rs1051931 Nonsynonymous Polymorphism of Platelet-Activating Factor Acetylhydrolase Gene PLA2G7 Is Associated with Dysesthesia and Pain Severity After Surgery
Abstract
1. Introduction
2. Results
2.1. PLA2G7 rs1051931 Is Associated with Dysesthesia in the TD Group
2.2. PLA2G7 rs1051931 Is Associated with Numeric Rating Scale Pain Scores in the JUH Group
3. Discussion
4. Materials and Methods
4.1. Ethics Statement
4.2. Subjects
4.2.1. Patients Who Underwent SSRO
4.2.2. Patients Who Underwent Laparoscopic Surgery for Benign Gynecological Disease
4.3. Pain Assessment
4.4. Genotyping
4.5. Statistical Analysis
4.6. Public Database Search
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Woolf, C.J. What is this thing called pain? J. Clin. Investig. 2010, 120, 3742–3744. [Google Scholar] [CrossRef] [PubMed]
- Ishida, Y.; Okada, T.; Kobayashi, T.; Funatsu, K.; Uchino, H. Pain management of acute and chronic postoperative pain. Cureus 2022, 14, e23999. [Google Scholar] [CrossRef] [PubMed]
- Haroutiunian, S.; Nikolajsen, L.; Finnerup, N.B.; Jensen, T.S. The neuropathic component in persistent postsurgical pain: A systematic literature review. Pain 2013, 154, 95–102. [Google Scholar] [CrossRef]
- Jensen, M.P.; Chodroff, M.J.; Dworkin, R.H. The impact of neuropathic pain on health-related quality of life: Review and implications. Neurology 2007, 68, 1178–1182. [Google Scholar] [CrossRef] [PubMed]
- Monnazzi, M.S.; Real-Gabrielli, M.F.; Passeri, L.A.; Gabrielli, M.A.C. Cutaneous sensibility impairment after mandibular sagittal split osteotomy: A prospective clinical study of the spontaneous recovery. J. Oral Maxillofac. Surg. 2012, 70, 696–702. [Google Scholar] [CrossRef]
- Marchiori, E.C.; Barber, J.S.; Williams, W.B.; Bui, P.Q.; O’Ryan, F.S. Neuropathic pain following sagittal split ramus osteotomy of the mandible: Prevalence, risk factors, and clinical course. J. Oral Maxillofac. Surg. 2013, 71, 2115–2122. [Google Scholar] [CrossRef]
- Shin, J.H.; Howard, F.M. Abdominal wall nerve injury during laparoscopic gynecologic surgery: Incidence, risk factors, and treatment outcomes. J. Minim. Invasive Gynecol. 2012, 19, 448–453. [Google Scholar] [CrossRef]
- Kobayashi, D.; Nishizawa, D.; Takasaki, Y.; Kasai, S.; Kakizawa, T.; Ikeda, K.; Fukuda, K. Genome-wide association study of sensory disturbances in the inferior alveolar nerve after bilateral sagittal split ramus osteotomy. Mol. Pain 2013, 9, 34. [Google Scholar] [CrossRef]
- Fukuda, K.; Hayashida, M.; Ide, S.; Saita, N.; Kokita, Y.; Kasai, S.; Nishizawa, D.; Ogai, Y.; Hasegawa, J.; Nagashima, M.; et al. Association between OPRM1 gene polymorphisms and fentanyl sensitivity in patients undergoing painful cosmetic surgery. Pain 2009, 147, 194–201. [Google Scholar] [CrossRef]
- Fukuda, K.; Hayashida, M.; Ikeda, K.; Koukita, Y.; Ichinohe, T.; Kaneko, Y. Diversity of opioid requirements for postoperative pain control following oral surgery—Is it affected by polymorphism of the µ-opioid receptor? Anesth. Prog. 2010, 57, 145–149. [Google Scholar] [CrossRef]
- Duan, G.; Xiang, G.; Guo, S.; Zhang, Y.; Ying, Y.; Huang, P.; Zheng, H.; Zhang, M.; Li, N.; Zhang, X. Genotypic analysis of SCN9A for prediction of postoperative pain in female patients undergoing gynecological laparoscopic surgery. Pain Physician 2016, 19, E151–E162. [Google Scholar]
