Interleukin-6 in Anthracycline-Related Cardiac Dysfunction: A Comparison with Myeloperoxidase and TNF-Alpha
Abstract
1. Introduction
2. Results
2.1. Baseline Characteristics
2.2. Cardiovascular Outcomes
2.3. Association Between Novel Biomarkers and CAC Score or Coronary Artery Disease
2.4. Correlation Between Biomarkers at Subsequent Visits
2.5. Association Between Novel Biomarkers and CTRCD
3. Discussion
Strengths and Limitations
4. Materials and Methods
4.1. Study Structure
4.2. Patients Classification, CCTA, and Echocardiography
4.3. Blood Samples for IL-6, MPO, and TNF-Alpha
4.4. Data Acquisition and Statistical Analysis
4.4.1. Data Acquisition and Quality Control
4.4.2. Sample Size Calculations and Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
CTRCD | cancer therapy-related cardiac dysfunction |
CTR-CVT | cancer therapy-related cardiovascular toxicity |
HFA-ICOS | Heart Failure Association-International Cardio-Oncology Society |
CCTA | Coronary computed tomography angiography |
CAC score | coronary artery calcium score |
GLS | left ventricular peak systolic global longitudinal strain |
hs-cTnT | high-sensitivity cardiac troponin T |
NT-proBNP | N-terminal pro-B-type natriuretic peptide |
eCRF | electronic case report forms |
HIS | Hospital Information System |
LVEF | left ventricle ejection fraction |
CVD | cardiovascular disease |
IL-6 | interleukin-6 |
MPO | myeloperoxidase |
TNF-α | tumor necrosis factor alpha |
References
- Mukai, M.; Komori, K.; Oka, T. Mechanism and Management of Cancer Chemotherapy-Induced Atherosclerosis. J. Atheroscler. Thromb. 2018, 25, 994–1002. [Google Scholar] [CrossRef] [PubMed]
- Hooks, M.; Sandhu, G.; Maganti, T.; Chen, K.A.; Wang, M.; Cullen, R.; Velangi, P.S.; Gu, C.; Wiederin, J.; Connett, J.; et al. Incidental coronary calcium in cancer patients treated with anthracycline and/or trastuzumab. Eur. J. Prev. Cardiol. 2022, 29, 2200–2210. [Google Scholar] [CrossRef] [PubMed]
- Lyon, A.R.; Lopez-Fernandez, T.; Couch, L.S.; Asteggiano, R.; Aznar, M.C.; Bergler-Klein, J.; Boriani, G.; Cardinale, D.; Cordoba, R.; Cosyns, B.; et al. 2022 ESC Guidelines on cardio-oncology developed in collaboration with the European Hematology Association (EHA), the European Society for Therapeutic Radiology and Oncology (ESTRO) and the International Cardio-Oncology Society (IC-OS). Eur. Heart J. Cardiovasc. Imaging 2022, 23, e333–e465. [Google Scholar] [CrossRef] [PubMed]
- Patel, S.; Franco, F.X.; McDonald, M.; Rivera, C.; Perez-Villa, B.; Collier, P.; Moudgil, R.; Gupta, N.; Sadler, D.B. Use of computed tomography coronary calcium score for prediction of cardiovascular events in cancer patients: A retrospective cohort analysis. Cardiooncology 2024, 10, 1. [Google Scholar] [CrossRef] [PubMed]
- Peng, A.W.; Dudum, R.; Jain, S.S.; Maron, D.J.; Patel, B.N.; Khandwala, N.; Eng, D.; Chaudhari, A.S.; Sandhu, A.T.; Rodriguez, F. Association of Coronary Artery Calcium Detected by Routine Ungated CT Imaging with Cardiovascular Outcomes. J. Am. Coll. Cardiol. 2023, 82, 1192–1202. [Google Scholar] [CrossRef] [PubMed]
- Hartman, J.; Frishman, W.H. Inflammation and atherosclerosis: A review of the role of interleukin-6 in the development of atherosclerosis and the potential for targeted drug therapy. Cardiol. Rev. 2014, 22, 147–151. [Google Scholar] [CrossRef] [PubMed]
