MiR-205-5p and MiR-222-3p as Potential Biomarkers of Endometrial Cancer
Abstract
:1. Introduction
- –
- POLEmut group, which is characterized by POLE mutation, and accounts for 7%;
- –
- Microsatellite instability (MSI group), resulting from MMR-deficient repair deficiency. It accounts for 28% and has a relatively favourable prognosis. The most common mutations in the MSI group include mutations in the ARID5B, PTEN, and phosphatidylinositol-3 kinase families, including PIK3CA and PIK3R1;
- –
- High somatic copy number changes (serous group, driven by a TP53 mutation, also called the p53abn group), constitute 26%;
- –
- A low copy number group without a specific driver mutation (NSMP group), constitutes 39% [4].
2. Results
3. Discussion
4. Materials and Methods
4.1. Tissues and Serum Samples
4.2. miRNA Isolation from Serum Samples
4.3. miRNA Isolation from Tissue Samples
4.4. Reverse Transcriptase Reaction
4.5. Absolute Quantification by dPCR
4.6. Statistical Analysis
5. Conclusions
6. Limitations
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R.L.; Torre, L.A.; Jemal, A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2018, 68, 394–424. [Google Scholar] [CrossRef] [PubMed]
- Ferlay, J.; Colombet, M.; Soerjomataram, I.; Mathers, C.; Parkin, D.M.; Piñeros, M.; Znaor, A.; Bray, F. Estimating the global cancer incidence and mortality in 2018: GLOBOCAN sources and methods. Int. J. Cancer 2019, 144, 1941–1953. [Google Scholar] [CrossRef]
- Makker, V.; MacKay, H.; Ray-Coquard, I.; Levine, D.A.; Westin, S.N.; Aoki, D.; Oaknin, A. Endometrial cancer. Nat. Rev. Dis. Primers 2021, 7, 88. [Google Scholar] [CrossRef]
- Kandoth, C.; Schultz, N.; Cherniack, A.D.; Akbani, R.; Liu, Y.; Shen, H.; Robertson, A.G.; Pashtan, I.; Shen, R.; Benz, C.C.; et al. Integrated genomic characterization of endometrial carcinoma. Nature 2013, 497, 67–73. [Google Scholar] [CrossRef] [PubMed]
- León-Castillo, A.; Gilvazquez, E.; Nout, R.; Smit, V.T.; McAlpine, J.N.; McConechy, M.; Kommoss, S.; Brucker, S.Y.; Carlson, J.W.; Epstein, E.; et al. Clinicopathological and molecular characterisation of ‘multiple-classifier’ endometrial carcinomas. J. Pathol. 2020, 250, 312–322. [Google Scholar] [CrossRef]
- Piulats, J.M.; Guerra, E.; Gil-Martín, M.; Roman-Canal, B.; Gatius, S.; Sanz-Pamplona, R.; Velasco, A.; Vidal, A.; Matias-Guiu, X. Molecular approaches for classifying endometrial carcinoma. Gynecol. Oncol. 2017, 145, 200–207. [Google Scholar] [CrossRef] [PubMed]
- Pecorelli, S. Revised FIGO staging for carcinoma of the vulva, cervix, and endometrium. Int. J. Gynaecol. Obstet. 2009, 105, 103–104. [Google Scholar] [CrossRef]
- Berek, J.S.; Matias-Guiu, X.; Creutzberg, C.; Fotopoulou, C.; Gaffney, D.; Kehoe, S.; Lindemann, K.; Mutch, D.; Concin, N.; Endometrial Cancer Staging Subcommittee, FIGO Women’s Cancer Committee. FIGO staging of endometrial cancer: 2023. J. Gynecol. Oncol. 2023, 34, e85. [Google Scholar] [CrossRef]
- Edmondson, R.J.; Crosbie, E.J.; Nickkho-Amiry, M.; Kaufmann, A.; Stelloo, E.; Nijman, H.W.; Leary, A.; Auguste, A.; Mileshkin, L.; Pollock, P.; et al. Markers of the p53 pathway further refine molecular profiling in high-risk endometrial cancer: A TransPORTEC initiative. Gynecol. Oncol. 2017, 146, 327–333. [Google Scholar] [CrossRef]
