GPCR Sense Communication Among Interaction Nematodes with Other Organisms
Abstract
:1. Introduction
2. Classification Systems of GPCRs Biology
3. Functions and Features of GPCRs
4. G Protein-Coupled Receptor Signaling: Transducers and Regulation
5. Research Progress of GPCR Among Nematodes and Other Organisms
5.1. Responding for Interaction Between C. elegans and Related Bacteria
5.2. Communication Between Nematode-Trapping Fungi and Nematodes
5.3. Communication Responses of Host Insects Infected by Entomopathogenic Nematodes
5.4. Chemical Responses of Plant Nematodes to Host Plants
6. Outlook and Future Directions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
GPCRs | G protein-coupled receptors |
FLPs | FMRFamide-like peptides |
APJ | Apelin receptor |
A2BAR | A2B receptor |
GnRH | Gonadotropin-releasing hormone |
GCGR | Glucagon receptor |
GLP-1 | Glucagon-like peptide 1 |
mGluRs | Metabotropic glutamate receptors |
cAMP | Cyclic AMP |
SMO | Smoothened |
GTP | Guanosine triphosphate |
GDP | Guanosine diphosphate |
RGS | Regulators of G protein signaling |
GEF | Guanine nucleotide exchange factor |
GAP | GTPase-activating protein |
ATP | Adenosine Triphosphate |
PIP2 | Phosphatidylinositol 4,5-bisphosphate |
IP3 | Inositol 1,4,5-triphosphate |
DG | Diacylglycerol |
AWB | Anterior White Bipolar neuron |
AWC | Anterior Chemosensory neuron |
ASJ | Anterior Sensory Junction neuron |
ASH | Anterior Sensory Head neuron |
ASL | Anterior Sensory Interneuron |
ADL | Anterior Dorsal Labial neuron |
DMTS | Dimethyl trisulfide |
AIB | Amphid Interneuron B |
NTF | Nematode-trapping fungi |
FaRPs | FMRFamide-related peptides |
MF | Multiplication factor |
RNAi | RNA interference |
References
- Shimizu, T.; Sugiura, K.; Sakai, Y.; Dar, A.R.; Butcher, R.A.; Matsumoto, K.; Hisamoto, N. Chemical signaling regulates axon regeneration via the GPCR-Gqα pathway in Caenorhabditis elegans. J. Neurosci. Off. J. Soc. Neurosci. 2022, 42, 720–730. [Google Scholar] [CrossRef] [PubMed]
- Mombaerts, P. Genes and ligands for odorant, vomeronasal and taste receptors. Nature Reviews. Neuroscience 2004, 5, 263–278. [Google Scholar] [PubMed]
- Brenner, S. The genetics of Caenorhabditis elegans. Genetics 1974, 77, 71–94. [Google Scholar] [CrossRef] [PubMed]
- Hilger, D.; Masureel, M.; Kobilka, B.K. Structure and dynamics of GPCR signaling complexes. Nat. Struct. Mol. Biol. 2018, 25, 4–12. [Google Scholar] [CrossRef]
- Fukutani, Y.; Ishii, J.; Noguchi, K.; Kondo, A.; Yohda, M. An improved bioluminescence-based signaling assay for odor sensing with a yeast expressing a chimeric olfactory receptor. Biotechnol. Bioeng. 2012, 109, 3143–3151. [Google Scholar] [CrossRef]
- Fredriksson, R.; Schioth, H.B. The repertoire of G-protein-coupled receptors in fully sequenced genomes. Mol. Pharmacol. 2005, 67, 1414–1425. [Google Scholar] [CrossRef]
- Wang, X.; van Westen, G.J.; Heitman, L.H.; IJzerman, A.P. G protein-coupled receptors expressed and studied in yeast. The adenosine receptor as a prime example. Biochem. Pharmacol. 2021, 187, 114370. [Google Scholar] [CrossRef]
- Yu, D.; Xie, R.; Wang, Y.; Xie, T.; Xu, L.; Huang, B. The G-protein coupled receptor GPRK contributes to fungal development and full virulence in Metarhizium robertsii. J. Invertebr. Pathol. 2021, 183, 107627. [Google Scholar] [CrossRef]
- Bresso, E.; Fernandez, D.; Amora, D.X.; Noel, P.; Petitot, A.S.; de Sa, M.L.; Albuquerque, E.V.S.; Danchin, E.G.J.; Maigret, B.; Martins, N.F. A chemosensory GPCR as a potential target to control the root-knot nematode Meloidogyne incognita parasitism in plants. Molecules 2019, 24, 3798. [Google Scholar] [CrossRef]