- Ridker, P.M.; Luscher, T.F. Anti-inflammatory therapies for cardiovascular disease. Eur. Heart J. 2014, 35, 1782–1791. [Google Scholar] [CrossRef] [PubMed]
- Tang, W.H.; Tong, W.; Troughton, R.W.; Martin, M.G.; Shrestha, K.; Borowski, A.; Jasper, S.; Hazen, S.L.; Klein, A.L. Prognostic value and echocardiographic determinants of plasma myeloperoxidase levels in chronic heart failure. J. Am. Coll. Cardiol. 2007, 49, 2364–2370. [Google Scholar] [CrossRef] [PubMed]
- Todorova, V.K.; Hsu, P.C.; Wei, J.Y.; Lopez-Candales, A.; Chen, J.Z.; Su, L.J.; Makhoul, I. Biomarkers of inflammation, hypercoagulability and endothelial injury predict early asymptomatic doxorubicin-induced cardiotoxicity in breast cancer patients. Am. J. Cancer Res. 2020, 10, 2933–2945. [Google Scholar] [PubMed]
- Cicha, I.; Urschel, K. TNF-α in the cardiovascular system: From physiology to therapy. Int. J. Interferon Cytokine Mediat. Res. 2015, 9, 9–25. [Google Scholar] [CrossRef]
- Lakhani, H.V.; Pillai, S.S.; Zehra, M.; Dao, B.; Tirona, M.T.; Thompson, E.; Sodhi, K. Detecting early onset of anthracyclines-induced cardiotoxicity using a novel panel of biomarkers in West-Virginian population with breast cancer. Sci. Rep. 2021, 11, 7954. [Google Scholar] [CrossRef] [PubMed]
- Dessì, M.; Piras, A.; Madeddu, C.; Cadeddu, C.; Deidda, M.; Massa, E.; Antoni, G.; Mantovani, G.; Mercuro, G. Long-term protective effects of the angiotensin receptor blocker telmisartan on epirubicin-induced inflammation, oxidative stress and myocardial dysfunction. Exp. Ther. Med. 2011, 2, 1003–1009. [Google Scholar] [CrossRef] [PubMed]
- Ky, B.; Putt, M.; Sawaya, H.; French, B.; Januzzi, J.L., Jr.; Sebag, I.A.; Plana, J.C.; Cohen, V.; Banchs, J.; Carver, J.R.; et al. Early increases in multiple biomarkers predict subsequent cardiotoxicity in patients with breast cancer treated with doxorubicin, taxanes, and trastuzumab. J. Am. Coll. Cardiol. 2014, 63, 809–816. [Google Scholar] [CrossRef] [PubMed]
- Putt, M.; Hahn, V.S.; Januzzi, J.L.; Sawaya, H.; Sebag, I.A.; Plana, J.C.; Picard, M.H.; Carver, J.R.; Halpern, E.F.; Kuter, I.; et al. Longitudinal Changes in Multiple Biomarkers Are Associated with Cardiotoxicity in Breast Cancer Patients Treated with Doxorubicin, Taxanes, and Trastuzumab. Clin. Chem. 2015, 61, 1164–1172. [Google Scholar] [CrossRef] [PubMed]
- Demissei, B.G.; Hubbard, R.A.; Zhang, L.; Smith, A.M.; Sheline, K.; McDonald, C.; Narayan, V.; Domchek, S.M.; DeMichele, A.; Shah, P.; et al. Changes in Cardiovascular Biomarkers with Breast Cancer Therapy and Associations with Cardiac Dysfunction. J. Am. Heart Assoc. 2020, 9, e014708. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.; Gao, D.; Xue, J.; Zuo, Z. Galectin-3 and Myeloperoxidase May Monitor Cancer-Therapy-Related Cardiotoxicity? A Systematic Review and Meta-Analysis. Biomolecules 2022, 12, 1788. [Google Scholar] [CrossRef] [PubMed]
- Camilli, M.; Viscovo, M.; Felici, T.; Maggio, L.; Ballacci, F.; Carella, G.; Bonanni, A.; Lamendola, P.; Tinti, L.; Di Renzo, A.; et al. Inflammation and acute cardiotoxicity in adult hematological patients treated with CAR-T cells: Results from a pilot proof-of-concept study. Cardio-Oncology 2024, 10, 18. [Google Scholar] [CrossRef] [PubMed]