- Sun, J.; Duan, G.; Li, N.; Guo, S.; Zhang, Y.; Ying, Y.; Zhang, M.; Wang, Q.; Liu, J.Y.; Zhang, X. SCN11A variants may influence postoperative pain sensitivity after gynecological surgery in Chinese Han female patients. Medicine 2017, 96, e8149. [Google Scholar] [CrossRef] [PubMed]
- Fertleman, C.R.; Baker, M.D.; Parker, K.A.; Moffatt, S.; Elmslie, F.V.; Abrahamsen, B.; Ostman, J.; Klugbauer, N.; Wood, J.N.; Gardiner, R.M.; et al. SCN9A mutations in paroxysmal extreme pain disorder: Allelic variants underlie distinct channel defects and phenotypes. Neuron 2006, 52, 767–774. [Google Scholar] [CrossRef] [PubMed]
- Huang, J.; Han, C.; Estacion, M.; Vasylyev, D.; Hoeijmakers, J.G.; Gerrits, M.M.; Tyrrell, L.; Lauria, G.; Faber, C.G.; PROPANE Study Group; et al. Gain-of-function mutations in sodium channel Nav1.9 in painful neuropathy. Brain 2014, 137 Pt 6, 1627–1642. [Google Scholar] [CrossRef]
- Shindou, H.; Shiraishi, S.; Tokuoka, S.M.; Takahashi, Y.; Harayama, T.; Abe, T.; Bando, K.; Miyano, K.; Kita, Y.; Uezono, Y.; et al. Relief from neuropathic pain by blocking of the platelet-activating factor-pain loop. FASEB J. 2017, 31, 2973–2980. [Google Scholar] [CrossRef]
- Deng, Y.; Fang, W.; Li, Y.; Cen, J.; Fang, F.; Lv, P.; Gong, S.; Mao, L. Blood-brain barrier breakdown by PAF and protection by XQ-1H due to antagonism of PAF effects. Eur. J. Pharmacol. 2009, 616, 43–47. [Google Scholar] [CrossRef]
- Dohi, T.; Morita, K.; Morioka, N.; Abdin, M.J.; Kitayama, T.; Kitayama, S.; Nakata, Y. Role of platelet-activating factor on spinal pain transduction. Folia Pharmacol. Jpn. 2006, 127, 18–24. [Google Scholar] [CrossRef] [PubMed]
- Nakahodo, K.; Saitoh, S.; Nakamura, M.; Kosugi, T. Histamine release from rabbit platelets by platelet-activating factor (PAF). Jpn. J. Allergol. 1994, 43, 501–510. [Google Scholar]
- Wang, J.; Takemura, N.; Saitoh, T. Macrophage response driven by extracellular ATP. Biol. Pharm. Bull. 2021, 44, 599–604. [Google Scholar] [CrossRef]
- Stachon, P.; Geis, S.; Peikert, A.; Heidenreich, A.; Michel, N.A.; Unal, F.; Hoppe, N.; Dufner, B.; Schulte, L.; Marchini, T.; et al. Extracellular ATP induces vascular inflammation and atherosclerosis via purinergic receptor Y2 in mice. Arterioscler. Thromb. Vasc. Biol. 2016, 36, 1577–1586. [Google Scholar] [CrossRef]
- Tanaka, S.; Koike, T. Selective inflammatory stimulations enhance release of microglial response factor (MRF)-1 from cultured microglia. Glia 2002, 40, 360–371. [Google Scholar] [CrossRef] [PubMed]
- Karasawa, K. Role of the platelet-activating factor in inflammation. J. Jpn. Oil Chem. Soc. 2000, 49, 905–914,972. [Google Scholar] [CrossRef]
- Morita, K.; Morioka, N.; Abdin, J.; Kitayama, S.; Nakata, Y.; Dohi, T. Development of tactile allodynia and thermal hyperalgesia by intrathecally administered platelet-activating factor in mice. Pain 2004, 111, 351–359. [Google Scholar] [CrossRef] [PubMed]
- Motoyama, N.; Morita, K.; Kitayama, T.; Shiraishi, S.; Uezono, Y.; Nishimura, F.; Kanematsu, T.; Dohi, T. Pain-releasing action of platelet-activating factor (PAF) antagonists in neuropathic pain animal models and the mechanisms of action. Eur. J. Pain 2013, 17, 1156–1167. [Google Scholar] [CrossRef]