- Pereira, P.H.S.; Borges-Pereira, L.; Garcia, C.R.S. Evidences of G coupled-protein receptor (GPCR) signaling in the human malaria parasite Plasmodium falciparum for Sensing its microenvironment and the role of purinergic signaling in malaria parasites. Curr. Top. Med. Chem. 2021, 21, 171–180. [Google Scholar] [CrossRef]
- Naider, F.; Becker, J.M. A paradigm for peptide hormone-GPCR analyses. Molecules 2020, 25, 33. [Google Scholar] [CrossRef] [PubMed]
- Marrone, G.F.; Grinnell, S.G.; Lu, Z.; Rossi, G.C.; Le Rouzic, V.; Xu, J.; Majumdar, S.; Pan, Y.X.; Pasternak, G.W. Truncated mu opioid GPCR variant involvement in opioid-dependent and opioid-independent pain modulatory systems within the CNS. Proc. Natl. Acad. Sci. USA 2016, 13, 3663–3668. [Google Scholar] [CrossRef] [PubMed]
- Murali, S.; Aradhyam, G.K. Divergent roles of DRY and NPxxY motifs in selective activation of downstream signalling by the apelin receptor. Biochem. J. 2024, 481, 1707–1722. [Google Scholar] [CrossRef] [PubMed]
- Guan, L.; Tan, J.; Qi, B.; Chen, Y.; Cao, M.; Zhang, Q.; Zou, Y. Effects of an external static EF on the conformational transition of 5-HT1A receptor: A molecular dynamics simulation study. Biophys. Chem. 2024, 312, 107283. [Google Scholar]
- Do, H.N.; Haldane, A.; Levy, R.M.; Miao, Y. Unique features of different classes of G-protein-coupled receptors revealed from sequence coevolutionary and structural analysis. Proteins 2022, 90, 601–614. [Google Scholar]
- Bourque, K.; Jones-Tabah, J.; Devost, D.; Clarke, P.B.S.; Hebert, T.E. Exploring functional consequences of GPCR oligomerization requires a different lens. Prog. Mol. Biol. Transl. Sci. 2020, 169, 181–211. [Google Scholar]
- Connelly, S.M.; Sridharan, R.; Naider, F.; Dumont, M.E. Oligomerization of yeast alpha-factor receptor detected by fluorescent energy transfer between ligands. Biophys. J. 2021, 120, 5090–5106. [Google Scholar]
- Aprison, E.Z.; Dzitoyeva, S.; Angeles-Albores, D.; Ruvinsky, I. A male pheromone that improves the quality of the oogenic germline. Proc. Natl. Acad. Sci. USA 2022, 119, 12. [Google Scholar]
- Chen, S.A.; Lin, H.C.; Schroeder, F.C.; Hsueh, Y.P. Prey sensing and response in a nematode-trapping fungus is governed by the MAPK pheromone response pathway. Genetics 2021, 217, 11. [Google Scholar]
- Pandey, P.; Bhat, U.S.; Singh, A.; Joy, A.; Birari, V.; Kadam, N.Y.; Babu, K. Dauer formation in C. elegans is modulated through AWC and ASI-dependent chemosensation. Eneuro 2021, 8, 16. [Google Scholar]
- Warnock, N.D.; Cox, D.; McCoy, C.; Morris, R.; Dalzell, J.J. Transcriptional variation and divergence of host-finding behaviour in Steinernema carpocapsae infective juveniles. BMC Genom. 2019, 20, 17. [Google Scholar] [CrossRef] [PubMed]
- Yang, B.; Wang, J.; Zheng, X.; Wang, X. Nematode pheromones: Structures and functions. Molecules 2023, 28, 21. [Google Scholar] [CrossRef] [PubMed]
- Choi, W.; Ryu, S.E.; Cheon, Y.; Park, Y.J.; Kim, S.; Kim, E.; Koo, J.; Choi, H.; Moon, C.; Kim, K. A single chemosensory GPCR is required for a concentration dependent behavioral switching in C. elegans. Curr. Biol. 2022, 32, 398–411. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Zhao, N.; Chen, Y.; Zhang, D.; Yan, J.; Zou, W.; Zhang, K.; Huang, X. The Signaling pathway of Caenorhabditis elegans mediates chemotaxis response to the attractant 2-heptanone in a trojan horse-like pathogenesis. J. Biol. Chem. 2016, 291, 23618–23627. [Google Scholar] [CrossRef]
- McCoy, C.J.; Wray, C.P.; Freeman, L.; Crooks, B.A.; Golinelli, L.; Marks, N.J.; Temmerman, L.; Beets, I.; Atkinson, L.E.; Mousley, A. Exploitation of phylum-spanning omics resources reveals complexity in the nematode FLP signalling system and provides insights into flp-gene evolution. BMC Genom. 2024, 25, 1220. [Google Scholar] [CrossRef]