- Zighelboim, I.; Goodfellow, P.J.; Gao, F.; Gibb, R.K.; Powell, M.A.; Rader, J.S.; Mutch, D.G. Microsatellite instability and epigenetic inactivation of MLH1 and outcome of patients with endometrial carcinomas of the endometrioid type. J. Clin. Oncol. 2007, 25, 2042–2048. [Google Scholar] [CrossRef]
- Bansal, N.; Yendluri, V.; Wenham, R.M. The molecular biology of endometrial cancers and the implications for pathogenesis, classification, and targeted therapies. Cancer Control 2009, 16, 8–13. [Google Scholar] [CrossRef]
- Lee, R.C.; Feinbaum, R.L.; Ambros, V. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 1993, 75, 843–854. [Google Scholar] [CrossRef] [PubMed]
- Grzywa, T.M.; Klicka, K.; Włodarski, P.K. Regulators at Every Step-How microRNAs Drive Tumor Cell Invasiveness and Metastasis. Cancers 2020, 12, 3709. [Google Scholar] [CrossRef] [PubMed]
- Michael, A.; Bajracharya, S.D.; Yuen, P.S.; Zhou, H.; Star, R.A.; Illei, G.G.; Alevizos, I. Exosomes from human saliva as a source of microRNA biomarkers. Oral. Dis. 2010, 16, 34–38. [Google Scholar] [CrossRef]
- Lv, L.L.; Cao, Y.; Liu, D.; Xu, M.; Liu, H.; Tang, R.N.; Ma, K.L.; Liu, B.C. Isolation and quantification of microRNAs from urinary exosomes/microvesicles for biomarker discovery. Int. J. Biol. Sci. 2013, 9, 1021–1031. [Google Scholar] [CrossRef]
- Zhou, Q.; Li, M.; Wang, X.; Li, Q.; Wang, T.; Zhu, Q.; Zhou, X.; Gao, X.; Li, X. Immune-related microRNAs are abundant in breast milk exosomes. Int. J. Biol. Sci. 2012, 8, 118–123. [Google Scholar] [CrossRef] [PubMed]
- Lukasik, A.; Zielenkiewicz, P. In silico identification of plant miRNAs in mammalian breast milk exosomes—A small step forward? PLoS ONE 2014, 9, e99963. [Google Scholar] [CrossRef]
- Wu, C.; Zhou, X.; Li, J.; Xiao, R.; Xin, H.; Dai, L.; Zhu, Y.; Bao, W. Serum miRNA-204-5p as a potential non-invasive biomarker for the diagnosis of endometrial cancer with sentinel lymph node mapping. Oncol. Lett. 2022, 24, 248. [Google Scholar] [CrossRef]
- Arroyo, J.D.; Chevillet, J.R.; Kroh, E.M.; Ruf, I.K.; Pritchard, C.C.; Gibson, D.F.; Mitchell, P.S.; Bennett, C.F.; Pogosova-Agadjanyan, E.L.; Stirewalt, D.L.; et al. Argonaute2 complexes carry a population of circulating microRNAs independent of vesicles in human plasma. Proc. Natl. Acad. Sci. USA 2011, 108, 5003–5008. [Google Scholar] [CrossRef]
- Tabet, F.; Vickers, K.C.; Cuesta Torres, L.F.; Wiese, C.B.; Shoucri, B.M.; Lambert, G.; Catherinet, C.; Prado-Lourenco, L.; Levin, M.G.; Thacker, S.; et al. HDL-transferred microRNA-223 regulates ICAM-1 expression in endothelial cells. Nat. Commun. 2014, 5, 3292. [Google Scholar] [CrossRef]
- Vickers, K.C.; Palmisano, B.T.; Shoucri, B.M.; Shamburek, R.D.; Remaley, A.T. MicroRNAs are transported in plasma and delivered to recipient cells by high-density lipoproteins. Nat. Cell Biol. 2011, 13, 423–433. [Google Scholar] [CrossRef] [PubMed]
- Tan, Z.Q.; Liu, F.X.; Tang, H.L.; Su, Q. Expression and its clinical significance of hsa-miR-155 in serum of endometrial cancer. Zhonghua Fu Chan Ke Za Zhi 2010, 45, 772–774. [Google Scholar]
- Zhou, L.; Wang, W.; Wang, F.; Yang, S.; Hu, J.; Lu, B.; Pan, Z.; Ma, Y.; Zheng, M.; Lei, S.; et al. Plasma-derived exosomal miR-15a-5p as a promising diagnostic biomarker for early detection of endometrial carcinoma. Mol. Cancer 2021, 20, 57. [Google Scholar] [CrossRef]