- Obara, K.; Ichimura, A.; Arai, T.; Fujiwara, M.; Otake, M.; Yamada, N.; Yoshioka, K.; Kusakabe, T.; Takahashi, K.; Kato, K.; et al. Platelet-activating factor contracts guinea pig esophageal muscularis mucosae by stimulating extracellular Ca2+ influx through diltiazem-insensitive Ca2+ channels. J. Pharmacol. Sci. 2024, 154, 256–263. [Google Scholar] [CrossRef]
- Shindou, H.; Hishikawa, D.; Nakanishi, H.; Harayama, T.; Ishii, S.; Taguchi, R.; Shimizu, T. A single enzyme catalyzes both platelet-activating factor production and membrane biogenesis of inflammatory cells: Cloning and characterization of acetyl-CoA:LYSO-PAF acetyltransferase. J. Biol. Chem. 2007, 282, 6532–6539. [Google Scholar] [CrossRef]
- Caplan, M.S.; Sun, X.M.; Hsueh, W.; Hageman, J.R. Role of platelet activating factor and tumor necrosis factor-alpha in neonatal necrotizing enterocolitis. J. Pediatr. 1990, 116, 960–964. [Google Scholar] [CrossRef]
- Miwa, M.; Miyake, T.; Yamanaka, T.; Sugatani, J.; Suzuki, Y.; Sakata, S.; Araki, Y.; Matsumoto, M. Characterization of serum platelet-activating factor (PAF) acetylhydrolase: Correlation between deficiency of serum PAF acetylhydrolase and respiratory symptoms in asthmatic children. J. Clin. Investig. 1988, 82, 1983–1991. [Google Scholar] [CrossRef]
- Graham, R.M.; Stephens, C.J.; Silvester, W.; Leong, L.L.; Sturm, M.J.; Taylor, R.R. Plasma degradation of platelet-activating factor in severely ill patients with clinical sepsis. Crit. Care Med. 1994, 22, 204–212. [Google Scholar] [CrossRef]
- Vadas, P.; Gold, M.; Perelman, B.; Liss, G.M.; Lack, G.; Blyth, T.; Simons, F.E.; Simons, K.J.; Cass, D.; Yeung, J. Platelet-activating factor, PAF acetylhydrolase, and severe anaphylaxis. N. Engl. J. Med. 2008, 358, 28–35. [Google Scholar] [CrossRef]
- Nigam, S.; Benedetto, C.; Zonca, M.; Leo-Rossberg, I.; Lubbert, H.; Hammerstein, J. Increased concentrations of eicosanoids and platelet-activating factor in menstrual blood from women with primary dysmenorrhea. Eicosanoids 1991, 4, 137–141. [Google Scholar]
- Caboni, P.; Liori, B.; Kumar, A.; Santoru, M.L.; Asthana, S.; Pieroni, E.; Fais, A.; Era, B.; Cacace, E.; Ruggiero, V.; et al. Metabolomics analysis and modeling suggest a lysophosphocholines-PAF receptor interaction in fibromyalgia. PLoS ONE 2014, 9, e107626. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Qi, L.; Lv, N.; Gao, Q.; Cheng, Y.; Wei, Y.; Ye, J.; Yan, X.; Dang, A. Association between lipoprotein-associated phospholipase A2 gene polymorphism and coronary artery disease in the Chinese Han population. Ann. Hum. Genet. 2011, 75, 605–611. [Google Scholar] [CrossRef] [PubMed]
- Gregson, J.M.; Freitag, D.F.; Surendran, P.; Stitziel, N.O.; Chowdhury, R.; Burgess, S.; Kaptoge, S.; Gao, P.; EPIC-CVD Consortium; the CHD Exome+ Consortium; et al. Genetic invalidation of Lp-PLA2 as a therapeutic target: Large-scale study of five functional Lp-PLA2-lowering alleles. Eur. J. Prev. Cardiol. 2017, 24, 492–504. [Google Scholar] [CrossRef]
- rs1051931. Reference SNP rs1051931 Report. Gene: PLA2G7, Phospholipase A2 Group VII (Minus Strand) Window on the Variant Details Tab. National Center for Biotechnology Information. Available online: https://www.ncbi.nlm.nih.gov/snp/rs1051931#variant_details (accessed on 4 February 2025).