- Borowiec, A.; Ozdowska, P.; Rosinska, M.; Jagiello-Gruszfeld, A.; Jasek, S.; Waniewska, J.; Kotowicz, B.; Kosela-Paterczyk, H.; Lampka, E.; Makowka, A.; et al. Prognostic value of coronary atherosclerosis and CAC score for the risk of chemotherapy-related cardiac dysfunction (CTRCD): The protocol of ANTEC study. PLoS ONE 2023, 18, e0288146. [Google Scholar] [CrossRef] [PubMed]
- Edvardsen, T.; Asch, F.M.; Davidson, B.; Delgado, V.; DeMaria, A.; Dilsizian, V.; Gaemperli, O.; Garcia, M.J.; Kamp, O.; Lee, D.C.; et al. Non-Invasive Imaging in Coronary Syndromes: Recommendations of The European Association of Cardiovascular Imaging and the American Society of Echocardiography, in Collaboration with The American Society of Nuclear Cardiology, Society of Cardiovascular Computed Tomography, and Society for Cardiovascular Magnetic Resonance. J. Cardiovasc. Comput. Tomogr. 2022, 16, 362–383. [Google Scholar] [PubMed]
Patients Characteristics | Value |
---|---|
Sex, n (%) | Male: 5 (6.5%) |
Female: 72 (93.5%) | |
Age group, n (%) | <65 years: 41 (53.2%) |
≥65 years: 36 (46.8%) | |
Age (years) | Mean (SD): 60.5 (12.2) |
Median [min–max]: 64 [24–80] | |
Cancer type, n (%) | Breast: 59 (76.6%) |
Lymphoma: 7 (9.1%) | |
Sarcoma: 11 (14.3%) | |
Risk group according to HFA-ICOS, n (%) | High Risk: 37 (48.1%) |
Moderate Risk: 40 (51.9%) | |
BMI, n (%) | <25: 24 (31.2%) |
25–<30: 28 (36.4%) | |
≥30: 25 (32.5%) | |
Coexisting conditions *, n (%) | Hypertension: 60 (77.9%) |
Hyperlipidemia: 58 (75.3%) | |
Diabetes: 11 (14.3%) | |
Chronic kidney disease: 12 (15.6%) | |
Ever smoking: 37 (48.1%) | |
NYHA scale, n (%) | 1: 54 (70.1%) |
2: 23 (29.9%) | |
ECOG score, n (%) | 0: 55 (71.4%) |
1: 21 (27.3%) | |
2: 1 (1.3%) | |
Medications, n (%) | Beta-blockers: 33 (42.9%) |
ACE-i: 34 (44.2%) | |
Statins: 23 (29.9%) | |
Coronary artery stenosis, n (%) | No stenosis: 36 (46.8%) |
Minimal (<25%): 7 (9.1%) | |
Mild (25–49%): 19 (24.7%) | |
Moderate (50–69%): 6 (7.8%) | |
Severe (70–99%): 9 (11.7%) | |
Calcium score in cardiac CT scan, n (%) | 0: 36 (46.8%) |
1–99: 24 (31.2%) | |
100–399: 14 (18.2%) | |
400+: 3 (3.9%) | |
CAC score | Mean (SD): 84.4 (173.6) |
Median [min–max]: 4 [0–1041] | |
Anthracycline dose (mg/m2), n (%) | <250: 62 (80.5%) |
≥250: 15 (19.5%) | |
Troponin T, n (%) | ≤14 ng/L: 71 (92.2%) |
>14 ng/L: 6 (7.8%) | |
Troponin T (ng/L) | Mean (SD): 8 (3.8) |
Median [min–max]: 7 [3–21] | |
NT-proBNP, n (%) | ≤125 pg/mL: 48 (62.3%) |
>125 pg/mL: 29 (37.7%) | |
NT-proBNP (pg/mL) | Mean (SD): 137.9 (142) |
Median [min–max]: 94 [10–629] | |
LV GLS (%) | Mean (SD): 19.1 (2) |
Median [min–max]:19.2 [14.2–25.1] | |
LV EF (%) | Mean (SD): 61.6 (3.5) |
Median [min–max]: 62 [50–69] | |
Creatinine (mg/dL) | Mean (SD): 0.8 (0.2) |
Median [min–max]: 0.8 [0.4–1.6] | |
EGFR (mL/min/1.73 m2) | Mean (SD): 79.5 (21.7) |
Median [min–max]: 76 [30–146] | |
Triglycerides (mg/dL) | Mean (SD): 118.7 (50.5) |
Median [min–max]: 105 [43.6–251] | |
HDL (mg/dL) | Mean (SD): 58.8 (15.8) |
Median [min–max]: 57 [30–119] | |
LDL (mg/dL) | Mean (SD): 130.9 (37) |
Median [min–max]: 126 [62.9–226] | |
Glycated hemoglobin (%) | Mean (SD): 5.8 (1) |
Median [min–max]: 5.8 [0–9.8] | |
Biomarkers | |
TNF-α (pg/mL) | Mean (SD): 8.7 (5.5) |
Median [min–max]: 8 [0–31.8] | |
MPO (pg/mL) | Mean (SD): 312.9 (163.3) |
Median [min–max]: 309.5 [40.8–525] | |
IL-6 (pg/mL) | Mean (SD): 6.8 (8.8) |
Median [min–max]: 3.8 [0.6–40.6] |