- Atkinson, L.E.; Miskelly, I.R.; Moffett, C.L.; McCoy, C.J.; Maule, A.G.; Marks, N.J.; Mousley, A. Unraveling flp-11/flp-32 dichotomy in nematodes. Int. J. Parasitol. 2016, 46, 723–736. [Google Scholar] [CrossRef]
- Bridges, T.M.; Lindsley, C.W. G-Protein-Coupled Receptors: From classical modes of modulation to allosteric mechanisms. ACS Chem. Biol. 2008, 3, 12. [Google Scholar] [CrossRef]
- Gilchrist, A. Modulating G-protein-coupled receptors: From traditional pharmacology to allosterics. Trends Pharmacol. Sci. 2007, 28, 431–437. [Google Scholar] [CrossRef]
- Frooninckx, L.; Van Rompay, L.; Temmerman, L.; Van Sinay, E.; Beets, I.; Janssen, T.; Husson, S.J.; Schoofs, L. Neuropeptide GPCRs in C. elegans. Front. Endocrinol. 2012, 3, 167. [Google Scholar]
- McVeigh, P.; Geary, T.G.; Marks, N.J.; Maule, A.G. The FLP-side of nematodes. Trends Parasitol. 2006, 22, 385–396. [Google Scholar] [CrossRef]
- McVeigh, P.; Leech, S.; Mair, G.R.; Marks, N.J.; Geary, T.G.; Maule, A.G. Analysis of FMRFamide-like peptide (FLP) diversity in phylum Nematoda. Int. J. Parasitol. 2005, 35, 1043–1060. [Google Scholar] [PubMed]
- Das, A.; Forfar, R.; Ladds, G.; Davey, J. Combined use of two transcriptional reporters improves signalling assays for G protein-coupled receptors in fission yeast. Yeast 2006, 23, 889–897. [Google Scholar] [PubMed]
- Goncalves-Monteiro, S.; Ribeiro-Oliveira, R.; Vieira-Rocha, M.S.; Vojtek, M.; Sousa, J.B.; Diniz, C. Insights into Nuclear G-Protein-Coupled Receptors as Therapeutic Targets in Non-Communicable Diseases. Pharmaceuticals 2021, 14, 439. [Google Scholar] [CrossRef] [PubMed]
- Yang, D.; Zhou, Q.; Labroska, V.; Qin, S.; Darbalaei, S.; Wu, Y.; Yuliantie, E.; Xie, L.; Tao, H.; Cheng, J.; et al. G protein-coupled receptors_ structure- and function-based drug discovery. Ignal Transduct. Target. Ther. 2021, 6, 7. [Google Scholar]
- Cao, J.; Li, H.; Chen, L. Targeting drugs to APJ receptor: The prospect of treatment of hypertension and other cardiovascular diseases. Curr. Drug Targets 2015, 16, 7. [Google Scholar] [CrossRef]
- Richfield, O.; Cortez, R.; Kulthinee, S.; Franco, M.; Navar, L.G. Purinergic Receptor Activation Protects Glomerular Microvasculature from Increased Mechanical Stress in Angiotensin II-Induced Hypertension: A Modeling Study. Int. J. Mol. Sci. 2025, 26, 1928. [Google Scholar] [CrossRef]
- Chen, X.Y.; Lin, C.; Liu, G.Y.; Pei, C.; Xu, G.Q.; Gao, L.; Wang, S.Z.; Pan, Y.X. ACE2 gene combined with exercise training attenuates central AngII/AT1 axis function and oxidative stress in a prehypertensive rat model. J. Appl. Physiol. 2022, 132, 1460–1467. [Google Scholar]
- Alanazi, A.Z.; Clark, M.A. Angiotensin III activates ERK1/2 mitogen activated protein kinases and proliferation of rat vascular smooth muscle cells. J. Recept. Signal Transduct. Res. 2025, 45, 61–72. [Google Scholar]
- Papp, Z.T.; Ribiczey, P.; Kató, E.; Tóth, Z.E.; Varga, Z.V.; Giricz, Z.; Hanuska, A.; Al-Khrasani, M.; Zsembery, Á.; Zelles, T.; et al. Angiotensin IV Receptors in the Rat Prefrontal Cortex: Neuronal Expression and NMDA Inhibition. Biomedicines 2024, 13, 71. [Google Scholar] [CrossRef]
- Schioth, H.B.; Fredriksson, R. The GRAFS classification system of G-protein coupled receptors in comparative perspective. Gen. Comp. Endocrinol. 2005, 142, 94–101. [Google Scholar]
- Chapman, N.A.; Dupre, D.J.; Rainey, J.K. The apelin receptor: Physiology, pathology, cell signalling, and ligand modulation of a peptide-activated class A GPCR. Biochem. Cell Biol. 2014, 92, 431–440. [Google Scholar] [PubMed]
