Further Evidence of Early-Onset Osteoporosis and Bone Fractures as a New FGFR2-Related Phenotype
Abstract
1. Introduction
2. Results
2.1. Clinical Description
2.2. Molecular Findings
3. Discussion
4. Materials and Methods
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Compston, J.E.; McClung, M.R.; Leslie, W.D. Osteoporosis. Lancet 2019, 393, 364–376. [Google Scholar] [CrossRef] [PubMed]
- Xiao, P.-L.; Cui, A.-Y.; Hsu, C.-J.; Peng, R.; Jiang, N.; Xu, X.-H.; Ma, Y.-G.; Liu, D.; Lu, H.-D. Global, Regional Prevalence, and Risk Factors of Osteoporosis According to the World Health Organization Diagnostic Criteria: A Systematic Review and Meta-Analysis. Osteoporos. Int. 2022, 33, 2137–2153. [Google Scholar] [CrossRef] [PubMed]
- Mäkitie, O.; Zillikens, M.C. Early-Onset Osteoporosis. Calcif. Tissue Int. 2022, 110, 546–561. [Google Scholar] [CrossRef]
- Unger, S.; Ferreira, C.R.; Mortier, G.R.; Ali, H.; Bertola, D.R.; Calder, A.; Cohn, D.H.; Cormier-Daire, V.; Girisha, K.M.; Hall, C.; et al. Nosology of Genetic Skeletal Disorders: 2023 Revision. Am. J. Med. Genet. A 2023, 191, 1164–1209. [Google Scholar] [CrossRef]
- OMIM. Available online: https://www.omim.org/ (accessed on 2 April 2025).
- Jovanovic, M.; Marini, J.C. Update on the Genetics of Osteogenesis Imperfecta. Calcif. Tissue Int. 2024, 115, 891–914. [Google Scholar] [CrossRef]
- Kang, H.; AC, S.A.; Marini, J.C. Osteogenesis Imperfecta: New Genes Reveal Novel Mechanisms in Bone Dysplasia. Transl. Res. 2017, 181, 27–48. [Google Scholar] [CrossRef]
- Sillence, D.O.; Senn, A.; Danks, D.M. Genetic Heterogeneity in Osteogenesis Imperfecta. J. Med. Genet. 1979, 16, 101–116. [Google Scholar] [CrossRef] [PubMed]
- Van Dijk, F.S.; Sillence, D.O. Osteogenesis Imperfecta: Clinical Diagnosis, Nomenclature and Severity Assessment. Am. J. Med. Genet. A 2014, 164, 1470–1481. [Google Scholar] [CrossRef]
- Costantini, A.; Mäkitie, R.E.; Hartmann, M.A.; Fratzl-Zelman, N.; Zillikens, M.C.; Kornak, U.; Søe, K.; Mäkitie, O. Early-Onset Osteoporosis: Rare Monogenic Forms Elucidate the Complexity of Disease Pathogenesis Beyond Type I Collagen. J. Bone Miner. Res. 2022, 37, 1623–1641. [Google Scholar] [CrossRef]
- Dantsev, I.S.; Parfenenko, M.A.; Radzhabova, G.M.; Nikolaeva, E.A. An FGFR2 Mutation as the Potential Cause of a New Phenotype Including Early-Onset Osteoporosis and Bone Fractures: A Case Report. BMC Med. Genom. 2023, 16, 329. [Google Scholar] [CrossRef]
- Dionne, C.A.; Crumley, G.; Bellot, F.; Kaplow, J.M.; Searfoss, G.; Ruta, M.; Burgess, W.H.; Jaye, M.; Schlessinger, J. Cloning and Expression of Two Distinct High-Affinity Receptors Cross-Reacting with Acidic and Basic Fibroblast Growth Factors. EMBO J. 1990, 9, 2685–2692. [Google Scholar] [CrossRef]