High Risk | Medium Risk | Total | p-Value * | ||
---|---|---|---|---|---|
Mean (sd), Median [Min–Max] | Mean (sd), Median [Min–Max] | Mean (sd), Median [Min–Max] | |||
Visit 1 (baseline) | IL-6 (pg/mL) | 9.43 (10.97). 5.98 [0.59–40.62] | 4.62 (5.78). 2.31 [0.7–26.39] | 6.83 (8.83). 3.79 [0.59–40.62] | 0.0186 |
MPO (pg/mL) | 327.45 (163.98). 336.7 [49.4–525] | 300.55 (163.69). 279.02 [40.75–525] | 312.91 (163.26). 309.5 [40.75–525] | 0.4019 | |
TNF-α (pg/mL) | 9.88 (6.32). 8.67 [0–31.8] | 7.7 (4.52). 6.85 [0–17.2] | 8.7 (5.49). 7.95 [0–31.8] | 0.1446 | |
Visit 3 | IL-6 (pg/mL) | 16.23 (19.25). 8.28 [0.7–66.5] | 7.98 (7.56). 5.94 [0.12–36.37] | 11.91 (14.83). 6.87 [0.12–66.5] | 0.18877 |
MPO (pg/mL) | 214.3 (143.08). 189.63 [31.3–525] | 185.19 (137.46). 122.5 [45.8–525] | 199.05 (139.8). 154.6 [31.3–525] | 0.5272 | |
TNF-α (pg/mL) | 6.77 (6.23). 6.59 [0–20.3] | 5.38 (7.66). 3.8 [0–34.2] | 6.04 (7). 4.5 [0–34.2] | 0.1089 | |
Visit 5 | IL-6 (pg/mL) | 7.62 (8.38). 5.43 [0.7–37.33] | 6.4 (7.08). 3.28 [0.56–29.58] | 6.94 (7.65). 4.13 [0.56–37.33] | 0.3985 |
MPO (pg/mL) | 209.77 (123.58). 203.75 [44.65–525] | 214.9 (147.25). 184.13 [21.3–525] | 212.62 (136.32). 193.93 [21.3–525] | 0.8415 | |
TNF-α (pg/mL) | 2.95 (4.87). 0 [0–20.54] | 4.48 (6.25). 1.35 [0–26.23] | 3.8 (5.69). 0 [0–26.23] | 0.2929 |
Odds Ratio | p-Value | ||
---|---|---|---|
Baseline values | |||
IL-6 (pg/mL) | Increase by 1 pg/mL | 0.64 (0.27–1.53) | 0.316 |
TNF-α (pg/mL) | Increase by 1 pg/mL | 0.88 (0.38–2.02) | 0.756 |
MPO (ng/mL) | Increase by 1 ng/mL | 1 (0.97–1.03) | 0.894 |
Values observed during treatment | |||
IL-6 (pg/mL) | Increase by 1 pg/mL | 1.52 (1.05–2.22) | 0.028 |
TNF-α (pg/mL) | Increase by 1 pg/mL | 1.16 (0.76–1.78) | 0.486 |
MPO (ng/mL) | Increase by 1 ng/mL | 0.99 (0.97–1.01) | 0.309 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Borowiec, A.; Ozdowska, P.; Rosinska, M.; Zebrowska, A.M.; Jasek, S.; Kotowicz, B.; Makowka, A.; Waniewska, J.; Kosela-Paterczyk, H.; Lampka, E.; et al. Interleukin-6 in Anthracycline-Related Cardiac Dysfunction: A Comparison with Myeloperoxidase and TNF-Alpha. Int. J. Mol. Sci. 2025, 26, 4071. https://doi.org/10.3390/ijms26094071
Borowiec A, Ozdowska P, Rosinska M, Zebrowska AM, Jasek S, Kotowicz B, Makowka A, Waniewska J, Kosela-Paterczyk H, Lampka E, et al. Interleukin-6 in Anthracycline-Related Cardiac Dysfunction: A Comparison with Myeloperoxidase and TNF-Alpha. International Journal of Molecular Sciences. 2025; 26(9):4071. https://doi.org/10.3390/ijms26094071
Chicago/Turabian StyleBorowiec, Anna, Patrycja Ozdowska, Magdalena Rosinska, Agnieszka Maria Zebrowska, Sławomir Jasek, Beata Kotowicz, Agata Makowka, Joanna Waniewska, Hanna Kosela-Paterczyk, Elzbieta Lampka, and et al. 2025. "Interleukin-6 in Anthracycline-Related Cardiac Dysfunction: A Comparison with Myeloperoxidase and TNF-Alpha" International Journal of Molecular Sciences 26, no. 9: 4071. https://doi.org/10.3390/ijms26094071
APA StyleBorowiec, A., Ozdowska, P., Rosinska, M., Zebrowska, A. M., Jasek, S., Kotowicz, B., Makowka, A., Waniewska, J., Kosela-Paterczyk, H., Lampka, E., Pogoda, K., Nowecki, Z., & Walewski, J. (2025). Interleukin-6 in Anthracycline-Related Cardiac Dysfunction: A Comparison with Myeloperoxidase and TNF-Alpha. International Journal of Molecular Sciences, 26(9), 4071. https://doi.org/10.3390/ijms26094071