- Voss, J.H.; Mahardhika, A.B.; Inoue, A.; Muller, C.E. Agonist-Dependent Coupling of the Promiscuous Adenosine A(2B) Receptor to Galpha Protein Subunits. ACS Pharmacol. Transl. Sci. 2022, 5, 373–386. [Google Scholar] [PubMed]
- Tripathi, P.H.; Akhtar, J.; Arora, J.; Saran, R.K.; Mishra, N.; Polisetty, R.V.; Sirdeshmukh, R.; Gautam, P. Quantitative proteomic analysis of GnRH agonist treated GBM cell line LN229 revealed regulatory proteins inhibiting cancer cell proliferation. BMC Cancer 2022, 22, 133. [Google Scholar]
- Poyner, D.R.; Hay, D.L. Secretin family (Class B) G protein-coupled receptors—From molecular to clinical perspectives. Br. J. Pharmacol. 2012, 166, 1–3. [Google Scholar]
- Mizera, M.; Latek, D. Ligand-receptor interactions and machine learning in GCGR and GLP-1R drug discovery. Int. J. Mol. Sci. 2021, 22, 4060. [Google Scholar] [CrossRef]
- Dong, M.; Deganutti, G.; Piper, S.J.; Liang, Y.L.; Khoshouei, M.; Belousoff, M.J.; Harikumar, K.G.; Reynolds, C.A.; Glukhova, A.; Furness, S.G.B.; et al. Structure and dynamics of the active Gs-coupled human secretin receptor. Nat. Commun. 2020, 11, 4137. [Google Scholar]
- Thibado, J.K.; Tano, J.Y.; Lee, J.; Salas-Estrada, L.; Provasi, D.; Strauss, A.; Marcelo Lamim Ribeiro, J.; Xiang, G.; Broichhagen, J.; Filizola, M.; et al. Differences in interactions between transmembrane domains tune the activation of metabotropic glutamate receptors. eLife 2021, 10, e67027. [Google Scholar]
- Brauner-Osborne, H.; Wellendorph, P.; Jensen, A.A. Structure, pharmacology and therapeutic prospects of family C G-protein coupled. Curr. Drug Targets 2007, 8, 168–184. [Google Scholar]
- Sharma, T.; Sridhar, P.S.; Blackman, C.; Foote, S.J.; Allingham, J.S.; Subramaniam, R.; Loewen, M.C. Fusarium graminearum Ste3 G-Protein coupled receptor a mediator of hyphal chemotropism and pathogenesis. Msphere 2022, 7, e00456-22. [Google Scholar]
- Stoneman, M.R.; Raicu, V. Dielectric spectroscopy based detection of specific and nonspecific cellular mechanisms. Sensors 2021, 21, 3177. [Google Scholar] [CrossRef]
- Schena, G.; Carmosino, M.; Chiurlia, S.; Onuchic, L.; Mastropasqua, M.; Maiorano, E.; Schena, F.P.; Caplan, M.J. β3 adrenergic receptor as potential therapeutic target in ADPKD. Physiol. Rep. 2021, 9, e15058. [Google Scholar] [CrossRef] [PubMed]
- Turku, A.; Schihada, H.; Kozielewicz, P.; Bowin, C.F.; Schulte, G. Residue 6.43 defines receptor function in class F GPCRs. Nat. Commun. 2021, 12, 3919. [Google Scholar] [CrossRef] [PubMed]
- Kulkarni, R.D.; Thon, M.R.; Pan, H.; A Dean, R. Novel G-protein-coupled receptor-like proteins in the plant pathogenic fungus Magnaporthe grisea. Genome Biol. 2005, 6, R24. [Google Scholar] [CrossRef] [PubMed]
- Fredriksson, R.; Lagerström, M.C.; Lundin, L.G.; Schiöth, H.B. The G-Protein-Coupled receptors in the human genome form five main families. phylogenetic analysis, paralogon groups, and fingerprints. Mol. Pharmacol. 2003, 63, 1256–1272. [Google Scholar] [CrossRef]
- Hilger, D. The role of structural dynamics in GPCR-mediated signaling. FEBS J. 2021, 288, 2461–2489. [Google Scholar] [CrossRef]
- Kotliar, I.B.; Lorenzen, E.; Schwenk, J.M.; Hay, D.L.; Sakmar, T.P. Elucidating the interactome of G protein-coupled receptors and receptor activity-modifying proteins. Pharmacol. Rev. 2023, 75, 1–34. [Google Scholar] [CrossRef]
- Jiang, H.; Galtes, D.; Wang, J.; Rockman, H.A. G protein-coupled receptor signaling: Transducers and effectors. American Journal of Physiology. Cell Physiol. 2022, 323, C731–C748. [Google Scholar] [CrossRef]
