Homeostasis. J. Immunol. 2012, 188, 2427–2436. [Google Scholar] [CrossRef]
- Dawson, P.A. Roles of Ileal ASBT and OSTα-OSTβ in Regulating Bile Acid Signaling. Dig. Dis. 2017, 35, 261–266. [Google Scholar] [CrossRef]
- Song, Z.; Cai, Y.; Lao, X.; Wang, X.; Lin, X.; Cui, Y.; Kalavagunta, P.K.; Liao, J.; Jin, L.; Shang, J.; et al. Taxonomic Profiling and Populational Patterns of Bacterial Bile Salt Hydrolase (BSH) Genes Based on Worldwide Human Gut Microbiome. Microbiome 2019, 7, 9. [Google Scholar] [CrossRef]
- Ma, J.; Hong, Y.; Zheng, N.; Xie, G.; Lyu, Y.; Gu, Y.; Xi, C.; Chen, L.; Wu, G.; Li, Y.; et al. Gut Microbiota Remodeling Reverses Aging-Associated Inflammation and Dysregulation of Systemic Bile Acid Homeostasis in Mice Sex-Specifically. Gut Microbes 2020, 11, 1450–1474. [Google Scholar] [CrossRef]
- Su, J.; He, Z.; Yu, Y.; Lu, M.; Wu, Z.; Zhang, D. Gualou Xiebai Decoction Ameliorates Increased Caco-2 Monolayer Permeability Induced by Bile Acids via Tight Junction Regulation, Oxidative Stress Suppression and Apoptosis Reduction. J. Bioenerg. Biomembr. 2022, 54, 45–57. [Google Scholar] [CrossRef]
- Liu, Z.; Han, K.; Huo, X.; Yan, B.; Gao, M.; Lv, X.; Yu, P.; Gao, G.; Chang, Y.-Z. Nrf2 Knockout Dysregulates Iron Metabolism and Increases the Hemolysis through ROS in Aging Mice. Life Sci. 2020, 255, 117838. [Google Scholar] [CrossRef] [PubMed]
- Ohtani, N.; Hara, E. Gut-Liver Axis-Mediated Mechanism of Liver Cancer: A Special Focus on the Role of Gut Microbiota. Cancer Sci. 2021, 112, 4433–4443. [Google Scholar] [CrossRef] [PubMed]
- Vaddavalli, P.L.; Schumacher, B. The P53 Network: Cellular and Systemic DNA Damage Responses in Cancer and Aging. Trends Genet. 2022, 38, 598–612. [Google Scholar] [CrossRef]
- Chesnokova, V.; Zonis, S.; Apostolou, A.; Estrada, H.Q.; Knott, S.; Wawrowsky, K.; Michelsen, K.; Ben-Shlomo, A.; Barrett, R.; Gorbunova, V.; et al. Local Non-Pituitary Growth Hormone Is Induced with Aging and Facilitates Epithelial Damage. Cell Rep. 2021, 37, 110068. [Google Scholar] [CrossRef] [PubMed]
- Jin, L.; Shi, L.; Huang, W. The Role of Bile Acids in Human Aging. Med. Rev. 2024, 4, 154–157. [Google Scholar] [CrossRef]
- Xue, Y.; Wei, Y.; Cao, L.; Shi, M.; Sheng, J.; Xiao, Q.; Cheng, Z.; Luo, T.; Jiao, Q.; Wu, A.; et al. Protective Effects of Scutellaria-Coptis Herb Couple against Non-Alcoholic Steatohepatitis via Activating NRF2 and FXR Pathways in Vivo and in Vitro. J. Ethnopharmacol. 2024, 318, 116933. [Google Scholar] [CrossRef]
- Duan, Y.; Guo, F.; Li, C.; Xiang, D.; Gong, M.; Yi, H.; Chen, L.; Yan, L.; Zhang, D.; Dai, L.; et al. Aqueous Extract of Fermented Eucommia Ulmoides Leaves Alleviates Hyperlipidemia by Maintaining Gut Homeostasis and Modulating Metabolism in High-Fat Diet Fed Rats. Phytomedicine 2024, 128, 155291. [Google Scholar] [CrossRef]
- Ha, S.; Yang, Y.; Won Kim, J.; Son, M.; Kim, D.; Kim, M.-J.; Im, D.-S.; Young Chung, H.; Chung, K.W. Diminished Tubule Epithelial Farnesoid X Receptor Expression Exacerbates Inflammation and Fibrosis Response in Aged Rat Kidney. J. Gerontol. A 2023, 78, 60–68. [Google Scholar] [CrossRef]
- Yang, G.; Jena, P.K.; Hu, Y.; Sheng, L.; Chen, S.-Y.; Slupsky, C.M.; Davis, R.; Tepper, C.G.; Wan, Y.-J.Y. The Essential Roles of FXR in Diet and Age Influenced Metabolic Changes and Liver Disease Development: A Multi-Omics Study. Biomark. Res. 2023, 11, 20. [Google Scholar] [CrossRef]
- Xiong, X.; Wang, X.; Lu, Y.; Wang, E.; Zhang, Z.; Yang, J.; Zhang, H.; Li, X. Hepatic Steatosis Exacerbated by Endoplasmic Reticulum Stress-Mediated Downregulation of FXR in Aging Mice. J. Hepatol. 2014, 60, 847–854. [Google Scholar] [CrossRef]
- Cui, S.; Hu, H.; Chen, A.; Cui, M.; Pan, X.; Zhang, P.; Wang, G.; Wang, H.; Hao, H. SIRT1 Activation Synergizes with FXR Agonism in Hepatoprotection via Governing Nucleocytoplasmic Shuttling and Degradation of FXR. Acta Pharm. Sin. B 2023, 13, 559–576. [Google Scholar] [CrossRef]
- Rogina, B.; Tissenbaum, H.A. SIRT1, Resveratrol and Aging. Front. Genet. 2024, 15, 1393181. [Google Scholar] [CrossRef] [PubMed]
- Dong, R.; Wang, X.; Wang, L.; Wang, C.; Huang, K.; Fu, T.; Liu, K.; Wu, J.; Sun, H.; Meng, Q. Yangonin Inhibits Ethanol-Induced Hepatocyte Senescence via miR-194/FXR Axis. Eur. J. Pharmacol. 2021, 890, 173653. [Google Scholar] [CrossRef] [PubMed]
- Wei, D.; Li, Y.; Che, M.; Li, C.; Wu, Q.; Sun, C. Melatonin Relieves Hepatic Lipid Dysmetabolism Caused by Aging via Modifying the Secondary Bile Acid Pattern of Gut Microbes. Cell Mol. Life Sci. 2022, 79, 527. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.X.; Luo, Y.; Wang, D.; Adorini, L.; Pruzanski, M.; Dobrinskikh, E.; Levi, M. A Dual Agonist of Farnesoid X Receptor (FXR) and the G Protein-Coupled Receptor TGR5, INT-767, Reverses Age-Related Kidney Disease in Mice. J. Biol. Chem. 2017, 292, 12018–12024. [Google Scholar] [CrossRef]
- Zhuang, L.; Ding, W.; Zhang, Q.; Ding, W.; Xu, X.; Yu, X.; Xi, D. TGR5 Attenuated Liver Ischemia-Reperfusion Injury by Activating the Keap1-Nrf2 Signaling Pathway in Mice. Inflammation 2021, 44, 859–872. [Google Scholar] [CrossRef]
- Hu, Q.; Zhang, W.; Wu, Z.; Tian, X.; Xiang, J.; Li, L.; Li, Z.; Peng, X.; Wei, S.; Ma, X.; et al. Baicalin and the Liver-Gut System: Pharmacological Bases Explaining Its Therapeutic Effects. Pharmacol. Res. 2021, 165, 105444. [Google Scholar] [CrossRef]
- Wu, Q.; Liang, X.; Wang, K.; Lin, J.; Wang, X.; Wang, P.; Zhang, Y.; Nie, Q.; Liu, H.; Zhang, Z.; et al. Intestinal Hypoxia-Inducible Factor 2α Regulates Lactate Levels to Shape the Gut Microbiome and Alter Thermogenesis. Cell Metab. 2021, 33, 1988–2003.e7. [Google Scholar] [CrossRef]
- Wang, Y.; Ding, Y.; Li, J.; Chavan, H.; Matye, D.; Ni, H.-M.; Chiang, J.Y.L.; Krishnamurthy, P.; Ding, W.-X.; Li, T. Targeting the Enterohepatic Bile Acid Signaling Induces Hepatic Autophagy via a CYP7A1-AKT-mTOR Axis in Mice. Cell Mol. Gastroenterol. Hepatol. 2017, 3, 245–260. [Google Scholar] [CrossRef]
- Perino, A.; Demagny, H.; Velazquez-Villegas, L.; Schoonjans, K. Molecular Physiology of Bile Acid Signaling in Health, Disease, and Aging. Physiol. Rev. 2021, 101, 683–731. [Google Scholar] [CrossRef]
- Moreno-Gonzalez, M.; Hampton, K.; Ruiz, P.; Beasy, G.; Nagies, F.S.; Parker, A.; Lazenby, J.; Bone, C.; Alava-Arteaga, A.; Patel, M.; et al. Regulation of Intestinal Senescence during Cholestatic Liver Disease Modulates Barrier Function and Liver Disease Progression. JHEP Rep. 2024, 6, 101159. [Google Scholar] [CrossRef] [PubMed]
- Zheng, C.; Wang, L.; Zou, T.; Lian, S.; Luo, J.; Lu, Y.; Hao, H.; Xu, Y.; Xiang, Y.; Zhang, X.; et al. Ileitis Promotes MASLD Progression via Bile Acid Modulation and Enhanced TGR5 Signaling in Ileal CD8+ T Cells. J. Hepatol. 2024, 80, 764–777. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.; Ruan, Z.; Lin, X.; Wang, H.; Xin, Y.; Tang, H.; Hu, Z.; Zhou, Y.; Wu, Y.; Wang, J.; et al. NAD+ Dependent UPRmt Activation Underlies Intestinal Aging Caused by Mitochondrial DNA Mutations. Nat. Commun. 2024, 15, 546. [Google Scholar] [CrossRef] [PubMed]
- Yue, Z.; Zhao, F.; Guo, Y.; Zhang, Y.; Chen, Y.; He, L.; Li, L. Lactobacillus Reuteri JCM 1112 Ameliorates Chronic Acrylamide-Induced Glucose Metabolism Disorder via the Bile Acid-TGR5-GLP-1 Axis and Modulates Intestinal Oxidative Stress in Mice. Food Funct. 2024, 15, 6450–6458. [Google Scholar] [CrossRef]
- Zhang, Y.; Wei, J.; Feng, X.; Lin, Q.; Deng, J.; Yuan, Y.; Li, M.; Zhai, B.; Chen, J. Folic Acid Supplementation Prevents High Body Fat-Induced Bone Loss through TGR5 Signaling Pathways. Food Funct. 2024, 15, 4193–4206. [Google Scholar] [CrossRef]
- Chu, C.; Li, T.; Yu, L.; Li, Y.; Li, M.; Guo, M.; Zhao, J.; Zhai, Q.; Tian, F.; Chen, W. A Low-Protein, High-Carbohydrate Diet Exerts a Neuroprotective Effect on Mice with 1-Methyl-4-Phenyl-1,2,3,6-Tetrahydropyridine-Induced Parkinson’s Disease by Regulating the Microbiota-Metabolite-Brain Axis and Fibroblast Growth Factor 21. J. Agric. Food Chem. 2023, 71, 8877–8893. [Google Scholar] [CrossRef]
- Zhang, L.; Yin, Z.; Liu, X.; Jin, G.; Wang, Y.; He, L.; Li, M.; Pang, X.; Yan, B.; Jia, Z.; et al. Dietary Emulsifier Polysorbate 80 Exposure Accelerates Age-Related Cognitive Decline. Brain. Behav. Immun. 2024, 119, 171–187. [Google Scholar] [CrossRef]
- Ma, J.; Li, M.; Bao, Y.; Huang, W.; He, X.; Hong, Y.; Wei, W.; Liu, Z.; Gao, X.; Yang, Y.; et al. Gut Microbiota-Brain Bile Acid Axis Orchestrates Aging-Related Neuroinflammation and Behavior Impairment in Mice. Pharmacol. Res. 2024, 208, 107361. [Google Scholar] [CrossRef]