- Mansukhani, A.; Bellosta, P.; Sahni, M.; Basilico, C. Signaling by Fibroblast Growth Factors (Fgf) and Fibroblast Growth Factor Receptor 2 (Fgfr2)–Activating Mutations Blocks Mineralization and Induces Apoptosis in Osteoblasts. J. Cell Biol. 2000, 149, 1297–1308. [Google Scholar] [CrossRef]
- Karuppaiah, K.; Yu, K.; Lim, J.; Chen, J.; Smith, C.; Long, F.; Ornitz, D.M. FGF Signaling in the Osteoprogenitor Lineage Non-Autonomously Regulates Postnatal Chondrocyte Proliferation and Skeletal Growth. Development 2016, 143, 1811–1822. [Google Scholar] [CrossRef]
- Wang, Y.; Sun, L.; Kan, T.; Xue, W.; Wang, H.; Xu, P.; Zhang, L.; Yan, M.; Li, H.; Yu, Z. Hypermethylation of Bmp2 and Fgfr2 Promoter Regions in Bone Marrow Mesenchymal Stem Cells Leads to Bone Loss in Prematurely Aged Mice. Aging Dis. 2025, 16, 1149–1168. [Google Scholar] [CrossRef]
- Tuzon, C.T.; Rigueur, D.; Merrill, A.E. Nuclear Fibroblast Growth Factor Receptor Signaling in Skeletal Development and Disease. Curr. Osteoporos. Rep. 2019, 17, 138–146. [Google Scholar] [CrossRef] [PubMed]
- Bobzin, L.; Nickle, A.; Ko, S.; Ince, M.; Bhojwani, A.; Merrill, A.E. FGF Signaling Regulates Development of the Anterior Fontanelle. bioRxiv 2024. [Google Scholar] [CrossRef]
- Su, N.; Jin, M.; Chen, L. Role of FGF/FGFR Signaling in Skeletal Development and Homeostasis: Learning from Mouse Models. Bone Res. 2014, 2, 14003. [Google Scholar] [CrossRef]
- Yu, K.; Xu, J.; Liu, Z.; Sosic, D.; Shao, J.; Olson, E.N.; Towler, D.A.; Ornitz, D.M. Conditional Inactivation of FGF Receptor 2 Reveals an Essential Role for FGF Signaling in the Regulation of Osteoblast Function and Bone Growth. Development 2003, 130, 3063–3074. [Google Scholar] [CrossRef]
- De Moerlooze, L.; Spencer-Dene, B.; Revest, J.-M.; Hajihosseini, M.; Rosewell, I.; Dickson, C. An Important Role for the IIIb Isoform of Fibroblast Growth Factor Receptor 2 (FGFR2) in Mesenchymal-Epithelial Signalling during Mouse Organogenesis. Development 2000, 127, 483–492. [Google Scholar] [CrossRef]
- Eswarakumar, V.P.; Monsonego-Ornan, E.; Pines, M.; Antonopoulou, I.; Morriss-Kay, G.M.; Lonai, P. The IIIc Alternative of Fgfr2 Is a Positive Regulator of Bone Formation. Development 2002, 129, 3783–3793. [Google Scholar] [CrossRef]
- Rouleau, C.; Malorie, M.; Collet, C.; Porquet-Bordes, V.; Gennero, I.; Eddiry, S.; Laroche, M.; Salles, J.P.; Couture, G.; Edouard, T. Diagnostic Yield of Bone Fragility Gene Panel Sequencing in Children and Young Adults Referred for Idiopathic Primary Osteoporosis at a Single Regional Reference Centre. Bone Rep. 2022, 16, 101176. [Google Scholar] [CrossRef] [PubMed]
- McIntosh, I.; Bellus, G.A.; Jabs, E.W. The Pleiotropic Effects of Fibroblast Growth Factor Receptors in Mammalian Development. Cell Struct. Funct. 2000, 25, 85–96. [Google Scholar] [CrossRef] [PubMed]