- Vassilatis, D.K.; Hohmann, J.G.; Zeng, H.; Li, F.; Ranchalis, J.E.; Mortrud, M.T.; Brown, A.; Rodriguez, S.S.; Weller, J.R.; Wright, A.C. The G protein-coupled receptor repertoires of human and mouse. Proc. Natl. Acad. Sci. USA 2003, 100, 6. [Google Scholar] [CrossRef]
- Bush, A.; Vasen, G.; Constantinou, A.; Dunayevich, P.; Patop, I.L.; Blaustein, M.; Colman-Lerner, A. Yeast GPCR signaling reflects the fraction of occupied receptors, not the number. Mol. Syst. Biol. 2016, 12, 898. [Google Scholar] [CrossRef]
- Granier, S.; Kobilka, B. A new era of GPCR structural and chemical biology. Nat. Chem. Biol. 2012, 8, 670–673. [Google Scholar] [CrossRef]
- Bockaert, J.; Pin, J.P. Molecular tinkering of G protein-coupled receptors: An evolutionary success. EMBO J. 1999, 18, 1723–1729. [Google Scholar] [PubMed]
- Xiao, X.; Wang, P.; Chou, K.C. GPCR-CA: A cellular automaton image approach for predicting G-protein-coupled receptor functional classes. J. Comput. Chem. 2009, 30, 1414–1423. [Google Scholar] [PubMed]
- Grunbeck, A.; Huber, T.; Sachdev, P.; Sakmar, T.P. Mapping the ligand-binding site on a G protein-coupled receptor (GPCR) using genetically encoded photocrosslinkers. Biochemistry 2011, 50, 3411–3413. [Google Scholar] [PubMed]
- Schulenburg, H.; Felix, M.A. The Natural biotic environment of Caenorhabditis elegans. Genetics 2017, 206, 55–86. [Google Scholar]
- Zarate-Potes, A.; Yang, W.; Pees, B.; Schalkowski, R.; Segler, P.; Andresen, B.; Haase, D.; Nakad, R.; Rosenstiel, P.; Tetreau, G. The C. elegans GATA transcription factor elt-2 mediates distinct transcriptional responses and opposite infection outcomes towards different Bacillus thuringiensis strains. PLoS Pathog. 2020, 16, e1008826. [Google Scholar]
- Troemel, E.R.; Felix, M.A.; Whiteman, N.K.; Barriere, A.; Ausubel, F.M. Microsporidia are natural intracellular parasites of the nematode Caenorhabditis elegans. PLoS Biol. 2008, 6, 2736–2752. [Google Scholar] [CrossRef]
- Felix, M.A.; Ashe, A.; Piffaretti, J.; Wu, G.; Nuez, I.; Belicard, T.; Jiang, Y.; Zhao, G.; Franz, C.J.; Goldstein, L.D.; et al. Natural and experimental infection of Caenorhabditis nematodes by novel viruses related to nodaviruses. PLoS Biol. 2011, 9, e1000586. [Google Scholar]
- Irazoqui, J.E.; Troemel, E.R.; Feinbaum, R.L.; Luhachack, L.G.; Cezairliyan, B.O.; Ausubel, F.M. Distinct pathogenesis and host responses during infection of C. elegans by P. aeruginosa and S. aureus. PLoS Pathog. 2010, 6, e1000982. [Google Scholar]
- Alejandro, A. Neural regulation of immunity: Role of NPR-1 in pathogen avoidance and regulation of innate immunity. Cell Cycle 2009, 8, 966–969. [Google Scholar]
- Singh, J.; Aballay, A. Neural control of behavioral and molecular defenses in C. elegans. Curr. Opin. Neurobiol. 2020, 62, 34–40. [Google Scholar]
- Matúš, D.; Prömel, S. G Proteins and GPCRs in C. elegans development: A story of mutual infidelity. J. Dev. Biol. 2018, 6, 18. [Google Scholar]
- Ferkey, D.M.; Sengupta, P.; L’Etoile, N.D. Chemosensory signal transduction in Caenorhabditis elegans. Genetics 2021, 217, 35. [Google Scholar]
- Beets, I.; Zels, S.; Vandewyer, E.; Demeulemeester, J.; Caers, J.; Baytemur, E.; Courtney, A.; Golinelli, L.; Hasakioğulları, İ.; Schafer, W.R.; et al. System-wide mapping of peptide-GPCR interactions. Cell Rep. 2023, 42, 23. [Google Scholar]
- Sellegounder, D.; Liu, Y.; Wibisono, P.; Chen, C.H.; Leap, D.; Sun, J. Neuronal GPCR NPR-8 regulates C. elegans defense against pathogen infection. Sci. Adv. 2019, 5, eaaw4717. [Google Scholar]
- Liu, Y.; Sellegounder, D.; Sun, J. Neuronal GPCR OCTR-1 regulates innate immunity by controlling protein synthesis in Caenorhabditis elegans. Sci. Rep. 2016, 6, 36832. [Google Scholar]