- Hu, X.; Jiao, F.; Deng, J.; Zhou, Z.; Chen, S.; Liu, C.; Liu, Z.; Guo, F. Intestinal Epithelial Cell-Specific Deletion of Cytokine-Inducible SH2-Containing Protein Alleviates Experimental Colitis in Ageing Mice. J. Crohn’s Colitis 2023, 17, 1278–1290. [Google Scholar] [CrossRef]
- Grajeda-Iglesias, C.; Durand, S.; Daillère, R.; Iribarren, K.; Lemaitre, F.; Derosa, L.; Aprahamian, F.; Bossut, N.; Nirmalathasan, N.; Madeo, F.; et al. Oral Administration of Akkermansia Muciniphila Elevates Systemic Antiaging and Anticancer Metabolites. Aging 2021, 13, 6375–6405. [Google Scholar] [CrossRef]
- Sonoda, S.; Yamaza, T. A New Target of Dental Pulp-Derived Stem Cell-Based Therapy on Recipient Bone Marrow Niche in Systemic Lupus Erythematosus. Int. J. Mol. Sci. 2022, 23, 3479. [Google Scholar] [CrossRef] [PubMed]
- Borah, S.; Xi, L.; Zaug, A.J.; Powell, N.M.; Dancik, G.M.; Cohen, S.B.; Costello, J.C.; Theodorescu, D.; Cech, T.R. Cancer. TERT Promoter Mutations and Telomerase Reactivation in Urothelial Cancer. Science 2015, 347, 1006–1010. [Google Scholar] [CrossRef]
- Zhang, H.; Xu, H.; Zhang, C.; Tang, Q.; Bi, F. Ursodeoxycholic Acid Suppresses the Malignant Progression of Colorectal Cancer through TGR5-YAP Axis. Cell Death Discov. 2021, 7, 207. [Google Scholar] [CrossRef] [PubMed]
- Sansone, V.; Le Grazie, M.; Roselli, J.; Polvani, S.; Galli, A.; Tovoli, F.; Tarocchi, M. Telomerase Reactivation Is Associated with Hepatobiliary and Pancreatic Cancers. Hepatobiliary Pancreat. Dis. Int. 2020, 19, 420–428. [Google Scholar] [CrossRef]
- McKelvey, B.A.; Umbricht, C.B.; Zeiger, M.A. Telomerase Reverse Transcriptase (TERT) Regulation in Thyroid Cancer: A Review. Front. Endocrinol. 2020, 11, 485. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Xue, J.; Jiang, K.; Chen, Y.; Zhu, L.; Liu, R. TERT Promoter Methylation Is Associated with High Expression of TERT and Poor Prognosis in Papillary Thyroid Cancer. Front. Oncol. 2024, 14, 1325345. [Google Scholar] [CrossRef]
- Kato, K.; Kawaguchi, A.; Nagata, K. Template Activating Factor-I Epigenetically Regulates the TERT Transcription in Human Cancer Cells. Sci. Rep. 2021, 11, 17726. [Google Scholar] [CrossRef]
- Saretzki, G. Extra-Telomeric Functions of Human Telomerase: Cancer, Mitochondria and Oxidative Stress. Curr. Pharm. Des. 2014, 20, 6386–6403. [Google Scholar] [CrossRef]
- Wang, X.; Zhou, P.; Sun, X.; Zheng, J.; Wei, G.; Zhang, L.; Wang, H.; Yao, J.; Lu, S.; Jia, P. Acidified Bile Acids Increase hTERT Expression via C-Myc Activation in Human Gastric Cancer Cells. Oncol. Rep. 2015, 33, 3038–3044. [Google Scholar] [CrossRef]
- Li, Y.; Tergaonkar, V. Noncanonical Functions of Telomerase: Implications in Telomerase-Targeted Cancer Therapies. Cancer Res. 2014, 74, 1639–1644. [Google Scholar] [CrossRef]
- Han, C.Y.; Kim, T.H.; Koo, J.H.; Kim, S.G. Farnesoid X Receptor as a Regulator of Fuel Consumption and Mitochondrial Function. Arch. Pharm. Res. 2016, 39, 1062–1074. [Google Scholar] [CrossRef] [PubMed]
- Modica, S.; Cariello, M.; Morgano, A.; Gross, I.; Vegliante, M.C.; Murzilli, S.; Salvatore, L.; Freund, J.-N.; Sabbà, C.; Moschetta, A. Transcriptional Regulation of the Intestinal Nuclear Bile Acid Farnesoid X Receptor (FXR) by the Caudal-Related Homeobox 2 (CDX2). J. Biol. Chem. 2014, 289, 28421–28432. [Google Scholar] [CrossRef]
- Zhao, K.; He, J.; Zhang, Y.; Xu, Z.; Xiong, H.; Gong, R.; Li, S.; Chen, S.; He, F. Activation of FXR Protects against Renal Fibrosis via Suppressing Smad3 Expression. Sci. Rep. 2016, 6, 37234. [Google Scholar] [CrossRef]
- Jin, W.; Zheng, M.; Chen, Y.; Xiong, H. Update on the Development of TGR5 Agonists for Human Diseases. Eur. J. Med. Chem. 2024, 271, 116462. [Google Scholar] [CrossRef]
- Sung, J.Y.; Kim, S.G.; Cho, D.H.; Kim, J.-R.; Choi, H.C. SRT1720-Induced Activation of SIRT1 Alleviates Vascular Smooth Muscle Cell Senescence through PKA-Dependent Phosphorylation of AMPKα at Ser485. FEBS Open Bio 2020, 10, 1316–1325. [Google Scholar] [CrossRef] [PubMed]
- Girotti, M.R.; Salatino, M.; Dalotto-Moreno, T.; Rabinovich, G.A. Sweetening the Hallmarks of Cancer: Galectins as Multifunctional Mediators of Tumor Progression. J. Exp. Med. 2020, 217, e20182041. [Google Scholar] [CrossRef] [PubMed]
- Vaquero-Sedas, M.I.; Vega-Palas, M.Á. Targeting Cancer through the Epigenetic Features of Telomeric Regions. Trends Cell Biol. 2019, 29, 281–290. [Google Scholar] [CrossRef]
- Vaquero-Sedas, M.I.; Vega-Palas, M.A. On the Chromatin Structure of Eukaryotic Telomeres. Epigenetics 2011, 6, 1055–1058. [Google Scholar] [CrossRef]
- Ghanim, G.E.; Fountain, A.J.; van Roon, A.-M.M.; Rangan, R.; Das, R.; Collins, K.; Nguyen, T.H.D. Structure of Human Telomerase Holoenzyme with Bound Telomeric DNA. Nature 2021, 593, 449–453. [Google Scholar] [CrossRef]
- Soohoo, C.Y.; Shi, R.; Lee, T.H.; Huang, P.; Lu, K.P.; Zhou, X.Z. Telomerase Inhibitor PinX1 Provides a Link between TRF1 and Telomerase to Prevent Telomere Elongation. J. Biol. Chem. 2011, 286, 3894–3906. [Google Scholar] [CrossRef]
- Galati, A.; Micheli, E.; Alicata, C.; Ingegnere, T.; Cicconi, A.; Pusch, M.C.; Giraud-Panis, M.-J.; Gilson, E.; Cacchione, S. TRF1 and TRF2 Binding to Telomeres Is Modulated by Nucleosomal Organization. Nucleic Acids Res. 2015, 43, 5824–5837. [Google Scholar] [CrossRef] [PubMed]
- Ovando-Roche, P.; Yu, J.S.L.; Testori, S.; Ho, C.; Cui, W. TRF2-Mediated Stabilization of hREST4 Is Critical for the Differentiation and Maintenance of Neural Progenitors. Stem Cells 2014, 32, 2111–2122. [Google Scholar] [CrossRef]
- Ding, L.; Yang, Q.; Zhang, E.; Wang, Y.; Sun, S.; Yang, Y.; Tian, T.; Ju, Z.; Jiang, L.; Wang, X.; et al. Notoginsenoside Ft1 Acts as a TGR5 Agonist but FXR Antagonist to Alleviate High Fat Diet-Induced Obesity and Insulin Resistance in Mice. Acta Pharm. Sin. B 2021, 11, 1541–1554. [Google Scholar] [CrossRef] [PubMed]
- Wang, G.; Chen, L.; Qin, S.; Geng, H.; Xia, C.; Zheng, Y.; Lei, X.; Zhang, J.; Wu, S.; Yao, J.; et al. Farnesoid X Receptor (FXR) Regulates mTORC1 Signaling and Autophagy by Inhibiting SESN2 Expression. Mol. Nutr. Food Res. 2023, 67, e2200517. [Google Scholar] [CrossRef] [PubMed]
- Jung, K.; Kim, M.; So, J.; Lee, S.-H.; Ko, S.; Shin, D. Farnesoid X Receptor Activation Impairs Liver Progenitor Cell-Mediated Liver Regeneration via the PTEN-PI3K-AKT-mTOR Axis in Zebrafish. Hepatology 2021, 74, 397–410. [Google Scholar] [CrossRef]
- Roglans, N.; Fauste, E.; Bentanachs, R.; Velázquez, A.M.; Pérez-Armas, M.; Donis, C.; Panadero, M.I.; Alegret, M.; Otero, P.; Bocos, C.; et al. Bempedoic Acid Restores Liver H2S Production in a Female Sprague-Dawley Rat Dietary Model of Non-Alcoholic Fatty Liver. Int. J. Mol. Sci. 2022, 24, 473. [Google Scholar] [CrossRef]
- Zhou, X.; Yan, Q.; Yang, H.; Ren, A.; He, Z.; Tan, Z. Maternal Intake Restriction Programs the Energy Metabolism, Clock Circadian Regulator and mTOR Signals in the Skeletal Muscles of Goat Offspring Probably via the Protein Kinase A-cAMP-Responsive Element-Binding Proteins Pathway. Anim. Nutr. 2021, 7, 1303–1314. [Google Scholar] [CrossRef]
- Shang, J.-N.; Yu, C.-G.; Li, R.; Xi, Y.; Jian, Y.J.; Xu, N.; Chen, S. The Nonautophagic Functions of Autophagy-Related Proteins. Autophagy 2024, 20, 720–734. [Google Scholar] [CrossRef]
- Wu, N.; Zheng, W.; Zhou, Y.; Tian, Y.; Tang, M.; Feng, X.; Ashrafizadeh, M.; Wang, Y.; Niu, X.; Tambuwala, M.; et al. Autophagy in Aging-Related Diseases and Cancer: Principles, Regulatory Mechanisms and Therapeutic Potential. Ageing Res. Rev. 2024, 100, 102428. [Google Scholar] [CrossRef]
- García-Rodríguez, J.L.; Barbier-Torres, L.; Fernández-Álvarez, S.; Gutiérrez-de Juan, V.; Monte, M.J.; Halilbasic, E.; Herranz, D.; Álvarez, L.; Aspichueta, P.; Marín, J.J.G.; et al. SIRT1 Controls Liver Regeneration by Regulating Bile Acid Metabolism through Farnesoid X Receptor and Mammalian Target of Rapamycin Signaling. Hepatology 2014, 59, 1972–1983. [Google Scholar] [CrossRef]
- Wang, Y.; Gunewardena, S.; Li, F.; Matye, D.J.; Chen, C.; Chao, X.; Jung, T.; Zhang, Y.; Czerwiński, M.; Ni, H.-M.; et al. An FGF15/19-TFEB Regulatory Loop Controls Hepatic Cholesterol and Bile Acid Homeostasis. Nat. Commun. 2020, 11, 3612. [Google Scholar] [CrossRef] [PubMed]
- Tian, S.; Wang, J.; Gao, R.; Zhao, F.; Wang, J.; Zhu, W. Galacto-Oligosaccharides Alleviate LPS-Induced Immune Imbalance in Small Intestine through Regulating Gut Microbe Composition and Bile Acid Pool. J. Agric. Food Chem. 2023, 71, 17615–17626. [Google Scholar] [CrossRef]
- Yang, D.; Sun, Y.; Wen, P.; Chen, Y.; Cao, J.; Sun, X.; Dong, Y. Chronic Stress-Induced Serotonin Impairs Intestinal Epithelial Cell Mitochondrial Biogenesis via the AMPK-PGC-1α Axis. Int. J. Biol. Sci. 2024, 20, 4476–4495. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Sheng, F.; Zou, L.; Xiao, J.; Li, P. Hyperoside Attenuates Non-Alcoholic Fatty Liver Disease in Rats via Cholesterol Metabolism and Bile Acid Metabolism. J. Adv. Res. 2021, 34, 109–122. [Google Scholar] [CrossRef]