- Merrill, A.E.; Sarukhanov, A.; Krejci, P.; Idoni, B.; Camacho, N.; Estrada, K.D.; Lyons, K.M.; Deixler, H.; Robinson, H.; Chitayat, D.; et al. Bent Bone Dysplasia-FGFR2 Type, a Distinct Skeletal Disorder, Has Deficient Canonical FGF Signaling. Am. J. Hum. Genet. 2012, 90, 550–557. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Zhu, P.; Shen, S.; Wang, Y.; Li, B.; Guo, B.; Li, H. Overexpression of Fibroblast Growth Factor Receptor 2 in Bone Marrow Mesenchymal Stem Cells Enhances Osteogenesis and Promotes Critical Cranial Bone Defect Regeneration. Front. Cell Dev. Biol. 2023, 11, 1208239. [Google Scholar] [CrossRef]
- Bobzin, L.; Nickle, A.; Ko, S.; Ince, M.; Huang, A.; Bhojwani, A.; Roberts, R.; Merrill, A.E. FGFR2 Directs Inhibition of WNT Signaling to Regulate Anterior Fontanelle Closure during Skull Development. Development 2025, 152, dev204264. [Google Scholar] [CrossRef]
- Rivadeneira, F.; Styrkársdottir, U.; Estrada, K.; Halldórsson, B.V.; Hsu, Y.-H.; Richards, J.B.; Zillikens, M.C.; Kavvoura, F.K.; Amin, N.; Aulchenko, Y.S.; et al. Twenty Bone-Mineral-Density Loci Identified by Large-Scale Meta-Analysis of Genome-Wide Association Studies. Nat. Genet. 2009, 41, 1199–1206. [Google Scholar] [CrossRef]
- Richards, J.B.; Rivadeneira, F.; Inouye, M.; Pastinen, T.M.; Soranzo, N.; Wilson, S.G.; Andrew, T.; Falchi, M.; Gwilliam, R.; Ahmadi, K.R.; et al. Bone Mineral Density, Osteoporosis, and Osteoporotic Fractures: A Genome-Wide Association Study. Lancet 2008, 371, 1505–1512. [Google Scholar] [CrossRef]
- Styrkarsdottir, U.; Halldorsson, B.V.; Gretarsdottir, S.; Gudbjartsson, D.F.; Walters, G.B.; Ingvarsson, T.; Jonsdottir, T.; Saemundsdottir, J.; Center, J.R.; Nguyen, T.V.; et al. Multiple Genetic Loci for Bone Mineral Density and Fractures. N. Engl. J. Med. 2008, 358, 2355–2365. [Google Scholar] [CrossRef]
- Yang, Y.; Fei, M.; Zhou, X.; Li, Y.; Jin, D. The Association of Genetic Variants in FGFR2 with Osteoporosis Susceptibility in Chinese Han Population. Biosci. Rep. 2019, 39, BSR20190275. [Google Scholar] [CrossRef]
- Yerges, L.M.; Klei, L.; Cauley, J.A.; Roeder, K.; Kammerer, C.M.; Moffett, S.P.; Ensrud, K.E.; Nestlerode, C.S.; Marshall, L.M.; Hoffman, A.R.; et al. High-Density Association Study of 383 Candidate Genes for Volumetric BMD at the Femoral Neck and Lumbar Spine Among Older Men. J. Bone Miner. Res. 2009, 24, 2039–2049. [Google Scholar] [CrossRef]
- Zmuda, J.M.; Yerges-Armstrong, L.M.; Moffett, S.P.; Klei, L.; Kammerer, C.M.; Roeder, K.; Cauley, J.A.; Kuipers, A.; Ensrud, K.E.; Nestlerode, C.S.; et al. Genetic Analysis of Vertebral Trabecular Bone Density and Cross-Sectional Area in Older Men. Osteoporos. Int. 2011, 22, 1079–1090. [Google Scholar] [CrossRef] [PubMed]
- Dong, S.-S.; Yang, T.-L.; Yan, H.; Rong, Z.-Q.; Chen, J.-B.; Hao, R.-H.; Chen, X.-F.; Guo, Y. Association Analyses of FGFR2 Gene Polymorphisms with Femoral Neck Bone Mineral Density in Chinese Han Population. Mol. Genet. Genom. 2015, 290, 485–491. [Google Scholar] [CrossRef] [PubMed]