- Sellegounder, D.; Yuan, C.H.; Wibisono, P.; Liu, Y.; Sun, J. Octopaminergic signaling mediates neural regulation of innate immunity in Caenorhabditis elegans. MBio 2018, 9, 10–1128. [Google Scholar]
- Kaur, S.; Aballay, A. G-Protein-Coupled Receptor SRBC-48 Protects against Dendrite Degeneration and Reduced Longevity Due to Infection. Cell Rep. 2020, 31, 107662. [Google Scholar]
- Wibisono, P.; Wibisono, S.; Watteyne, J.; Chen, C.H.; Sellegounder, D.; Beets, I.; Liu, Y.; Sun, J. Neuronal GPCR NMUR-1 regulates distinct immune responses to different pathogens. Cell Rep. 2022, 38, 110321. [Google Scholar] [CrossRef]
- Maier, W.; Adilov, B.; Regenass, M.; Alcedo, J. A neuromedin U receptor acts with the sensory system to modulate food type-dependent effects on C. elegans lifespan. PLoS Biol. 2010, 8, e1000376. [Google Scholar]
- Bai, H.; Zou, W.; Zhou, W.; Zhang, K.; Huang, X. Deficiency of innate immunity against Pseudomonas aeruginosa enhances behavioral avoidance via the HECW-1/NPR-1 module in Caenorhabditis elegans. Infect. Immun. 2021, 89, e0006721. [Google Scholar]
- Yu, Y.; Zhi, L.; Guan, X.; Wang, D. FLP-4 neuropeptide and its receptor in a neuronal circuit regulate preference choice through functions of ASH-2 trithorax complex in Caenorhabditis elegans. Sci. Rep. 2016, 6, 21485. [Google Scholar] [CrossRef] [PubMed]
- Ramachandran, S.; Banerjee, N.; Bhattacharya, R.; Lemons, M.L.; Florman, J.; Lambert, C.M.; Touroutine, D.; Alexander, K.; Schoofs, L.; Alkema, M.J.; et al. A conserved neuropeptide system links head and body motor circuits to enable adaptive behavior. eLife 2021, 10, e71747. [Google Scholar] [CrossRef]
- Su, H.; Zhao, Y.; Zhou, J.; Feng, H.; Jiang, D.; Zhang, K.Q.; Yang, J. Trapping devices of nematode-trapping fungi: Formation, evolution, and genomic perspectives. Biol. Rev. Camb. Philos. Soc. 2017, 92, 357–368. [Google Scholar] [CrossRef] [PubMed]
- Yang, E.; Xu, L.; Yang, Y.; Zhang, X.; Xiang, M.; Wang, C.; An, Z.; Liu, X. Origin and evolution of carnivorism in the Ascomycota (fungi). Proc. Natl. Acad. Sci. USA 2012, 109, 10960–10965. [Google Scholar] [CrossRef] [PubMed]
- Jiang, X.; Xiang, M.; Liu, X. Nematode-Trapping Fungi. Microbiol. Spectr. 2016, 5, 1–12. [Google Scholar]
- Zhu, M.-C.; Li, X.-M.; Zhao, N.; Yang, L.; Zhang, K.-Q.; Yang, J.-K. Regulatory mechanism of trap formation in the nematode-trapping fungi. J. Fungi 2022, 8, 406. [Google Scholar] [CrossRef]
- Yang, C.T.; Vidal-Diez de Ulzurrun, G.; Goncalves, A.P.; Lin, H.C.; Chang, C.W.; Huang, T.Y.; Chen, S.A.; Lai, C.K.; Tsai, I.J.; Schroeder, F.C.; et al. Natural diversity in the predatory behavior facilitates the establishment of a robust model strain for nematode-trapping fungi. Proc. Natl. Acad. Sci. USA 2020, 117, 6762–6770. [Google Scholar] [CrossRef]
- Chen, T.H.; Hsu, C.S.; Tsai, P.J.; Ho, Y.F.; Lin, N.S. Heterotrimeric G-protein and signal transduction in the nematode-trapping fungus Arthrobotrys dactyloides. Planta 2001, 212, 6. [Google Scholar] [CrossRef]
- Vidal-Diez de Ulzurrun, G.; Hsueh, Y.P. Predator-prey interactions of nematode-trapping fungi and nematodes: Both sides of the coin. Appl. Microbiol. Biotechnol. 2018, 102, 3939–3949. [Google Scholar] [CrossRef]
- Chen, S.-A.; Lin, H.-C.; Hsueh, Y.-P. The cAMP-PKA pathway regulates prey sensing and trap morphogenesis in the nematode-trapping fungus Arthrobotrys oligospora. G3 2022, 12, 9. [Google Scholar] [CrossRef]
- Kuo, C.-Y.; Tay, R.J.; Lin, H.-C.; Juan, S.-C.; Vidal-Diez de Ulzurrun, G.; Chang, Y.-C.; Hoki, J.; Schroeder, F.C.; Hsueh, Y.-P. The nematode-trapping fungus Arthrobotrys oligospora detects prey pheromones via G protein-coupled receptors. Nat. Microbiol. 2024, 9, 1738–1751. [Google Scholar] [CrossRef] [PubMed]