- Huang, J.; Liao, S.; Fu, X.; Wang, Y.; Zhou, S.; Lu, Y. AMP-Activated Protein Kinase-Farnesoid X Receptor Pathway Contributes to Oleanolic Acid-Induced Liver Injury. J. Appl. Toxicol. 2023, 43, 1201–1213. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Liu, R.; Yu, L.; Yuan, Z.; Sun, R.; Yang, H.; Zhang, L.; Jiang, Z. Alpha-Naphthylisothiocyanate Impairs Bile Acid Homeostasis through AMPK-FXR Pathways in Rat Primary Hepatocytes. Toxicology 2016, 370, 106–115. [Google Scholar] [CrossRef]
- Lee, E.; Lee, M.-S.; Chang, E.; Kim, C.-T.; Choi, A.-J.; Kim, I.-H.; Kim, Y. High Hydrostatic Pressure Extract of Mulberry Leaves Ameliorates Hypercholesterolemia via Modulating Hepatic microRNA-33 Expression and AMPK Activity in High Cholesterol Diet Fed Rats. Food Nutr. Res. 2021, 65, 10-29219. [Google Scholar] [CrossRef]
- Li, D.; Cui, Y.; Wang, X.; Liu, F.; Li, X. Apple Polyphenol Extract Improves High-Fat Diet-Induced Hepatic Steatosis by Regulating Bile Acid Synthesis and Gut Microbiota in C57BL/6 Male Mice. J. Agric. Food Chem. 2021, 69, 6829–6841. [Google Scholar] [CrossRef]
- Rodríguez-Agudo, R.; González-Recio, I.; Serrano-Maciá, M.; Bravo, M.; Petrov, P.; Blaya, D.; Herranz, J.M.; Mercado-Gómez, M.; Rejano-Gordillo, C.M.; Lachiondo-Ortega, S.; et al. Anti-miR-873-5p Improves Alcohol-Related Liver Disease by Enhancing Hepatic Deacetylation via SIRT1. JHEP Rep. 2024, 6, 100918. [Google Scholar] [CrossRef]
- Qin, T.; Hasnat, M.; Wang, Z.; Hassan, H.M.; Zhou, Y.; Yuan, Z.; Zhang, W. Geniposide Alleviated Bile Acid-Associated NLRP3 Inflammasome Activation by Regulating SIRT1/FXR Signaling in Bile Duct Ligation-Induced Liver Fibrosis. Phytomedicine 2023, 118, 154971. [Google Scholar] [CrossRef]
- Ferrell, J.M.; Chiang, J.Y.L. Circadian Rhythms in Liver Metabolism and Disease. Acta Pharm. Sin. B 2015, 5, 113–122. [Google Scholar] [CrossRef]
- Lai, J.; Li, F.; Li, H.; Huang, R.; Ma, F.; Gu, X.; Cai, Y.; Huang, D.; Li, S.; Xiao, S.; et al. Melatonin Alleviates Necrotizing Enterocolitis by Reducing Bile Acid Levels through the SIRT1/FXR Signalling Axis. Int. Immunopharmacol. 2024, 128, 111360. [Google Scholar] [CrossRef]
- Liu, C.-X.; Gao, Y.; Xu, X.-F.; Jin, X.; Zhang, Y.; Xu, Q.; Ding, H.-X.; Li, B.-J.; Du, F.-K.; Li, L.-C.; et al. Bile Acids Inhibit Ferroptosis Sensitivity through Activating Farnesoid X Receptor in Gastric Cancer Cells. World J. Gastroenterol. 2024, 30, 485–498. [Google Scholar] [CrossRef]
- Adam, A.A.A.; Jongejan, A.; Moerland, P.D.; van der Mark, V.A.; Oude Elferink, R.P.; Chamuleau, R.A.F.M.; Hoekstra, R. Genome-Wide Expression Profiling Reveals Increased Stability and Mitochondrial Energy Metabolism of the Human Liver Cell Line HepaRG-CAR. Cytotechnology 2020, 72, 377–395. [Google Scholar] [CrossRef] [PubMed]
- Yi, W.; Shi, J.; Wang, L.; Wang, D.; Wang, Y.; Song, J.; Xin, L.; Jiang, F. Maternal PFOS Exposure in Mice Induces Hepatic Lipid Accumulation and Inflammation in Adult Female Offspring: Involvement of Microbiome-Gut-Liver Axis and Autophagy. J. Hazard. Mater. 2024, 470, 134177. [Google Scholar] [CrossRef]
- Luo, T.; Zhao, L.; Feng, C.; Yan, J.; Yuan, Y.; Chen, H. Asparagine Prevents Intestinal Stem Cell Aging via the Autophagy-Lysosomal Pathway. Aging Cell 2024, 24, e14423. [Google Scholar] [CrossRef]
- Jin, Y.; Zhao, L.; Zhang, Y.; Chen, T.; Shi, H.; Sun, H.; Ding, S.; Chen, S.; Cao, H.; Zhang, G.; et al. BIN1 Deficiency Enhances ULK3-Dependent Autophagic Flux and Reduces Dendritic Size in Mouse Hippocampal Neurons. Autophagy 2024, 21, 1–20. [Google Scholar] [CrossRef] [PubMed]
- Sanz-Alcázar, A.; Portillo-Carrasquer, M.; Delaspre, F.; Pazos-Gil, M.; Tamarit, J.; Ros, J.; Cabiscol, E. Deciphering the Ferroptosis Pathways in Dorsal Root Ganglia of Friedreich Ataxia Models. The Role of LKB1/AMPK, KEAP1, and GSK3β in the Impairment of the NRF2 Response. Redox Biol. 2024, 76, 103339. [Google Scholar] [CrossRef]
- Velagapudi, S.; Karsai, G.; Karsai, M.; Mohammed, S.A.; Montecucco, F.; Liberale, L.; Lee, H.; Carbone, F.; Adami, G.F.; Yang, K.; et al. Inhibition of de Novo Ceramide Synthesis by Sirtuin-1 Improves Beta-Cell Function and Glucose Metabolism in Type 2 Diabetes. Cardiovasc. Res. 2024, 120, 1265–1278. [Google Scholar] [CrossRef]
- Zhang, T.; Xu, L.; Guo, X.; Tao, H.; Liu, Y.; Liu, X.; Zhang, Y.; Meng, X. The Potential of Herbal Drugs to Treat Heart Failure: The Roles of Sirt1/AMPK. J. Pharm. Anal. 2024, 14, 157–176. [Google Scholar] [CrossRef] [PubMed]
- Di Ciaula, A.; Garruti, G.; Baccetto, R.L.; Molina-Molina, E.; Bonfrate, L.; Wang, D.Q.-H.; Portincasa, P. Bile Acid Physiology. Ann. Hepatol. 2017, 16, S4–S14. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Zhang, X.; Liu, H.; Wang, P.; Li, L.; Bionaz, M.; Lin, P.; Yao, J. Altered Bile Acid and Correlations with Gut Microbiome in Transition Dairy Cows with Different Glucose and Lipid Metabolism Status. J. Dairy. Sci. 2024, 107, 9915–9933. [Google Scholar] [CrossRef]
- Song, Z.; Chen, J.; Ji, Y.; Yang, Q.; Chen, Y.; Wang, F.; Wu, Z. Amuc Attenuates High-Fat Diet-Induced Metabolic Disorders Linked to the Regulation of Fatty Acid Metabolism, Bile Acid Metabolism, and the Gut Microbiota in Mice. Int. J. Biol. Macromol. 2023, 242, 124650. [Google Scholar] [CrossRef] [PubMed]
- Xie, C.; Jiang, C.; Shi, J.; Gao, X.; Sun, D.; Sun, L.; Wang, T.; Takahashi, S.; Anitha, M.; Krausz, K.W.; et al. An Intestinal Farnesoid X Receptor-Ceramide Signaling Axis Modulates Hepatic Gluconeogenesis in Mice. Diabetes 2017, 66, 613–626. [Google Scholar] [CrossRef]
- Mencarelli, A.; Renga, B.; D’Amore, C.; Santorelli, C.; Graziosi, L.; Bruno, A.; Monti, M.C.; Distrutti, E.; Cipriani, S.; Donini, A.; et al. Dissociation of Intestinal and Hepatic Activities of FXR and LXRα Supports Metabolic Effects of Terminal Ileum Interposition in Rodents. Diabetes 2013, 62, 3384–3393. [Google Scholar] [CrossRef]
- Zhai, Y.; Zhou, W.; Yan, X.; Qiao, Y.; Guan, L.; Zhang, Z.; Liu, H.; Jiang, J.; Liu, J.; Peng, L. Astragaloside IV Ameliorates Diet-Induced Hepatic Steatosis in Obese Mice by Inhibiting Intestinal FXR via Intestinal Flora Remodeling. Phytomedicine 2022, 107, 154444. [Google Scholar] [CrossRef]
- Clifford, B.L.; Sedgeman, L.R.; Williams, K.J.; Morand, P.; Cheng, A.; Jarrett, K.E.; Chan, A.P.; Brearley-Sholto, M.C.; Wahlström, A.; Ashby, J.W.; et al. FXR Activation Protects against NAFLD via Bile-Acid-Dependent Reductions in Lipid Absorption. Cell Metab. 2021, 33, 1671–1684.e4. [Google Scholar] [CrossRef]
- Dou, X.; Huo, T.; Liu, Y.; Pang, Z.; Su, L.; Zhao, X.; Peng, X.; Liu, Z.; Zhang, L.; Jiao, N. Discovery of Novel and Selective Farnesoid X Receptor Antagonists through Structure-Based Virtual Screening, Preliminary Structure-Activity Relationship Study, and Biological Evaluation. Eur. J. Med. Chem. 2024, 269, 116323. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Fang, R.; Lu, X.; Zhang, Y.; Yang, M.; Su, Y.; Jiang, Y.; Man, C. Lactobacillus Reuteri J1 Prevents Obesity by Altering the Gut Microbiota and Regulating Bile Acid Metabolism in Obese Mice. Food Funct. 2022, 13, 6688–6701. [Google Scholar] [CrossRef]
- Xu, J.; Li, Y.; Chen, W.-D.; Xu, Y.; Yin, L.; Ge, X.; Jadhav, K.; Adorini, L.; Zhang, Y. Hepatic Carboxylesterase 1 Is Essential for Both Normal and Farnesoid X Receptor-Controlled Lipid Homeostasis. Hepatology 2014, 59, 1761–1771. [Google Scholar] [CrossRef]
- Ghosh Laskar, M.; Eriksson, M.; Rudling, M.; Angelin, B. Treatment with the Natural FXR Agonist Chenodeoxycholic Acid Reduces Clearance of Plasma LDL Whilst Decreasing Circulating PCSK9, Lipoprotein(a) and Apolipoprotein C-III. J. Intern. Med. 2017, 281, 575–585. [Google Scholar] [CrossRef]
- Handelman, S.K.; Puentes, Y.M.; Kuppa, A.; Chen, Y.; Du, X.; Feitosa, M.F.; Palmer, N.D.; Speliotes, E.K. Population-Based Meta-Analysis and Gene-Set Enrichment Identifies FXR/RXR Pathway as Common to Fatty Liver Disease and Serum Lipids. Hepatol. Commun. 2022, 6, 3120–3131. [Google Scholar] [CrossRef] [PubMed]
- Jang, S.; Lee, M.-S.; Kang, S.-A.; Kim, C.-T.; Kim, Y. Portulaca oleracea L. Extract Regulates Hepatic Cholesterol Metabolism via the AMPK/MicroRNA-33/34a Pathway in Rats Fed a High-Cholesterol Diet. Nutrients 2022, 14, 3330. [Google Scholar] [CrossRef]
- Modica, S.; Petruzzelli, M.; Bellafante, E.; Murzilli, S.; Salvatore, L.; Celli, N.; Di Tullio, G.; Palasciano, G.; Moustafa, T.; Halilbasic, E.; et al. Selective Activation of Nuclear Bile Acid Receptor FXR in the Intestine Protects Mice against Cholestasis. Gastroenterology 2012, 142, 355–365.e4. [Google Scholar] [CrossRef]