- Wang, Y.; Shi, Y.; Wu, Z.; Gao, J.; Wang, J.; Li, L.; Wan, Y.; Lang, A.M.; Zhang, J.; Wang, H.; et al. The association of PLA2G7 gene polymorphisms with serum Lp-PLA2 activity and lipid profile in Han Chinese patients with coronary heart disease. Pharmacogenomics Pers. Med. 2024, 17, 563–572. [Google Scholar] [CrossRef] [PubMed]
- Qi, Y.; Zhao, D.; Jia, Z.; Wang, W.; Wang, M.; Sun, J.; Liu, J.; Li, Y.; Xie, W.; Liu, J. A previously unreported impact of a PLA2G7 gene polymorphism on the plasma levels of lipoprotein-associated phospholipase A2 activity and mass. Sci. Rep. 2016, 6, 37465. [Google Scholar] [CrossRef]
- Hoffmann, M.M.; Winkler, K.; Renner, W.; Winkelmann, B.R.; Seelhorst, U.; Wellnitz, B.; Boehm, B.O.; Marz, W. Genetic variants and haplotypes of lipoprotein associated phospholipase A2 and their influence on cardiovascular disease (The Ludwigshafen Risk and Cardiovascular Health Study). J. Thromb. Haemost. 2009, 7, 41–48. [Google Scholar] [CrossRef]
- Liu, P.Y.; Li, Y.H.; Wu, H.L.; Chao, T.H.; Tsai, L.M.; Lin, L.J.; Shi, G.Y.; Chen, J.H. Platelet-activating factor-acetylhydrolase A379V (exon 11) gene polymorphism is an independent and functional risk factor for premature myocardial infarction. J. Thromb. Haemost. 2006, 4, 1023–1028. [Google Scholar] [CrossRef]
- GTEx Portal. PLA2G7. Available online: https://www.gtexportal.org/home/gene/ENSG00000146070.17 (accessed on 4 February 2025).
- Inoue, K.; Tsuda, M. Microglia in neuropathic pain: Cellular and molecular mechanisms and therapeutic potential. Nat. Rev. Neurosci. 2018, 19, 138–152. [Google Scholar] [CrossRef]
- Ye, Y.; Cheng, H.; Wang, Y.; Sun, Y.; Zhang, L.D.; Tang, J. Macrophage: A key player in neuropathic pain. Int. Rev. Immunol. 2024, 43, 326–339. [Google Scholar] [CrossRef]
- Yamamoto, S.; Hashidate-Yoshida, T.; Yoshinari, Y.; Shimizu, T.; Shindou, H. Macrophage/microglia-producing transient increase of platelet-activating factor is involved in neuropathic pain. iScience 2024, 27, 109466. [Google Scholar] [CrossRef] [PubMed]
- PLA2G7. The Human Protein Atlas. Available online: https://www.proteinatlas.org/ENSG00000146070-PLA2G7 (accessed on 5 February 2025).
- Fang, W.; Zhang, R.; Sha, L.; Lv, P.; Shang, E.; Han, D.; Wei, J.; Geng, X.; Yang, Q.; Li, Y. Platelet activating factor induces transient blood-brain barrier opening to facilitate edaravone penetration into the brain. J. Neurochem. 2014, 128, 662–671. [Google Scholar] [CrossRef]
- Kumar, R.; Harvey, S.A.; Kester, M.; Hanahan, D.J.; Olson, M.S. Production and effects of platelet-activating factor in the rat brain. Biochim. Biophys. Acta 1988, 963, 375–383. [Google Scholar] [CrossRef] [PubMed]
- ZENBU Genome Browser. PLA2G7. rs1051931 SNP. Available online: https://fantom.gsc.riken.jp/zenbu/gLyphs/index.html#config=9O1caUYdJRqglKrQ1IUVu;loc=hg19::chr6:46672359..46673425+ (accessed on 7 February 2025).