- Rohmann, E.; Brunner, H.G.; Kayserili, H.; Uyguner, O.; Nürnberg, G.; Lew, E.D.; Dobbie, A.; Eswarakumar, V.P.; Uzumcu, A.; Ulubil-Emeroglu, M.; et al. Mutations in Different Components of FGF Signaling in LADD Syndrome. Nat. Genet. 2006, 38, 414–417. [Google Scholar] [CrossRef] [PubMed]
- Dinulescu, A.; Păsărică, A.-S.; Carp, M.; Dușcă, A.; Dijmărescu, I.; Pavelescu, M.L.; Păcurar, D.; Ulici, A. New Perspectives of Therapies in Osteogenesis Imperfecta—A Literature Review. J. Clin. Med. 2024, 13, 1065. [Google Scholar] [CrossRef]
Disease | Clinical Signs | |
---|---|---|
Crouzon syndrome OMIM 123500 | Craniosynostosis, hypertelorism, exophthalmos and external strabismus, hypoplastic maxilla, and prognathism | Syndromic craniosynostosis |
Apert syndrome OMIM 101200 | Craniosynostosis, midface hypoplasia, and syndactyly of the hands and feet | Syndromic craniosynostosis |
Pfeiffer syndrome OMIM 101600 | Craniosynostosis syndrome with characteristic anomalies of the hands and feet | Syndromic craniosynostosis |
Saethre–Chotzen Syndrome OMIM 101400 | Craniosynostosis, facial dysmorphism, and hand and foot abnormalities. Hearing loss, limb anomalies, short stature and vertebral fusions | Syndromic craniosynostosis |
Jackson–Weiss Syndrome OMIM 123150 | Premature fusion of the cranial sutures as well as radiographic anomalies of the feet | Syndromic craniosynostosis |
Antley–Bixler Syndrome without genital anomalies or disordered steroidogenesis OMIM 207410 | Craniosynostosis, radio-humeral synostosis, midface hypoplasia, choanal stenosis or atresia, and multiple joint contractures | Syndromic craniosynostosis |
Beare–Stevenson cutis gyrata syndrome OMIM 123790 | Furrowed skin disorder of cutis gyrata, acanthosis nigricans, craniosynostosis, craniofacial dysmorphism, digital anomalies, umbilical and anogenital abnormalities, and early death. Cloverleaf skull can be observed | Syndromic craniosynostosis |
Bent Bone Dysplasia Syndrome OMIM 614592 | Poor mineralization of the calvarium, craniosynostosis, dysmorphic facial features, prenatal teeth, hypoplastic pubis and clavicles, osteopenia, and bent long bones | Lethal skeletal dysplasia, syndromic craniosynostosis |
LADD syndrome 1 OMIM 149730 | Affecting lacrimal glands and ducts, salivary glands and ducts, ears, teeth, and distal limb segments | Multiple congenital anomaly disorder |
This Report (Proband) | Dantsev et al. (Proband) | |
---|---|---|
Initial clinical diagnosis | Osteogenesis Imperfecta | Osteogenesis Imperfecta |
Age | 11 y.o. | 13 y.o. |
Family history | Negative | Positive |
Birth parameters | Weight: 3680 g. | Weight: 2750 g. |
Length: 52 cm | Length: 55 cm | |
Apgar score: 9–10 | Apgar score: 8–9 | |
Age at first fracture | 6 y.o. | 1 y.o. |
Site of first fracture | Tibial metaphysis (left) | Hand finger (distal phalange) |
Fracture sites | Tibial metaphysis (6 y.o.) | Hand fingers (1 and 12 y.o.) |