- Wang, F.; Zhao, C.; Yang, M.; Zhang, L.; Wei, R.; Meng, K.; Bao, Y.; Zhang, L.; Zheng, J. Four Citrus Flavanones Exert Atherosclerosis Alleviation Effects in ApoE-/- Mice via Different Metabolic and Signaling Pathways. J. Agric. Food Chem. 2021, 69, 5226–5237. [Google Scholar] [CrossRef] [PubMed]
- Schmid, A.; Karrasch, T.; Schäffler, A. The Emerging Role of Bile Acids in White Adipose Tissue. Trends Endocrinol. Metab. 2023, 34, 718–734. [Google Scholar] [CrossRef] [PubMed]
- Pathak, P.; Xie, C.; Nichols, R.G.; Ferrell, J.M.; Boehme, S.; Krausz, K.W.; Patterson, A.D.; Gonzalez, F.J.; Chiang, J.Y.L. Intestine Farnesoid X Receptor Agonist and the Gut Microbiota Activate G-Protein Bile Acid Receptor-1 Signaling to Improve Metabolism. Hepatology 2018, 68, 1574–1588. [Google Scholar] [CrossRef]
- Fang, S.; Suh, J.M.; Reilly, S.M.; Yu, E.; Osborn, O.; Lackey, D.; Yoshihara, E.; Perino, A.; Jacinto, S.; Lukasheva, Y.; et al. Intestinal FXR Agonism Promotes Adipose Tissue Browning and Reduces Obesity and Insulin Resistance. Nat. Med. 2015, 21, 159–165. [Google Scholar] [CrossRef]
- Parséus, A.; Sommer, N.; Sommer, F.; Caesar, R.; Molinaro, A.; Ståhlman, M.; Greiner, T.U.; Perkins, R.; Bäckhed, F. Microbiota-Induced Obesity Requires Farnesoid X Receptor. Gut 2017, 66, 429–437. [Google Scholar] [CrossRef]
- Dean, A.E.; Reichardt, F.; Anakk, S. Sex Differences Feed into Nuclear Receptor Signaling along the Digestive Tract. Biochim. Biophys. Acta Mol. Basis Dis. 2021, 1867, 166211. [Google Scholar] [CrossRef]
- Tacke, F.; Puengel, T.; Loomba, R.; Friedman, S.L. An Integrated View of Anti-Inflammatory and Antifibrotic Targets for the Treatment of NASH. J. Hepatol. 2023, 79, 552–566. [Google Scholar] [CrossRef] [PubMed]
- Paternostro, R.; Trauner, M. Current Treatment of Non-Alcoholic Fatty Liver Disease. J. Intern. Med. 2022, 292, 190–204. [Google Scholar] [CrossRef]
- Zhao, T.; Wang, J.; He, A.; Wang, S.; Chen, Y.; Lu, J.; Lv, J.; Li, S.; Wang, J.; Qian, M.; et al. Mebhydrolin Ameliorates Glucose Homeostasis in Type 2 Diabetic Mice by Functioning as a Selective FXR Antagonist. Metabolism 2021, 119, 154771. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.; Xu, W.; Dong, W.; Chen, G.; Sun, Y.; Zeng, X. Anti-Diabetic Effect of Dicaffeoylquinic Acids Is Associated with the Modulation of Gut Microbiota and Bile Acid Metabolism. J. Adv. Res. 2024; in press. [Google Scholar] [CrossRef]
- Dong, R.; Yang, X.; Wang, C.; Liu, K.; Liu, Z.; Ma, X.; Sun, H.; Huo, X.; Fu, T.; Meng, Q. Yangonin Protects against Non-Alcoholic Fatty Liver Disease through Farnesoid X Receptor. Phytomedicine 2019, 53, 134–142. [Google Scholar] [CrossRef] [PubMed]
- Gao, F.; Zhang, X.; Zhou, L.; Zhou, S.; Zheng, Y.; Yu, J.; Fan, W.; Zhu, Y.; Han, X. Type 2 Diabetes Mitigation in the Diabetic Goto-Kakizaki Rat by Elevated Bile Acids Following a Common-Bile-Duct Surgery. Metabolism 2016, 65, 78–88. [Google Scholar] [CrossRef]
- Sun, L.; Cai, J.; Gonzalez, F.J. The Role of Farnesoid X Receptor in Metabolic Diseases, and Gastrointestinal and Liver Cancer. Nat. Rev. Gastroenterol. Hepatol. 2021, 18, 335–347. [Google Scholar] [CrossRef]
- Zhang, L.; Chen, J.; Yang, X.; Shen, C.; Huang, J.; Zhang, D.; Liu, N.; Liu, C.; Zhong, Y.; Chen, Y.; et al. Hepatic Zbtb18 (Zinc Finger and BTB Domain Containing 18) Alleviates Hepatic Steatohepatitis via FXR (Farnesoid X Receptor). Signal Transduction Targeted Ther. 2024, 9, 20. [Google Scholar] [CrossRef]
- González-Regueiro, J.A.; Moreno-Castañeda, L.; Uribe, M.; Chávez-Tapia, N.C. The Role of Bile Acids in Glucose Metabolism and Their Relation with Diabetes. Ann. Hepatol. 2017, 16, 16–21. [Google Scholar] [CrossRef]
- Vitulo, M.; Gnodi, E.; Rosini, G.; Meneveri, R.; Giovannoni, R.; Barisani, D. Current Therapeutical Approaches Targeting Lipid Metabolism in NAFLD. Int. J. Mol. Sci. 2023, 24, 12748. [Google Scholar] [CrossRef]
- Kong, X.; Yang, C.; Li, B.; Yan, D.; Yang, Y.; Cao, C.; Xing, B.; Ma, X. FXR/Menin-Mediated Epigenetic Regulation of E2F3 Expression Controls β-Cell Proliferation and Is Increased in Islets from Diabetic GK Rats after RYGB. Biochim. Biophys. Acta Mol. Basis Dis. 2024, 1870, 167136. [Google Scholar] [CrossRef] [PubMed]
- Yue, Z.; Chen, Y.; Dong, Q.; Li, D.; Guo, M.; Zhang, L.; Shi, Y.; Wu, H.; Li, L.; Sun, Z. Acrylamide Induced Glucose Metabolism Disorder in Rats Involves Gut Microbiota Dysbiosis and Changed Bile Acids Metabolism. Food Res. Int. 2022, 157, 111405. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Zhou, L.; Xia, J.; Dong, C.; Luo, X. Human Microbiome and Its Medical Applications. Front. Mol. Biosci. 2021, 8, 703585. [Google Scholar] [CrossRef] [PubMed]
- Qin, T.; Gao, X.; Lei, L.; Feng, J.; Zhang, W.; Hu, Y.; Shen, Z.; Liu, Z.; Huan, Y.; Wu, S.; et al. Machine Learning- and Structure-Based Discovery of a Novel Chemotype as FXR Agonists for Potential Treatment of Nonalcoholic Fatty Liver Disease. Eur. J. Med. Chem. 2023, 252, 115307. [Google Scholar] [CrossRef]
- Sun, J.; Fan, J.; Li, T.; Yan, X.; Jiang, Y. Nuciferine Protects Against High-Fat Diet-Induced Hepatic Steatosis via Modulation of Gut Microbiota and Bile Acid Metabolism in Rats. J. Agric. Food Chem. 2022, 70, 12014–12028. [Google Scholar] [CrossRef]
- Li, Y.; Tian, Y.; Cai, W.; Wang, Q.; Chang, Y.; Sun, Y.; Dong, P.; Wang, J. Novel ι-Carrageenan Tetrasaccharide Alleviates Liver Lipid Accumulation via the Bile Acid-FXR-SHP/PXR Pathway to Regulate Cholesterol Conversion and Fatty Acid Metabolism in Insulin-Resistant Mice. J. Agric. Food Chem. 2021, 69, 9813–9821. [Google Scholar] [CrossRef]
- Fan, L.; Lai, R.; Ma, N.; Dong, Y.; Li, Y.; Wu, Q.; Qiao, J.; Lu, H.; Gong, L.; Tao, Z.; et al. miR-552-3p Modulates Transcriptional Activities of FXR and LXR to Ameliorate Hepatic Glycolipid Metabolism Disorder. J. Hepatol. 2021, 74, 8–19. [Google Scholar] [CrossRef]
- Gaillard, D.; Masson, D.; Garo, E.; Souidi, M.; Pais de Barros, J.-P.; Schoonjans, K.; Grober, J.; Besnard, P.; Thomas, C. Muricholic Acids Promote Resistance to Hypercholesterolemia in Cholesterol-Fed Mice. Int. J. Mol. Sci. 2021, 22, 7163. [Google Scholar] [CrossRef]
- Ruan, G.; Wu, F.; Shi, D.; Sun, H.; Wang, F.; Xu, C. Metformin: Update on Mechanisms of Action on Liver Diseases. Front. Nutr. 2023, 10, 1327814. [Google Scholar] [CrossRef]
- Anhê, F.F.; Nachbar, R.T.; Varin, T.V.; Trottier, J.; Dudonné, S.; Le Barz, M.; Feutry, P.; Pilon, G.; Barbier, O.; Desjardins, Y.; et al. Treatment with Camu Camu (Myrciaria Dubia) Prevents Obesity by Altering the Gut Microbiota and Increasing Energy Expenditure in Diet-Induced Obese Mice. Gut 2019, 68, 453–464. [Google Scholar] [CrossRef]
- Broeders, E.P.M.; Nascimento, E.B.M.; Havekes, B.; Brans, B.; Roumans, K.H.M.; Tailleux, A.; Schaart, G.; Kouach, M.; Charton, J.; Deprez, B.; et al. The Bile Acid Chenodeoxycholic Acid Increases Human Brown Adipose Tissue Activity. Cell Metab. 2015, 22, 418–426. [Google Scholar] [CrossRef] [PubMed]
- Han, Z.; Yao, L.; Zhong, Y.; Xiao, Y.; Gao, J.; Zheng, Z.; Fan, S.; Zhang, Z.; Gong, S.; Chang, S.; et al. Gut Microbiota Mediates the Effects of Curcumin on Enhancing Ucp1-Dependent Thermogenesis and Improving High-Fat Diet-Induced Obesity. Food Funct. 2021, 12, 6558–6575. [Google Scholar] [CrossRef] [PubMed]
- Hu, J.; Wang, C.; Huang, X.; Yi, S.; Pan, S.; Zhang, Y.; Yuan, G.; Cao, Q.; Ye, X.; Li, H. Gut Microbiota-Mediated Secondary Bile Acids Regulate Dendritic Cells to Attenuate Autoimmune Uveitis through TGR5 Signaling. Cell Rep. 2021, 36, 109726. [Google Scholar] [CrossRef] [PubMed]
- Halkias, C.; Darby, W.G.; Feltis, B.N.; McIntyre, P.; Macrides, T.A.; Wright, P.F.A. Marine Bile Natural Products as Agonists of the TGR5 Receptor. J. Nat. Prod. 2021, 84, 1507–1514. [Google Scholar] [CrossRef]
- Lo, S.-H.; Cheng, K.-C.; Li, Y.-X.; Chang, C.-H.; Cheng, J.-T.; Lee, K.-S. Development of Betulinic Acid as an Agonist of TGR5 Receptor Using a New in Vitro Assay. Drug Des. Devel Ther. 2016, 10, 2669–2676. [Google Scholar] [CrossRef]
- Zhang, D.; Cheng, H.; Wu, J.; Zhou, Y.; Tang, F.; Liu, J.; Feng, W.; Peng, C. The Energy Metabolism-Promoting Effect of Aconite Is Associated with Gut Microbiota and Bile Acid Receptor TGR5-UCP1 Signaling. Front. Pharmacol. 2024, 15, 1392385. [Google Scholar] [CrossRef]
- Zhu, Y.; Zhang, J.-Y.; Wei, Y.-L.; Hao, J.-Y.; Lei, Y.-Q.; Zhao, W.-B.; Xiao, Y.-H.; Sun, A.-D. The Polyphenol-Rich Extract from Chokeberry (Aronia Melanocarpa L.) Modulates Gut Microbiota and Improves Lipid Metabolism in Diet-Induced Obese Rats. Nutr. Metab. 2020, 17, 54. [Google Scholar] [CrossRef]