- Hu, X.; Hoffmann, D.S.; Wang, M.; Schuhmacher, L.; Stroe, M.C.; Schreckenberger, B.; Elstner, M.; Fischer, R. GprC of the nematode-trapping fungus Arthrobotrys flagrans activates mitochondria and reprograms fungal cells for nematode hunting. Nat. Microbiol. 2024, 9, 1752–1763. [Google Scholar] [CrossRef] [PubMed]
- Ehlers, R.U. Mass production of entomopathogenic nematodes for plant protection. Appl. Microbiol. Biotechnol. 2001, 56, 623–633. [Google Scholar] [PubMed]
- Bedding, R.A. Low cost in vitro mass production of Neoaplectana and Heterorhabditis species (Nematoda) for field control of insect pests. Nematologica 1981, 27, 109–114. [Google Scholar]
- Lee, D.; Lee, H.; Kim, N.; Lim, D.S.; Lee, J. Regulation of a hitchhiking behavior by neuronal insulin and TGF-beta signaling in the nematode Caenorhabditis elegans. Biochem. Biophys. Res. Commun. 2017, 484, 323–330. [Google Scholar]
- Morris, R.; Wilson, L.; Sturrock, M.; Warnock, N.D.; Carrizo, D.; Cox, D.; Maule, A.G.; Dalzell, J.J. A neuropeptide modulates sensory perception in the entomopathogenic nematode Steinernema carpocapsae. PLoS Pathog. 2017, 13, e1006185. [Google Scholar] [CrossRef]
- Lee, J.S.; Shih, P.Y.; Schaedel, O.N.; Quintero-Cadena, P.; Rogers, A.K.; Sternberg, P.W. FMRFamide-like peptides expand the behavioral repertoire of a densely connected nervous system. Proc. Natl. Acad. Sci. USA 2017, 114, E10726–E10735. [Google Scholar] [CrossRef]
- Chang, D.Z.; Serra, L.; Lu, D.; Mortazavi, A.; Dillman, A.R. A core set of venom proteins is released by entomopathogenic nematodes in the genus Steinernema. PLoS Pathog. 2019, 15, e1007626. [Google Scholar]
- Motaher, R.; Grill, E.; McKean, E.; Kenney, E.; Eleftherianos, I.; Hawdon, J.M.; O’Halloran, D.M. Chemogenomic approach to identifying nematode chemoreceptor drug targets in the entomopathogenic nematode Heterorhabditis bacteriophora. Comput. Biol. Chem. 2021, 92, 107464. [Google Scholar]
- Bendena, W.G.; Boudreau, J.R.; Papanicolaou, T.; Maltby, M.; Tobe, S.S.; Chin-Sang, I.D. A Caenorhabditis elegans allatostatin/galanin-like receptor NPR-9 inhibits local search behavior in response to feeding cues. Proc. Natl. Acad. Sci. USA 2008, 105, 4. [Google Scholar]
- Wang, H.; Yan, W.; Luo, J.; Zeng, X.; Zhao, Z.; Dou, X.; Fu, M. Fosthiazate inhibits root-knot disease and alters rhizosphere microbiome of Cucumis melo var. saccharinus. Front. Microbiol. 2022, 13, 1084010. [Google Scholar]
- Atkinson, L.E.; Stevenson, M.; McCoy, C.J.; Marks, N.J.; Fleming, C.; Zamanian, M.; Day, T.A.; Kimber, M.J.; Maule, A.G.; Mousley, A. flp-32 Ligand/receptor silencing phenocopy faster plant pathogenic nematodes. PLoS Pathog. 2013, 9, e1003169. [Google Scholar]
- Hada, A.; Kumari, C.; Phani, V.; Singh, D.; Chinnusamy, V.; Rao, U. Host-induced silencing of FMRFamide-Like peptide genes, flp-1 and flp-12, in rice Impairs reproductive fitness of the root-knot nematode Meloidogyne graminicola. Front. Plant Sci. 2020, 11, 894. [Google Scholar]
- Papolu, P.K.; Gantasala, N.P.; Kamaraju, D.; Banakar, P.; Sreevathsa, R.; Rao, U. Utility of host delivered RNAi of two FMRF Amide like. PLoS ONE 2013, 8, e80603. [Google Scholar]
- Banakar, P.; Hada, A.; Papolu, P.K.; Rao, U. Simultaneous RNAi knockdown of three FMRFamide-Like peptide genes, Mi-flp1, Mi-flp12, and Mi-flp18 provides resistance to root-knot nematode, Meloidogyne incognita. Front. Microbiol. 2020, 11, 573916. [Google Scholar]
- Cotton, J.A.; Lilley, C.J.; Jones, L.M.; Kikuchi, T.; Reid, A.J.; Thorpe, P.; Tsai, I.J.; Beasley, H.; Blok, V.; Cock, P.J.; et al. The genome and life-stage specific transcriptomes of Globodera pallida elucidate key aspects of plant parasitism by a cyst nematode. Genome Biol. 2014, 15, 18. [Google Scholar]