T3, T4, T5 vertebrae (7 y.o.) | Nose bone (3 and 4 y.o.) | |
Femoral neck (7 y.o.) | Ulna and Radius (7 y.o.) | |
Tibial diaphysis (7 y.o.) | Fibula (9 y.o.) | |
Radius diaphysis (8 y.o.) | Feet fingers (11 and 12 y.o.) | |
Femur (8 y.o.) | Metacarpal bones (13 y.o.) | |
Number of fractures | >6 | >9 |
DEXA Z Score | Lumbar Z-score = −3 | Spine Z-score = −2.3 |
Total body Z-score = −1.6 | Total body Z-score = −1.6 | |
Biochemical markers of bone metabolism | PTH: 15 pg/mL (N 14–85) | PTH: 72 pg/mL (N 16–62) |
BAP: 77.6 mcg/L (N 4–21) | BAP: 48.91 mcg/L (N 48.06–120) | |
25-hydroxyvitamin D: 32.1 ng/mL (N > 30) | 25-hydroxyvitamin D: 14.1 ng/mL (N 14–60) | |
Calcium (total): 9.6 mg/dL (N 8.5–10.5) | Calcium (total): 2.58 mg/dL (N 2.20–2.65) | |
Phosphate: 5.6 mg/dL (N 3.7–5.6) | Phosphate: 1.66 mg/dL (N 1.29–2.26) | |
Teeth abnormalities | No | Severe dental caries, decreased density of dental enamel |
Extra-skeletal clinical findings | Protruding abdomen, acessory spleen | No |
Other skeletal features | Valgus knee, tibia varus, pronated feet, soft skin, mild hypotonia, mild joint hypermobility | Scoliosis, genu valgum, flezion contracture of the ankles, pes planus, arthralgia |
Treatment | Neridronate, NSAIDs, magnesium, pregabalin | Zelodronic acid, Osteogenon, colecalciferol |
Treatment efficacy | Lack of clinical benefit | Significant BMD improvement |
Molecular findings | FGFR2: c.1262G>A, p.(Arg421His)—(MOS) | FGFR2: c.722dup p.(Asn241Lysfs*43)—(HE) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Moroni, A.; Pedrini, E.; Tremosini, M.; Di Cecco, A.; Cocciadiferro, D.; Novelli, A.; Santoro, L.; Cordiali, R.; Sangiorgi, L.; Gnoli, M. Further Evidence of Early-Onset Osteoporosis and Bone Fractures as a New FGFR2-Related Phenotype. Int. J. Mol. Sci. 2025, 26, 4204. https://doi.org/10.3390/ijms26094204
Moroni A, Pedrini E, Tremosini M, Di Cecco A, Cocciadiferro D, Novelli A, Santoro L, Cordiali R, Sangiorgi L, Gnoli M. Further Evidence of Early-Onset Osteoporosis and Bone Fractures as a New FGFR2-Related Phenotype. International Journal of Molecular Sciences. 2025; 26(9):4204. https://doi.org/10.3390/ijms26094204
Chicago/Turabian StyleMoroni, Alice, Elena Pedrini, Morena Tremosini, Alessia Di Cecco, Dario Cocciadiferro, Antonio Novelli, Lucia Santoro, Rosanna Cordiali, Luca Sangiorgi, and Maria Gnoli. 2025. "Further Evidence of Early-Onset Osteoporosis and Bone Fractures as a New FGFR2-Related Phenotype" International Journal of Molecular Sciences 26, no. 9: 4204. https://doi.org/10.3390/ijms26094204
APA StyleMoroni, A., Pedrini, E., Tremosini, M., Di Cecco, A., Cocciadiferro, D., Novelli, A., Santoro, L., Cordiali, R., Sangiorgi, L., & Gnoli, M. (2025). Further Evidence of Early-Onset Osteoporosis and Bone Fractures as a New FGFR2-Related Phenotype. International Journal of Molecular Sciences, 26(9), 4204. https://doi.org/10.3390/ijms26094204