- Wang, X.X.; Wang, D.; Luo, Y.; Myakala, K.; Dobrinskikh, E.; Rosenberg, A.Z.; Levi, J.; Kopp, J.B.; Field, A.; Hill, A.; et al. FXR/TGR5 Dual Agonist Prevents Progression of Nephropathy in Diabetes and Obesity. J. Am. Soc. Nephrol. 2018, 29, 118–137. [Google Scholar] [CrossRef]
- Velazquez-Villegas, L.A.; Perino, A.; Lemos, V.; Zietak, M.; Nomura, M.; Pols, T.W.H.; Schoonjans, K. TGR5 Signalling Promotes Mitochondrial Fission and Beige Remodelling of White Adipose Tissue. Nat. Commun. 2018, 9, 245. [Google Scholar] [CrossRef]
- Wang, X.X.; Xie, C.; Libby, A.E.; Ranjit, S.; Levi, J.; Myakala, K.; Bhasin, K.; Jones, B.A.; Orlicky, D.J.; Takahashi, S.; et al. The Role of FXR and TGR5 in Reversing and Preventing Progression of Western Diet-Induced Hepatic Steatosis, Inflammation, and Fibrosis in Mice. J. Biol. Chem. 2022, 298, 102530. [Google Scholar] [CrossRef]
- Ye, J.; Xiao, J.; Wang, J.; Ma, Y.; Zhang, Y.; Zhang, Q.; Zhang, Z.; Yin, H. The Interaction between Intracellular Energy Metabolism and Signaling Pathways during Osteogenesis. Front. Mol. Biosci. 2021, 8, 807487. [Google Scholar] [CrossRef] [PubMed]
- Sarker, R.; Lin, R.; Singh, V.; Donowitz, M.; Tse, C.-M. SLC26A3 (DRA) Is Stimulated in a Synergistic, Intracellular Ca2+-Dependent Manner by cAMP and ATP in Intestinal Epithelial Cells. Am. J. Physiol. Cell Physiol. 2023, 324, C1263–C1273. [Google Scholar] [CrossRef]
- Oleynikov, I.P.; Sudakov, R.V.; Azarkina, N.V.; Vygodina, T.V. Direct Interaction of Mitochondrial Cytochrome c Oxidase with Thyroid Hormones: Evidence for Two Binding Sites. Cells 2022, 11, 908. [Google Scholar] [CrossRef]
- Wang, Z.; Qiang, X.; Peng, Y.; Wang, Y.; Zhao, Q.; He, D. Design and Synthesis of Bile Acid Derivatives and Their Activity against Colon Cancer. RSC Med. Chem. 2022, 13, 1391–1409. [Google Scholar] [CrossRef]
- Zhao, L.; Qiu, J.; Zhang, J.; Li, A.; Wang, G. Apoptosis and Oxidative Stress in Human Intestinal Epithelial Caco-2 Cells Caused by Marine Phycotoxin Azaspiracid-2. Toxins 2024, 16, 381. [Google Scholar] [CrossRef]
- Xu, Y.; Feingold, P.L.; Surman, D.R.; Brown, K.; Xi, S.; Davis, J.L.; Hernandez, J.; Schrump, D.S.; Ripley, R.T. Bile Acid and Cigarette Smoke Enhance the Aggressive Phenotype of Esophageal Adenocarcinoma Cells by Downregulation of the Mitochondrial Uncoupling Protein-2. Oncotarget 2017, 8, 101057–101071. [Google Scholar] [CrossRef] [PubMed]
- Takanaga, H.; Maeda, H.; Yabuuchi, H.; Tamai, I.; Higashida, H.; Tsuji, A. Nicotinic Acid Transport Mediated by pH-Dependent Anion Antiporter and Proton Cotransporter in Rabbit Intestinal Brush-Border Membrane. J. Pharm. Pharmacol. 1996, 48, 1073–1077. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Wei, Y.; Jia, W.; Can, C.; Wang, R.; Yang, X.; Gu, C.; Liu, F.; Ji, C.; Ma, D. Chenodeoxycholic Acid Suppresses AML Progression through Promoting Lipid Peroxidation via ROS/P38 MAPK/DGAT1 Pathway and Inhibiting M2 Macrophage Polarization. Redox Biol. 2022, 56, 102452. [Google Scholar] [CrossRef]
- Da Dalt, L.; Moregola, A.; Svecla, M.; Pedretti, S.; Fantini, F.; Ronzio, M.; Uboldi, P.; Dolfini, D.; Donetti, E.; Baragetti, A.; et al. The Inhibition of Inner Mitochondrial Fusion in Hepatocytes Reduces Non-Alcoholic Fatty Liver and Improves Metabolic Profile during Obesity by Modulating Bile Acid Conjugation. Cardiovasc. Res. 2024, 119, 2917–2929. [Google Scholar] [CrossRef]
- Yao, B.; He, J.; Yin, X.; Shi, Y.; Wan, J.; Tian, Z. The Protective Effect of Lithocholic Acid on the Intestinal Epithelial Barrier Is Mediated by the Vitamin D Receptor via a SIRT1/Nrf2 and NF-κB Dependent Mechanism in Caco-2 Cells. Toxicol. Lett. 2019, 316, 109–118. [Google Scholar] [CrossRef]
- Zhang, Y.; Cheng, Y.; Liu, J.; Zuo, J.; Yan, L.; Thring, R.W.; Ba, X.; Qi, D.; Wu, M.; Gao, Y.; et al. Tauroursodeoxycholic Acid Functions as a Critical Effector Mediating Insulin Sensitization of Metformin in Obese Mice. Redox Biol. 2022, 57, 102481. [Google Scholar] [CrossRef]
- Ferrebee, C.B.; Li, J.; Haywood, J.; Pachura, K.; Robinson, B.S.; Hinrichs, B.H.; Jones, R.M.; Rao, A.; Dawson, P.A. Organic Solute Transporter α-β Protects Ileal Enterocytes from Bile Acid-Induced Injury. Cell. Mol. Gastroenterol. Hepatol. 2018, 5, 499–522. [Google Scholar] [CrossRef] [PubMed]
- Che, Y.; Xu, W.; Ding, C.; He, T.; Xu, X.; Shuai, Y.; Huang, H.; Wu, J.; Wang, Y.; Wang, C.; et al. Bile Acids Target Mitofusin 2 to Differentially Regulate Innate Immunity in Physiological versus Cholestatic Conditions. Cell Rep. 2023, 42, 112011. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.-Y.; Zhu, L.; Zheng, X.; Xie, T.-H.; Wang, W.; Zou, J.; Li, Y.; Li, H.-Y.; Cai, J.; Gu, S.; et al. TGR5 Activation Ameliorates Mitochondrial Homeostasis via Regulating the PKCδ/Drp1-HK2 Signaling in Diabetic Retinopathy. Front. Cell Dev. Biol. 2021, 9, 759421. [Google Scholar] [CrossRef] [PubMed]
- Qi, H.; Shen, D.; Jiang, C.; Wang, H.; Chang, M. Ursodeoxycholic Acid Protects Dopaminergic Neurons from Oxidative Stress via Regulating Mitochondrial Function, Autophagy, and Apoptosis in MPTP/MPP+-Induced Parkinson’s Disease. Neurosci. Lett. 2021, 741, 135493. [Google Scholar] [CrossRef]
- Wang, Q.; Lin, H.; Shen, C.; Zhang, M.; Wang, X.; Yuan, M.; Yuan, M.; Jia, S.; Cao, Z.; Wu, C.; et al. Gut Microbiota Regulates Postprandial GLP-1 Response via Ileal Bile Acid-TGR5 Signaling. Gut Microbes 2023, 15, 2274124. [Google Scholar] [CrossRef]
- Zheng, X.; Chen, T.; Jiang, R.; Zhao, A.; Wu, Q.; Kuang, J.; Sun, D.; Ren, Z.; Li, M.; Zhao, M.; et al. Hyocholic Acid Species Improve Glucose Homeostasis through a Distinct TGR5 and FXR Signaling Mechanism. Cell Metab. 2021, 33, 791–803.e7. [Google Scholar] [CrossRef]
- Li, W.; Zhuang, T.; Wang, Z.; Wang, X.; Liu, L.; Luo, Y.; Wang, R.; Li, L.; Huang, W.; Wang, Z.; et al. Red Ginseng Extracts Ameliorate High-Fat Diet-Induced Obesity and Insulin Resistance by Activating the Intestinal TGR5-Mediated Bile Acids Signaling Pathway. Phytomedicine 2023, 119, 154982. [Google Scholar] [CrossRef]
- Huang, S.; Ma, S.; Ning, M.; Yang, W.; Ye, Y.; Zhang, L.; Shen, J.; Leng, Y. TGR5 Agonist Ameliorates Insulin Resistance in the Skeletal Muscles and Improves Glucose Homeostasis in Diabetic Mice. Metabolism 2019, 99, 45–56. [Google Scholar] [CrossRef]
- Hou, Y.; Zhai, X.; Wang, X.; Wu, Y.; Wang, H.; Qin, Y.; Han, J.; Meng, Y. Research Progress on the Relationship between Bile Acid Metabolism and Type 2 Diabetes Mellitus. Diabetol. Metab. Syndr. 2023, 15, 235. [Google Scholar] [CrossRef]
- Tawulie, D.; Jin, L.; Shang, X.; Li, Y.; Sun, L.; Xie, H.; Zhao, J.; Liao, J.; Zhu, Z.; Cui, H.; et al. Jiang-Tang-San-Huang Pill Alleviates Type 2 Diabetes Mellitus through Modulating the Gut Microbiota and Bile Acids Metabolism. Phytomedicine 2023, 113, 154733. [Google Scholar] [CrossRef] [PubMed]
- Gu, M.; Feng, Y.; Chen, Y.; Fan, S.; Huang, C. Deoxyschizandrin Ameliorates Obesity and Non-Alcoholic Fatty Liver Disease: Involvement of Dual Farnesyl X Receptor/G Protein-Coupled Bile Acid Receptor 1 Activation and Leptin Sensitization. Phytother. Res. 2023, 37, 2771–2786. [Google Scholar] [CrossRef] [PubMed]
- Lynch, J.B.; Gonzalez, E.L.; Choy, K.; Faull, K.F.; Jewell, T.; Arellano, A.; Liang, J.; Yu, K.B.; Paramo, J.; Hsiao, E.Y. Gut Microbiota Turicibacter Strains Differentially Modify Bile Acids and Host Lipids. Nat. Commun. 2023, 14, 3669. [Google Scholar] [CrossRef]
- Tamai, Y.; Eguchi, A.; Shigefuku, R.; Kitamura, H.; Tempaku, M.; Sugimoto, R.; Kobayashi, Y.; Iwasa, M.; Takei, Y.; Nakagawa, H. Association of Lithocholic Acid with Skeletal Muscle Hypertrophy through TGR5-IGF-1 and Skeletal Muscle Mass in Cultured Mouse Myotubes, Chronic Liver Disease Rats and Humans. eLife 2022, 11, e80638. [Google Scholar] [CrossRef] [PubMed]
- Collins, S.L.; Stine, J.G.; Bisanz, J.E.; Okafor, C.D.; Patterson, A.D. Bile Acids and the Gut Microbiota: Metabolic Interactions and Impacts on Disease. Nat. Rev. Microbiol. 2023, 21, 236–247. [Google Scholar] [CrossRef]
- Jia, B.; Park, D.; Chun, B.H.; Hahn, Y.; Jeon, C.O. Diet-Related Alterations of Gut Bile Salt Hydrolases Determined Using a Metagenomic Analysis of the Human Microbiome. Int. J. Mol. Sci. 2021, 22, 3652. [Google Scholar] [CrossRef]
- Su, M.; Hu, R.; Tang, T.; Tang, W.; Huang, C. Review of the Correlation between Chinese Medicine and Intestinal Microbiota on the Efficacy of Diabetes Mellitus. Front. Endocrinol. 2022, 13, 1085092. [Google Scholar] [CrossRef]
- Li, J.; Dawson, P.A. Animal Models to Study Bile Acid Metabolism. Biochim. Biophys. Acta Mol. Basis Dis. 2019, 1865, 895–911. [Google Scholar] [CrossRef]