- Siddique, S.; Coomer, A.; Baum, T.; Williamson, V.M. Recognition and response in plant-nematode interactions. Annu. Rev. Phytopathol. 2022, 60, 143–162. [Google Scholar]
- Kumari, C.; Dutta, T.K.; Chaudhary, S.; Banakar, P.; Papolu, P.K.; Rao, U. Molecular characterization of FMRFamide-like peptides in Meloidogyne graminicola and analysis of their knockdown effect on nematode infectivity. Gene 2017, 619, 50–60. [Google Scholar]
- Shao, H.; Liu, W.; Hong, H.; Guo, K.; Chen, J.; Li, Q.; Su, M.; Huang, X.; Hu, J. Evidence for Bxy-npr-21 on controlling juveniles’ growth and modulating male sexual arousal: From molecules to behaviors. Pest Manag. Sci. 2025, 81, 2312–2322. [Google Scholar] [CrossRef]
- Overington John, P.; Al-Lazikani, B.; Hopkins, A.L. How many drug targets are there? Nature Reviews. Drug Discov. 2006, 5, 4. [Google Scholar]
- Rask-Andersen, M.; Masuram, S.; Schioth, H.B. The druggable genome: Evaluation of drug targets in clinical trials suggests major shifts in molecular class and indication. Annu. Rev. Pharmacol. Toxicol. 2014, 54, 9–26. [Google Scholar] [CrossRef] [PubMed]
- Kahveci, K.; Düzgün, M.B.; Atis, A.E.; Yılmaz, A.; Shahraki, A.; Coskun, B.; Durdagi, S.; Birgul Iyison, N. Discovering allatostatin type-C receptor specific agonists. Nat. Commun. 2024, 15, 3965. [Google Scholar] [CrossRef] [PubMed]
- Fu, B.; Liang, J.; Hu, J.; Du, T.; Tan, Q.; He, C.; Wei, X.; Gong, P.; Yang, J.; Liu, S.; et al. GPCR-MAPK signaling pathways underpin fitness trade-offs in whitefly. Proc. Natl. Acad. Sci. USA 2024, 121, e2402407121. [Google Scholar] [CrossRef] [PubMed]
Nematodes | Life Style | Interacting Species | GPCRs |
---|---|---|---|
C. elegans | saprobic | P. aeruginosa, S. enterica, S. aureus | npr-8 |
P. aeruginosa | octr-1 | ||
P. aeruginosa | srbc-48 | ||
E. faecalis, S. enterica | nmur-1 | ||
E. coli | nmur-1 | ||
B. nematocida B16 | str-2 | ||
M. incognita | parasitic | N. tabacum | flp-14, flp-18 |
O. sativa | flp-1, flp-12, | ||
G. pallida | S. tuberosum | flp-32 | |
M. graminicola | O. sativa | flp-18 | |
B. xylophilus | pine | Bxy-npr-21 | |
S. carpocapsae All | parasitic | G. mellonella | Sc-srsx-25v, Sc-srsx-3ii, Sc-srsx-22i, and Sc-srsx-24ii, Sc-npr-23 |
S. carpocapsae UK1 | G. mellonella | Sc-srsx-25v, Sc-srsx-3ii, Sc-srsx-22i, and Sc-srsx-24ii, Sc-npr-23, Sc-srt-62 | |
S. carpocapsae All | insect | flp-21 | |
S. feltiae | insect | flp-3, flp-7, flp-14, flp-18 | |
H. bacteriophora | insect | Hba_15737 (npr-9) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, J.; Guo, C.; Wei, X.; Pu, X.; Zhao, Y.; Xu, C.; Wang, W. GPCR Sense Communication Among Interaction Nematodes with Other Organisms. Int. J. Mol. Sci. 2025, 26, 2822. https://doi.org/10.3390/ijms26062822
Wang J, Guo C, Wei X, Pu X, Zhao Y, Xu C, Wang W. GPCR Sense Communication Among Interaction Nematodes with Other Organisms. International Journal of Molecular Sciences. 2025; 26(6):2822. https://doi.org/10.3390/ijms26062822
Chicago/Turabian StyleWang, Jie, Changying Guo, Xiaoli Wei, Xiaojian Pu, Yuanyuan Zhao, Chengti Xu, and Wei Wang. 2025. "GPCR Sense Communication Among Interaction Nematodes with Other Organisms" International Journal of Molecular Sciences 26, no. 6: 2822. https://doi.org/10.3390/ijms26062822
APA StyleWang, J., Guo, C., Wei, X., Pu, X., Zhao, Y., Xu, C., & Wang, W. (2025). GPCR Sense Communication Among Interaction Nematodes with Other Organisms. International Journal of Molecular Sciences, 26(6), 2822. https://doi.org/10.3390/ijms26062822