- Beschorner, R.; Nguyen, T.D.; Gozalan, F.; Pedal, I.; Mattern, R.; Schluesener, H.J.; Meyermann, R.; Schwab, J.M. CD14 expression by activated parenchymal microglia/macrophages and infiltrating monocytes following human traumatic brain injury. Acta Neuropathol. 2002, 103, 541–549. [Google Scholar] [CrossRef]
- Janova, H.; Bottcher, C.; Holtman, I.R.; Regen, T.; van Rossum, D.; Gotz, A.; Ernst, A.S.; Fritsche, C.; Gertig, U.; Saiepour, N.; et al. CD14 is a key organizer of microglial responses to CNS infection and injury. Glia 2016, 64, 635–649. [Google Scholar] [CrossRef]
- Camussi, G.; Mariano, F.; Biancone, L.; De Martino, A.; Bussolati, B.; Montrucchio, G.; Tobias, P.S. Lipopolysaccharide binding protein and CD14 modulate the synthesis of platelet-activating factor by human monocytes and mesangial and endothelial cells stimulated with lipopolysaccharide. J. Immunol. 1995, 155, 316–324. [Google Scholar] [CrossRef] [PubMed]
- Foulks, J.M.; Marathe, G.K.; Michetti, N.; Stafforini, D.M.; Zimmerman, G.A.; McIntyre, T.M.; Weyrich, A.S. PAF-acetylhydrolase expressed during megakaryocyte differentiation inactivates PAF-like lipids. Blood 2009, 113, 6699–6706. [Google Scholar] [CrossRef] [PubMed]
- Vivier, E.; Salem, P.; Dulioust, A.; Praseuth, D.; Metezeau, P.; Benveniste, J.; Thomas, Y. Immunoregulatory functions of paf-acether: II. Decrease of CD2 and CD3 antigen expression. Eur. J. Immunol. 1988, 18, 425–430. [Google Scholar] [CrossRef]
- Miyagi, M.; Uchida, K.; Takano, S.; Nakawaki, M.; Sekiguchi, H.; Nakazawa, T.; Imura, T.; Saito, W.; Shirasawa, E.; Kawakubo, A.; et al. Role of CD14-positive cells in inflammatory cytokine and pain-related molecule expression in human degenerated intervertebral discs. J. Orthop. Res. 2021, 39, 1755–1762. [Google Scholar] [CrossRef]
- National Center for Biotechnology Information. rs1051931. Reference SNP rs1051931 Report. 1000 Genomes Project Window on the Frequency Tab. Available online: https://www.ncbi.nlm.nih.gov/snp/rs1051931#frequency_tab (accessed on 29 January 2025).