- Doden, H.L.; Ridlon, J.M. Microbial Hydroxysteroid Dehydrogenases: From Alpha to Omega. Microorganisms 2021, 9, 469. [Google Scholar] [CrossRef]
- Paik, D.; Yao, L.; Zhang, Y.; Bae, S.; D’Agostino, G.D.; Zhang, M.; Kim, E.; Franzosa, E.A.; Avila-Pacheco, J.; Bisanz, J.E.; et al. Human Gut Bacteria Produce ΤH17-Modulating Bile Acid Metabolites. Nature 2022, 603, 907–912. [Google Scholar] [CrossRef]
- Ticho, A.L.; Malhotra, P.; Dudeja, P.K.; Gill, R.K.; Alrefai, W.A. Intestinal Absorption of Bile Acids in Health and Disease. Compr. Physiol. 2019, 10, 21–56. [Google Scholar] [CrossRef] [PubMed]
- Swann, J.R.; Want, E.J.; Geier, F.M.; Spagou, K.; Wilson, I.D.; Sidaway, J.E.; Nicholson, J.K.; Holmes, E. Systemic Gut Microbial Modulation of Bile Acid Metabolism in Host Tissue Compartments. Proc. Natl. Acad. Sci. USA 2011, 108 (Suppl. S1), 4523–4530. [Google Scholar] [CrossRef]
- Taoka, H.; Yokoyama, Y.; Morimoto, K.; Kitamura, N.; Tanigaki, T.; Takashina, Y.; Tsubota, K.; Watanabe, M. Role of Bile Acids in the Regulation of the Metabolic Pathways. World J. Diabetes 2016, 7, 260–270. [Google Scholar] [CrossRef]
- He, Q.; Liu, L.; Wei, J.; Jiang, J.; Rong, Z.; Chen, X.; Zhao, J.; Jiang, K. Roles and Action Mechanisms of Bile Acid-Induced Gastric Intestinal Metaplasia: A Review. Cell Death Discov. 2022, 8, 158. [Google Scholar] [CrossRef] [PubMed]
- Münzker, J.; Haase, N.; Till, A.; Sucher, R.; Haange, S.-B.; Nemetschke, L.; Gnad, T.; Jäger, E.; Chen, J.; Riede, S.J.; et al. Functional Changes of the Gastric Bypass Microbiota Reactivate Thermogenic Adipose Tissue and Systemic Glucose Control via Intestinal FXR-TGR5 Crosstalk in Diet-Induced Obesity. Microbiome 2022, 10, 96. [Google Scholar] [CrossRef] [PubMed]
- Ganesan, R.; Jeong, J.-J.; Kim, D.J.; Suk, K.T. Recent Trends of Microbiota-Based Microbial Metabolites Metabolism in Liver Disease. Front. Med. 2022, 9, 841281. [Google Scholar] [CrossRef]
- Gong, J.; Zhang, Q.; Hu, R.; Yang, X.; Fang, C.; Yao, L.; Lv, J.; Wang, L.; Shi, M.; Zhang, W.; et al. Effects of Prevotella Copri on Insulin, Gut Microbiota and Bile Acids. Gut Microbes 2024, 16, 2340487. [Google Scholar] [CrossRef]
- Zhong, H.; Wang, J.; Abdullah, N.; Hafeez, M.A.; Guan, R.; Feng, F. Lactobacillus Plantarum ZJUFB2 Prevents High Fat Diet-Induced Insulin Resistance in Association with Modulation of the Gut Microbiota. Front. Nutr. 2021, 8, 754222. [Google Scholar] [CrossRef]
- Xu, J.; Xie, S.; Chi, S.; Zhang, S.; Cao, J.; Tan, B. Protective Effects of Taurocholic Acid on Excessive Hepatic Lipid Accumulation via Regulation of Bile Acid Metabolism in Grouper. Food Funct. 2022, 13, 3050–3062. [Google Scholar] [CrossRef]
- Roager, H.M.; Stanton, C.; Hall, L.J. Microbial Metabolites as Modulators of the Infant Gut Microbiome and Host-Microbial Interactions in Early Life. Gut Microbes 2023, 15, 2192151. [Google Scholar] [CrossRef]
- van Lier, Y.F.; Vos, J.; Blom, B.; Hazenberg, M.D. Allogeneic Hematopoietic Cell Transplantation, the Microbiome, and Graft-versus-Host Disease. Gut Microbes 2023, 15, 2178805. [Google Scholar] [CrossRef]
- Gao, J.; Sadiq, F.A.; Zheng, Y.; Zhao, J.; He, G.; Sang, Y. Biofilm-Based Delivery Approaches and Specific Enrichment Strategies of Probiotics in the Human Gut. Gut Microbes 2022, 14, 2126274. [Google Scholar] [CrossRef]
- Fleishman, J.S.; Kumar, S. Bile Acid Metabolism and Signaling in Health and Disease: Molecular Mechanisms and Therapeutic Targets. Signal Transduct. Targeted Ther. 2024, 9, 97. [Google Scholar] [CrossRef] [PubMed]
- Li, T.; Chiang, J.Y.L. Bile Acid Signaling in Metabolic Disease and Drug Therapy. Pharmacol. Rev. 2014, 66, 948–983. [Google Scholar] [CrossRef] [PubMed]
- Shapiro, H.; Kolodziejczyk, A.A.; Halstuch, D.; Elinav, E. Bile Acids in Glucose Metabolism in Health and Disease. J. Exp. Med. 2018, 215, 383–396. [Google Scholar] [CrossRef] [PubMed]
- Halilbasic, E.; Claudel, T.; Trauner, M. Bile Acid Transporters and Regulatory Nuclear Receptors in the Liver and Beyond. J. Hepatol. 2013, 58, 155–168. [Google Scholar] [CrossRef]
- Li, H.; He, J.; Jia, W. The Influence of Gut Microbiota on Drug Metabolism and Toxicity. Expert. Opin. Drug Metab. Toxicol. 2016, 12, 31–40. [Google Scholar] [CrossRef]
- Li, H.; Jia, W. Cometabolism of Microbes and Host: Implications for Drug Metabolism and Drug-Induced Toxicity. Clin. Pharmacol. Ther. 2013, 94, 574–581. [Google Scholar] [CrossRef]
- Tan, J.; Fu, B.; Zhao, X.; Ye, L. Novel Techniques and Models for Studying the Role of the Gut Microbiota in Drug Metabolism. Eur. J. Drug Metab. Pharmacokinet. 2024, 49, 131–147. [Google Scholar] [CrossRef]
- Ervin, S.M.; Simpson, J.B.; Gibbs, M.E.; Creekmore, B.C.; Lim, L.; Walton, W.G.; Gharaibeh, R.Z.; Redinbo, M.R. Structural Insights into Endobiotic Reactivation by Human Gut Microbiome-Encoded Sulfatases. Biochemistry 2020, 59, 3939–3950. [Google Scholar] [CrossRef]
- Mena Bares, L.M.; Carmona Asenjo, E.; García Sánchez, M.V.; Moreno Ortega, E.; Maza Muret, F.R.; Guiote Moreno, M.V.; Santos Bueno, A.M.; Iglesias Flores, E.; Benítez Cantero, J.M.; Vallejo Casas, J.A. 75SeHCAT Scan in Bile Acid Malabsorption in Chronic Diarrhoea. Rev. Esp. Med. Nucl. Imagen Mol. 2017, 36, 37–47. [Google Scholar] [CrossRef]
- Li, N.; Zhan, S.; Tian, Z.; Liu, C.; Xie, Z.; Zhang, S.; Chen, M.; Zeng, Z.; Zhuang, X. Alterations in Bile Acid Metabolism Associated With Inflammatory Bowel Disease. Inflamm. Bowel Dis. 2021, 27, 1525–1540. [Google Scholar] [CrossRef] [PubMed]
- Semba, R.D.; Gonzalez-Freire, M.; Moaddel, R.; Trehan, I.; Maleta, K.M.; Khadeer, M.; Ordiz, M.I.; Ferrucci, L.; Manary, M.J. Environmental Enteric Dysfunction Is Associated With Altered Bile Acid Metabolism. J. Pediatr. Gastroenterol. Nutr. 2017, 64, 536–540. [Google Scholar] [CrossRef] [PubMed]
- Niu, Z.; Liu, Y.; Wang, Y.; Liu, Y.; Chai, L.; Wang, H. Impairment of Bile Acid Metabolism and Altered Composition by Lead and Copper in Bufo Gargarizans Tadpoles. Sci. Total Environ. 2023, 900, 165901. [Google Scholar] [CrossRef]
- Wilson, A.; Almousa, A.; Teft, W.A.; Kim, R.B. Attenuation of Bile Acid-Mediated FXR and PXR Activation in Patients with Crohn’s Disease. Sci. Rep. 2020, 10, 1866. [Google Scholar] [CrossRef]
- Huang, M.; Kong, B.; Zhang, M.; Rizzolo, D.; Armstrong, L.E.; Schumacher, J.D.; Chow, M.D.; Lee, Y.-H.; Joseph, L.B.; Stofan, M.; et al. Enhanced Alcoholic Liver Disease in Mice with Intestine-Specific Farnesoid X Receptor Deficiency. Lab. Investig. 2020, 100, 1158–1168. [Google Scholar] [CrossRef]
- Liu, H.-M.; Liao, J.-F.; Lee, T.-Y. Farnesoid X Receptor Agonist GW4064 Ameliorates Lipopolysaccharide-Induced Ileocolitis through TLR4/MyD88 Pathway Related Mitochondrial Dysfunction in Mice. Biochem. Biophys. Res. Commun. 2017, 490, 841–848. [Google Scholar] [CrossRef] [PubMed]
- Gadaleta, R.M.; Garcia-Irigoyen, O.; Cariello, M.; Scialpi, N.; Peres, C.; Vetrano, S.; Fiorino, G.; Danese, S.; Ko, B.; Luo, J.; et al. Fibroblast Growth Factor 19 Modulates Intestinal Microbiota and Inflammation in Presence of Farnesoid X Receptor. EBioMedicine 2020, 54, 102719. [Google Scholar] [CrossRef]
- Yan, M.; Hou, L.; Cai, Y.; Wang, H.; Ma, Y.; Geng, Q.; Jiang, W.; Tang, W. Effects of Intestinal FXR-Related Molecules on Intestinal Mucosal Barriers in Biliary Tract Obstruction. Front. Pharmacol. 2022, 13, 906452. [Google Scholar] [CrossRef]
- Li, Z.; Dong, H.; Bian, S.; Wu, H.; Song, W.; Jia, X.; Chen, J.; Zhu, X.; Zhao, L.; Xuan, Z.; et al. FXR Maintains the Intestinal Barrier and Stemness by Regulating CYP11A1-Mediated Corticosterone Synthesis in Biliary Obstruction Diseases. Int. J. Mol. Sci. 2023, 24, 13494. [Google Scholar] [CrossRef]
- Yu Cai Lim, M.; Kiat Ho, H. Pharmacological Modulation of Cholesterol 7α-Hydroxylase (CYP7A1) as a Therapeutic Strategy for Hypercholesterolemia. Biochem. Pharmacol. 2024, 220, 115985. [Google Scholar] [CrossRef] [PubMed]
- Meadows, V.; Kennedy, L.; Ekser, B.; Kyritsi, K.; Kundu, D.; Zhou, T.; Chen, L.; Pham, L.; Wu, N.; Demieville, J.; et al. Mast Cells Regulate Ductular Reaction and Intestinal Inflammation in Cholestasis Through Farnesoid X Receptor Signaling. Hepatology 2021, 74, 2684–2698. [Google Scholar] [CrossRef] [PubMed]
- Lin, X.-H.; Yuece, B.; Li, Y.-Y.; Feng, Y.-J.; Feng, J.-Y.; Yu, L.-Y.; Li, K.; Li, Y.-N.; Storr, M. A Novel CB Receptor GPR55 and Its Ligands Are Involved in Regulation of Gut Movement in Rodents. Neurogastroenterol. Motil. 2011, 23, 862-e342. [Google Scholar] [CrossRef] [PubMed]
- Huang, H.-B.; Gong, W.; Hou, Y.-Y.; He, W.-Y.; Wang, R.; Wang, X.-C.; Hu, J.-N. Mucoadhesive Hydrogel with Anti-Gastric Acid and Sustained-Release Functions for Amelioration of DSS-Induced Ulcerative Colitis. J. Agric. Food Chem. 2023, 71, 4016–4028. [Google Scholar] [CrossRef]