- Zou, R.; Nishizawa, D.; Inoue, R.; Hasegawa, J.; Ebata, Y.; Nakayama, K.; Hara, A.; Sumikura, H.; Kitade, M.; Hayashida, M.; et al. Effect of A118G (rs1799971) single-nucleotide polymorphism of the µ-opioid receptor OPRM1 gene on intraoperative remifentanil requirements in Japanese women undergoing laparoscopic gynecological surgery. Neuropsychopharmacol. Rep. 2024, 44, 650–657. [Google Scholar] [CrossRef]
- Melzack, R. The McGill Pain Questionnaire: Major properties and scoring methods. Pain 1975, 1, 277–299. [Google Scholar] [CrossRef] [PubMed]
- Nishizawa, D.; Terui, T.; Ishitani, K.; Kasai, S.; Hasegawa, J.; Nakayama, K.; Ebata, Y.; Ikeda, K. Genome-wide association study identifies candidate loci associated with opioid analgesic requirements in the treatment of cancer pain. Cancers 2022, 14, 4692. [Google Scholar] [CrossRef] [PubMed]
- Nishizawa, D.; Fukuda, K.; Kasai, S.; Hasegawa, J.; Aoki, Y.; Nishi, A.; Saita, N.; Koukita, Y.; Nagashima, M.; Katoh, R.; et al. Genome-wide association study identifies a potent locus associated with human opioid sensitivity. Mol. Psychiatry 2014, 19, 55–62. [Google Scholar] [CrossRef] [PubMed]
Genotype | Group | |
---|---|---|
TD | JUH | |
TT | 1 (0.3%) | 2 (0.6%) |
TC | 53 (17.5%) | 62 (18.7%) |
CC | 249 (82.2%) | 268 (80.7%) |
Genotype Group | Statistical Method | χ2 Values | p Values | With Dysesthesia | Without Dysesthesia |
---|---|---|---|---|---|
TT/TC/CC | χ2 test | 4.433 | 0.1090 | 0/20/129 (0.0/13.4/86.6) | 1/33/120 (0.7/21.4/77.9) |
Cochran-Armitage trend test | - | 0.0490 * | |||
TT + TC/CC | χ2 test | 3.873 | 0.0491 * | 20/129 (13.4/86.6) | 34/120 (22.1/77.9) |
TT/TC + CC | χ2 test | 0.971 | 0.3245 | 0/149 (0.0/100.0) | 1/153 (0.6/99.4) |
Genotype Group | Numerical Rating Scale Pain Score (Median [Interquartile Range]) | Statistical Method | p Values |
---|---|---|---|
TT/TC/CC | 1.3 [0.3]/1.5 [1.8]/1.7 [1.4] | Kruskal–Wallis test | 0.0755 |
Jonckheere–Terpstra test | 0.0243 * | ||
TT + TC/CC | 1.5 [1.7]/1.7 [1.4] | Mann–Whitney U test | 0.0249 * |
TT/TC + CC | 1.3 [0.3]/1.7 [1.5] | Mann–Whitney U test | 0.4706 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hayashi, M.; Ohka, S.; Nishizawa, D.; Inoue, R.; Hayashida, M.; Hasegawa, J.; Nakayama, K.; Ebata, Y.; Kang, Y.; Yoshida, K.; et al. rs1051931 Nonsynonymous Polymorphism of Platelet-Activating Factor Acetylhydrolase Gene PLA2G7 Is Associated with Dysesthesia and Pain Severity After Surgery. Int. J. Mol. Sci. 2025, 26, 3931. https://doi.org/10.3390/ijms26093931
Hayashi M, Ohka S, Nishizawa D, Inoue R, Hayashida M, Hasegawa J, Nakayama K, Ebata Y, Kang Y, Yoshida K, et al. rs1051931 Nonsynonymous Polymorphism of Platelet-Activating Factor Acetylhydrolase Gene PLA2G7 Is Associated with Dysesthesia and Pain Severity After Surgery. International Journal of Molecular Sciences. 2025; 26(9):3931. https://doi.org/10.3390/ijms26093931
Chicago/Turabian StyleHayashi, Mayuko, Seii Ohka, Daisuke Nishizawa, Rie Inoue, Masakazu Hayashida, Junko Hasegawa, Kyoko Nakayama, Yuko Ebata, Yuna Kang, Kaori Yoshida, and et al. 2025. "rs1051931 Nonsynonymous Polymorphism of Platelet-Activating Factor Acetylhydrolase Gene PLA2G7 Is Associated with Dysesthesia and Pain Severity After Surgery" International Journal of Molecular Sciences 26, no. 9: 3931. https://doi.org/10.3390/ijms26093931
APA StyleHayashi, M., Ohka, S., Nishizawa, D., Inoue, R., Hayashida, M., Hasegawa, J., Nakayama, K., Ebata, Y., Kang, Y., Yoshida, K., Koshika, K., Fukuda, K.-i., Ichinohe, T., & Ikeda, K. (2025). rs1051931 Nonsynonymous Polymorphism of Platelet-Activating Factor Acetylhydrolase Gene PLA2G7 Is Associated with Dysesthesia and Pain Severity After Surgery. International Journal of Molecular Sciences, 26(9), 3931. https://doi.org/10.3390/ijms26093931