- Sun, M.; He, C.; Cong, Y.; Liu, Z. Regulatory Immune Cells in Regulation of Intestinal Inflammatory Response to Microbiota. Mucosal Immunol. 2015, 8, 969–978. [Google Scholar] [CrossRef]
- Zhang, C.; Shu, W.; Zhou, G.; Lin, J.; Chu, F.; Wu, H.; Liu, Z. Anti-TNF-α Therapy Suppresses Proinflammatory Activities of Mucosal Neutrophils in Inflammatory Bowel Disease. Mediators Inflamm. 2018, 2018, 3021863. [Google Scholar] [CrossRef]
- Pan, Y.; Zhang, H.; Li, M.; He, T.; Guo, S.; Zhu, L.; Tan, J.; Wang, B. Novel Approaches in IBD Therapy: Targeting the Gut Microbiota-Bile Acid Axis. Gut Microbes 2024, 16, 2356284. [Google Scholar] [CrossRef]
- Zhou, C.; Wang, Y.; Li, C.; Xie, Z.; Dai, L. Amelioration of Colitis by a Gut Bacterial Consortium Producing Anti-Inflammatory Secondary Bile Acids. Microbiol. Spectr. 2023, 11, e0333022. [Google Scholar] [CrossRef]
- Boesjes, M.; Brufau, G. Metabolic Effects of Bile Acids in the Gut in Health and Disease. Curr. Med. Chem. 2014, 21, 2822–2829. [Google Scholar] [CrossRef]
- Sonne, D.P. MECHANISMS IN ENDOCRINOLOGY: FXR Signalling: A Novel Target in Metabolic Diseases. Eur. J. Endocrinol. 2021, 184, R193–R205. [Google Scholar] [CrossRef]
- Corpechot, C. Primary Biliary Cirrhosis and Bile Acids. Clin. Res. Hepatol. Gastroenterol. 2012, 36 (Suppl. S1), S13–S20. [Google Scholar] [CrossRef]
- He, S.; Li, J.; Yao, Z.; Gao, Z.; Jiang, Y.; Chen, X.; Peng, L. Insulin Alleviates Murine Colitis through Microbiome Alterations and Bile Acid Metabolism. J. Transl. Med. 2023, 21, 498. [Google Scholar] [CrossRef]
- Yang, M.; Gu, Y.; Li, L.; Liu, T.; Song, X.; Sun, Y.; Cao, X.; Wang, B.; Jiang, K.; Cao, H. Bile Acid-Gut Microbiota Axis in Inflammatory Bowel Disease: From Bench to Bedside. Nutrients 2021, 13, 3143. [Google Scholar] [CrossRef]
- Li, T.; Chiang, J.Y.L. Bile Acid Signaling in Metabolic and Inflammatory Diseases and Drug Development. Pharmacol. Rev. 2024, 76, 1221–1253. [Google Scholar] [CrossRef]
- Ananthakrishnan, A.N.; Whelan, K.; Allegretti, J.R.; Sokol, H. Diet and Microbiome-Directed Therapy 2.0 for IBD. Clin. Gastroenterol. Hepatol. 2025, 23, 406–418. [Google Scholar] [CrossRef]
- Zheng, J.; Sun, Q.; Zhang, M.; Liu, C.; Su, Q.; Zhang, L.; Xu, Z.; Lu, W.; Ching, J.; Tang, W.; et al. Noninvasive, Microbiome-Based Diagnosis of Inflammatory Bowel Disease. Nat. Med. 2024, 30, 3555–3567. [Google Scholar] [CrossRef]
- Ajouz, H.; Mukherji, D.; Shamseddine, A. Secondary Bile Acids: An Underrecognized Cause of Colon Cancer. World J. Surg. Oncol. 2014, 12, 164. [Google Scholar] [CrossRef]
- Payne, C.M.; Bernstein, C.; Dvorak, K.; Bernstein, H. Hydrophobic Bile Acids, Genomic Instability, Darwinian Selection, and Colon Carcinogenesis. Clin. Exp. Gastroenterol. 2008, 1, 19–47. [Google Scholar] [CrossRef]
- Li, G.; Zhu, J.; Zhai, L. Exploring Molecular Markers and Drug Candidates for Colorectal Cancer through Comprehensive Bioinformatics Analysis. Aging 2023, 15, 7038–7055. [Google Scholar] [CrossRef]
- Ye, C.; Wu, C.; Li, Y.; Chen, C.; Li, X.; Zhang, J.; Xu, Z.; Chen, H.; Guo, Y. Traditional Medicine Xianglian Pill Suppresses High-Fat Diet-Related Colorectal Cancer via Inactivating TLR4/MyD88 by Remodeling Gut Microbiota Composition and Bile Acid Metabolism. J. Ethnopharmacol. 2024, 333, 118411. [Google Scholar] [CrossRef]
- Barrasa, J.I.; Olmo, N.; Lizarbe, M.A.; Turnay, J. Bile Acids in the Colon, from Healthy to Cytotoxic Molecules. Toxicol. Vitro 2013, 27, 964–977. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.; von Ehrlich-Treuenstätt, V.; Schardey, J.; Wirth, U.; Zimmermann, P.; Andrassy, J.; Bazhin, A.V.; Werner, J.; Kühn, F. Gut Barrier Dysfunction and Bacterial Lipopolysaccharides in Colorectal Cancer. J. Gastrointest. Surg. 2023, 27, 1466–1472. [Google Scholar] [CrossRef] [PubMed]
- Lee, D.-B.; An, S.-Y.; Pyo, S.-S.; Kim, J.; Kim, S.-W.; Yoon, D.-W. Sleep Fragmentation Accelerates Carcinogenesis in a Chemical-Induced Colon Cancer Model. Int. J. Mol. Sci. 2023, 24, 4547. [Google Scholar] [CrossRef] [PubMed]
- Huang, X.; Zhao, W.; Huang, W. FXR and Liver Carcinogenesis. Acta Pharmacol. Sin. 2015, 36, 37–43. [Google Scholar] [CrossRef]
- Xu, Z.; Huang, G.; Gong, W.; Zhou, P.; Zhao, Y.; Zhang, Y.; Zeng, Y.; Gao, M.; Pan, Z.; He, F. FXR Ligands Protect against Hepatocellular Inflammation via SOCS3 Induction. Cell Signal 2012, 24, 1658–1664. [Google Scholar] [CrossRef]
- Zou, B.; Yang, W.; Tang, Y.; Hou, Y.; Tang, T.; Qu, S. Intestinal Microbiota-Farnesoid X Receptor Axis in Metabolic Diseases. Clin. Chim. Acta Int. J. Clin. Chem. 2020, 509, 167–171. [Google Scholar] [CrossRef]
- Gonzalez, F.J.; Jiang, C.; Patterson, A.D. An Intestinal Microbiota-Farnesoid X Receptor Axis Modulates Metabolic Disease. Gastroenterology 2016, 151, 845–859. [Google Scholar] [CrossRef]
- Ocvirk, S.; O’Keefe, S.J.D. Dietary Fat, Bile Acid Metabolism and Colorectal Cancer. Semin. Cancer Biol. 2021, 73, 347–355. [Google Scholar] [CrossRef]
- Wang, Z.; Pang, J.; Wang, L.; Dong, Q.; Jin, D. CEBPB Regulates the Bile Acid Receptor FXR to Accelerate Colon Cancer Progression by Modulating Aerobic Glycolysis. J. Clin. Lab. Anal. 2022, 36, e24703. [Google Scholar] [CrossRef]
- Nenkov, M.; Shi, Y.; Ma, Y.; Gaßler, N.; Chen, Y. Targeting Farnesoid X Receptor in Tumor and the Tumor Microenvironment: Implication for Therapy. Int. J. Mol. Sci. 2023, 25, 6. [Google Scholar] [CrossRef]
- Zhao, L.; Zhang, H.; Liu, X.; Xue, S.; Chen, D.; Zou, J.; Jiang, H. TGR5 Deficiency Activates Antitumor Immunity in Non-Small Cell Lung Cancer via Restraining M2 Macrophage Polarization. Acta Pharm. Sin. B 2022, 12, 787–800. [Google Scholar] [CrossRef] [PubMed]
- Sun, B.; Xie, W.; Li, X.; Liu, T.; Bai, J.; Yao, Y.; Ma, L.; Man, S. Inulin Enhanced Rifaximin-Inhibited Colon Cancer Pulmonary Metastasis by Flora-Regulated Bile Acid Pathway. Int. J. Biol. Macromol. 2024, 275, 133582. [Google Scholar] [CrossRef] [PubMed]
- Guan, Z.; Luo, L.; Liu, S.; Guan, Z.; Zhang, Q.; Wu, Z.; Tao, K. The Role of TGR5 as an Onco-Immunological Biomarker in Tumor Staging and Prognosis by Encompassing the Tumor Microenvironment. Front. Oncol. 2022, 12, 953091. [Google Scholar] [CrossRef] [PubMed]
- Burchat, N.; Vidola, J.; Pfreundschuh, S.; Sharma, P.; Rizzolo, D.; Guo, G.L.; Sampath, H. Intestinal Stearoyl-CoA Desaturase-1 Regulates Energy Balance via Alterations in Bile Acid Homeostasis. Cell Mol. Gastroenterol. Hepatol. 2024, 18, 101403. [Google Scholar] [CrossRef]
- Liu, J.; Tian, R.; Sun, C.; Guo, Y.; Dong, L.; Li, Y.; Song, X. Microbial Metabolites Are Involved in Tumorigenesis and Development by Regulating Immune Responses. Front. Immunol. 2023, 14, 1290414. [Google Scholar] [CrossRef]
- Jin, W.-B.; Li, T.-T.; Huo, D.; Qu, S.; Li, X.V.; Arifuzzaman, M.; Lima, S.F.; Shi, H.-Q.; Wang, A.; Putzel, G.G.; et al. Genetic Manipulation of Gut Microbes Enables Single-Gene Interrogation in a Complex Microbiome. Cell 2022, 185, 547–562.e22. [Google Scholar] [CrossRef]
- Bernardi, F.; D’Amico, F.; Bencardino, S.; Faggiani, I.; Fanizza, J.; Zilli, A.; Parigi, T.L.; Allocca, M.; Danese, S.; Furfaro, F. Gut Microbiota Metabolites: Unveiling Their Role in Inflammatory Bowel Diseases and Fibrosis. Pharmaceuticals 2024, 17, 347. [Google Scholar] [CrossRef]
- Sun, L.; Zhang, Y.; Cai, J.; Rimal, B.; Rocha, E.R.; Coleman, J.P.; Zhang, C.; Nichols, R.G.; Luo, Y.; Kim, B.; et al. Bile Salt Hydrolase in Non-Enterotoxigenic Bacteroides Potentiates Colorectal Cancer. Nat. Commun. 2023, 14, 755. [Google Scholar] [CrossRef]
- Lin, S.; Wang, S.; Wang, P.; Tang, C.; Wang, Z.; Chen, L.; Luo, G.; Chen, H.; Liu, Y.; Feng, B.; et al. Bile Acids and Their Receptors in Regulation of Gut Health and Diseases. Prog. Lipid Res. 2023, 89, 101210. [Google Scholar] [CrossRef]
- Lee, M.H.; Nuccio, S.-P.; Mohanty, I.; Hagey, L.R.; Dorrestein, P.C.; Chu, H.; Raffatellu, M. How Bile Acids and the Microbiota Interact to Shape Host Immunity. Nat. Rev. Immunol. 2024, 24, 798–809. [Google Scholar] [CrossRef]
- Jose, S.; Devi, S.S.; Sajeev, A.; Girisa, S.; Alqahtani, M.S.; Abbas, M.; Alshammari, A.; Sethi, G.; Kunnumakkara, A.B. Repurposing FDA-Approved Drugs as FXR Agonists: A Structure Based in Silico Pharmacological Study. Biosci. Rep. 2023, 43, BSR20212791. [Google Scholar] [CrossRef] [PubMed]
- Cong, J.; Liu, P.; Han, Z.; Ying, W.; Li, C.; Yang, Y.; Wang, S.; Yang, J.; Cao, F.; Shen, J.; et al. Bile Acids Modified by the Intestinal Microbiota Promote Colorectal Cancer Growth by Suppressing CD8+ T Cell Effector Functions. Immunity 2024, 57, 876–889.e11. [Google Scholar] [CrossRef] [PubMed]
- Bai, X.; Duan, Z.; Deng, J.; Zhang, Z.; Fu, R.; Zhu, C.; Fan, D. Ginsenoside Rh4 Inhibits Colorectal Cancer via the Modulation of Gut Microbiota-Mediated Bile Acid Metabolism. J. Adv. Res. 2024; in press. [Google Scholar] [CrossRef] [PubMed]
- Keitel, V.; Häussinger, D. Role of TGR5 (GPBAR1) in Liver Disease. Semin. Liver Dis. 2018, 38, 333–339. [Google Scholar] [CrossRef]
- Sun, X.; Zhang, Y.; Cheng, G.; Zhu, T.; Zhang, Z.; Xiong, L.; Hu, H.; Liu, H. Berberine Improves DSS-Induced Colitis in Mice by Modulating the Fecal-Bacteria-Related Bile Acid Metabolism. Biomed. Pharmacother. 2023, 167, 115430. [Google Scholar] [CrossRef]
- Majait, S.; Nieuwdorp, M.; Kemper, M.; Soeters, M. The Black Box Orchestra of Gut Bacteria and Bile Acids: Who Is the Conductor? Int. J. Mol. Sci. 2023, 24, 1816. [Google Scholar] [CrossRef]
- Wang, X.J.; Camilleri, M. Personalized Medicine in Functional Gastrointestinal Disorders: Understanding Pathogenesis to Increase Diagnostic and Treatment Efficacy. World J. Gastroenterol. 2019, 25, 1185–1196. [Google Scholar] [CrossRef]
- Camilleri, M.; Boeckxstaens, G. Irritable Bowel Syndrome: Treatment Based on Pathophysiology and Biomarkers. Gut 2023, 72, 590–599. [Google Scholar] [CrossRef]
- Di Ciaula, A.; Khalil, M.; Baffy, G.; Portincasa, P. Advances in the Pathophysiology, Diagnosis and Management of Chronic Diarrhoea from Bile Acid Malabsorption: A Systematic Review. Eur. J. Intern. Med. 2024, 128, 10–19. [Google Scholar] [CrossRef]
- Weaver, M.J.; McHenry, S.A.; Sayuk, G.S.; Gyawali, C.P.; Davidson, N.O. Bile Acid Diarrhea and NAFLD: Shared Pathways for Distinct Phenotypes. Hepatol. Commun. 2020, 4, 493–503. [Google Scholar] [CrossRef]
- Baumgartner, M.; Lang, M.; Holley, H.; Crepaz, D.; Hausmann, B.; Pjevac, P.; Moser, D.; Haller, F.; Hof, F.; Beer, A.; et al. Mucosal Biofilms Are an Endoscopic Feature of Irritable Bowel Syndrome and Ulcerative Colitis. Gastroenterology 2021, 161, 1245–1256.e20. [Google Scholar] [CrossRef]
- Wang, J.; Xu, H.; Liu, Z.; Cao, Y.; Chen, S.; Hou, R.; Zhou, Y.; Wang, Y. Bile Acid-Microbiota Crosstalk in Hepatitis B Virus Infection. J. Gastroenterol. Hepatol. 2024, 39, 1509–1516. [Google Scholar] [CrossRef] [PubMed]
- Das, P.; Marcišauskas, S.; Ji, B.; Nielsen, J. Metagenomic Analysis of Bile Salt Biotransformation in the Human Gut Microbiome. BMC Genom. 2019, 20, 517. [Google Scholar] [CrossRef] [PubMed]
- Sagar, N.M.; Duboc, H.; Kay, G.L.; Alam, M.T.; Wicaksono, A.N.; Covington, J.A.; Quince, C.; Kokkorou, M.; Svolos, V.; Palmieri, L.J.; et al. The Pathophysiology of Bile Acid Diarrhoea: Differences in the Colonic Microbiome, Metabolome and Bile Acids. Sci. Rep. 2020, 10, 20436. [Google Scholar] [CrossRef] [PubMed]
- Duan, T.; Cil, O.; Tse, C.M.; Sarker, R.; Lin, R.; Donowitz, M.; Verkman, A.S. Inhibition of CFTR-Mediated Intestinal Chloride Secretion as Potential Therapy for Bile Acid Diarrhea. FASEB J. 2019, 33, 10924–10934. [Google Scholar] [CrossRef]
- Wei, W.; Wang, H.-F.; Zhang, Y.; Zhang, Y.-L.; Niu, B.-Y.; Yao, S.-K. Altered Metabolism of Bile Acids Correlates with Clinical Parameters and the Gut Microbiota in Patients with Diarrhea-Predominant Irritable Bowel Syndrome. World J. Gastroenterol. 2020, 26, 7153–7172. [Google Scholar] [CrossRef]
- Lembo, A.; Rao, S.S.C.; Heimanson, Z.; Pimentel, M. Abdominal Pain Response to Rifaximin in Patients With Irritable Bowel Syndrome With Diarrhea. Clin. Transl. Gastroenterol. 2020, 11, e00144. [Google Scholar] [CrossRef]
- Lacy, B.E.; Rosenbaum, D.; Edelstein, S.; Kozuka, K.; Williams, L.A.; Kunkel, D.C. Intestinal Permeability, Irritable Bowel Syndrome with Constipation, and the Role of Sodium-Hydrogen Exchanger Isoform 3 (NHE3). Clin. Exp. Gastroenterol. 2024, 17, 173–183. [Google Scholar] [CrossRef]
- Horikawa, T.; Oshima, T.; Li, M.; Kitayama, Y.; Eda, H.; Nakamura, K.; Tamura, A.; Ogawa, T.; Yamasaki, T.; Okugawa, T.; et al. Chenodeoxycholic Acid Releases Proinflammatory Cytokines from Small Intestinal Epithelial Cells Through the Farnesoid X Receptor. Digestion 2019, 100, 286–294. [Google Scholar] [CrossRef]
- Wei, Y.; Fan, Y.; Huang, S.; Lv, J.; Zhang, Y.; Hao, Z. Baizhu Shaoyao Decoction Restores the Intestinal Barrier and Brain-Gut Axis Balance to Alleviate Diarrhea-Predominant Irritable Bowel Syndrome via FoxO1/FoxO3a. Phytomedicine 2024, 122, 155163. [Google Scholar] [CrossRef]
- Anderson, K.M.; Gayer, C.P. The Pathophysiology of Farnesoid X Receptor (FXR) in the GI Tract: Inflammation, Barrier Function and Innate Immunity. Cells 2021, 10, 3206. [Google Scholar] [CrossRef] [PubMed]
- Guo, J.; Han, X.; Tan, H.; Huang, W.; You, Y.; Zhan, J. Blueberry Extract Improves Obesity through Regulation of the Gut Microbiota and Bile Acids via Pathways Involving FXR and TGR5. iScience 2019, 19, 676–690. [Google Scholar] [CrossRef] [PubMed]
- Deng, X.; Xiao, L.; Luo, M.; Xie, P.; Xiong, L. Intestinal Crosstalk between Bile Acids and Microbiota in Irritable Bowel Syndrome. J. Gastroenterol. Hepatol. 2023, 38, 1072–1082. [Google Scholar] [CrossRef]
- Aguilera-Lizarraga, J.; Florens, M.V.; Viola, M.F.; Jain, P.; Decraecker, L.; Appeltans, I.; Cuende-Estevez, M.; Fabre, N.; Van Beek, K.; Perna, E.; et al. Local Immune Response to Food Antigens Drives Meal-Induced Abdominal Pain. Nature 2021, 590, 151–156. [Google Scholar] [CrossRef] [PubMed]
- Okumura, T.; Ishioh, M.; Nozu, T. Central Regulatory Mechanisms of Visceral Sensation in Response to Colonic Distension with Special Reference to Brain Orexin. Neuropeptides 2021, 86, 102129. [Google Scholar] [CrossRef]
- Alemi, F.; Poole, D.P.; Chiu, J.; Schoonjans, K.; Cattaruzza, F.; Grider, J.R.; Bunnett, N.W.; Corvera, C.U. The Receptor TGR5 Mediates the Prokinetic Actions of Intestinal Bile Acids and Is Required for Normal Defecation in Mice. Gastroenterology 2013, 144, 145–154. [Google Scholar] [CrossRef]
- Chey, W.D.; Kurlander, J.; Eswaran, S. Irritable Bowel Syndrome: A Clinical Review. JAMA 2015, 313, 949–958. [Google Scholar] [CrossRef]
- Fan, F.; Tang, Y.; Dai, H.; Cao, Y.; Sun, P.; Chen, Y.; Chen, A.; Lin, C. Blockade of BDNF Signalling Attenuates Chronic Visceral Hypersensitivity in an IBS-like Rat Model. Eur. J. Pain 2020, 24, 839–850. [Google Scholar] [CrossRef]
- Chen, M.-X.; Chen, Y.; Fu, R.; Liu, S.-Y.; Yang, Q.-Q.; Shen, T.-B. Activation of 5-HT and NR2B Contributes to Visceral Hypersensitivity in Irritable Bowel Syndrome in Rats. Am. J. Transl. Res. 2016, 8, 5580–5590. [Google Scholar]
- Barbaro, M.R.; Di Sabatino, A.; Cremon, C.; Giuffrida, P.; Fiorentino, M.; Altimari, A.; Bellacosa, L.; Stanghellini, V.; Barbara, G. Interferon-γ Is Increased in the Gut of Patients with Irritable Bowel Syndrome and Modulates Serotonin Metabolism. Am. J. Physiol. Gastrointest. Liver Physiol. 2016, 310, G439–G447. [Google Scholar] [CrossRef]
- Liu, C.; Du, M.-X.; Xie, L.-S.; Wang, W.-Z.; Chen, B.-S.; Yun, C.-Y.; Sun, X.-W.; Luo, X.; Jiang, Y.; Wang, K.; et al. Gut Commensal Christensenella Minuta Modulates Host Metabolism via Acylated Secondary Bile Acids. Nat. Microbiol. 2024, 9, 434–450. [Google Scholar] [CrossRef] [PubMed]
- Tang, W.H.W.; Kitai, T.; Hazen, S.L. Gut Microbiota in Cardiovascular Health and Disease. Circ. Res. 2017, 120, 1183–1196. [Google Scholar] [CrossRef] [PubMed]
- Chen, M.L.; Takeda, K.; Sundrud, M.S. Emerging Roles of Bile Acids in Mucosal Immunity and Inflammation. Mucosal Immunol. 2019, 12, 851–861. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lin, X.; Xia, L.; Zhou, Y.; Xie, J.; Tuo, Q.; Lin, L.; Liao, D. Crosstalk Between Bile Acids and Intestinal Epithelium: Multidimensional Roles of Farnesoid X Receptor and Takeda G Protein Receptor 5. Int. J. Mol. Sci. 2025, 26, 4240. https://doi.org/10.3390/ijms26094240
Lin X, Xia L, Zhou Y, Xie J, Tuo Q, Lin L, Liao D. Crosstalk Between Bile Acids and Intestinal Epithelium: Multidimensional Roles of Farnesoid X Receptor and Takeda G Protein Receptor 5. International Journal of Molecular Sciences. 2025; 26(9):4240. https://doi.org/10.3390/ijms26094240
Chicago/Turabian StyleLin, Xiulian, Li Xia, Yuanjiao Zhou, Jingchen Xie, Qinhui Tuo, Limei Lin, and Duanfang Liao. 2025. "Crosstalk Between Bile Acids and Intestinal Epithelium: Multidimensional Roles of Farnesoid X Receptor and Takeda G Protein Receptor 5" International Journal of Molecular Sciences 26, no. 9: 4240. https://doi.org/10.3390/ijms26094240
APA StyleLin, X., Xia, L., Zhou, Y., Xie, J., Tuo, Q., Lin, L., & Liao, D. (2025). Crosstalk Between Bile Acids and Intestinal Epithelium: Multidimensional Roles of Farnesoid X Receptor and Takeda G Protein Receptor 5. International Journal of Molecular Sciences, 26(9), 4240. https://doi.org/10.3390/ijms26094240