- Che, X.; Jian, F.; Chen, C.; Liu, C.; Liu, G.; Feng, W. PCOS serum-derived exosomal miR-27a-5p stimulates endometrial cancer cells migration and invasion. J. Mol. Endocrinol. 2020, 64, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Y.; Wang, N.; Yin, D.; Li, Y.K.; Guo, L.; Shi, L.P.; Huang, X. Changes in the Expression of Serum MiR-887-5p in Patients with Endometrial Cancer. Int. J. Gynecol. Cancer 2016, 26, 1143–1147. [Google Scholar] [CrossRef]
- Kumari, P.; Sharma, I.; Saha, S.C.; Srinivasan, R.; Bhardwaj, P. Role of serum microRNAs as biomarkers for endometriosis, endometrioid carcinoma of ovary & endometrioid endometrial cancer. Indian. J. Med. Res. 2022, 156, 516–523. [Google Scholar] [CrossRef]
- Jia, W.; Wu, Y.; Zhang, Q.; Gao, G.; Zhang, C.; Xiang, Y. Identification of four serum microRNAs from a genome-wide serum microRNA expression profile as potential non-invasive biomarkers for endometrioid endometrial cancer. Oncol. Lett. 2013, 6, 261–267. [Google Scholar] [CrossRef] [PubMed]
- Ghazala, R.A.; El-Attar, E.A.; Abouzeid, Z.S. Circulating miRNA 27a and miRNA150-5p; a noninvasive approach to endometrial carcinoma. Mol. Biol. Rep. 2021, 48, 4351–4360. [Google Scholar] [CrossRef]
- Benati, M.; Montagnana, M.; Danese, E.; Paviati, E.; Giudici, S.; Franchi, M.; Lippi, G. Evaluation of mir-203 Expression Levels and DNA Promoter Methylation Status in Serum of Patients with Endometrial Cancer. Clin. Lab. 2017, 63, 1675–1681. [Google Scholar] [CrossRef]
- Jin, X.H.; Lu, S.; Wang, A.F. Expression and clinical significance of miR-4516 and miR-21-5p in serum of patients with colorectal cancer. BMC Cancer 2020, 20, 241. [Google Scholar] [CrossRef]
- Seimiya, T.; Suzuki, T.; Iwata, T.; Kishikawa, T.; Sekiba, K.; Shibata, C.; Ishigaki, K.; Fujiwara, H.; Oyama, H.; Kanai, S.; et al. Combination of serum human satellite RNA and miR-21-5p levels as a biomarker for pancreatic cancer. iScience 2023, 26, 106021. [Google Scholar] [CrossRef] [PubMed]
- Soliman, S.E.; Abdelaleem, A.H.; Alhanafy, A.M.; Ibrahem, R.A.L.; Elhaded, A.S.A.; Assar, M.F.A. Circulating miR-21-5p and miR-126-3p: Diagnostic, prognostic value, and multivariate analysis in non-small-cell lung cancer. Mol. Biol. Rep. 2021, 48, 2543–2552. [Google Scholar] [CrossRef] [PubMed]
- Koleśnik, M.; Malm, M.; Drop, B.; Dworzański, J.; Polz-Dacewicz, M. MiRNA-21-5p as a biomarker in EBV-associated oropharyngeal cancer. Ann. Agric. Environ. Med. 2023, 30, 77–82. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.; Liu, X.; Chen, Q.; Dong, Y.; Hou, B. Clinical Significance of let-7a-5p and miR-21-5p in Patients with Breast Cancer. Ann. Clin. Lab. Sci. 2019, 49, 302–308. [Google Scholar]
- Hashemi, M.; Mirdamadi, M.S.A.; Talebi, Y.; Khaniabad, N.; Banaei, G.; Daneii, P.; Gholami, S.; Ghorbani, A.; Tavakolpournegari, A.; Farsani, Z.M.; et al. Pre-clinical and clinical importance of miR-21 in human cancers: Tumorigenesis, therapy response, delivery approaches and targeting agents. Pharmacol. Res. 2023, 187, 106568. [Google Scholar] [CrossRef]
- Sato, K.; Miyamoto, M.; Takano, M.; Tsuda, H. MicroRNA-21 expression in cancer cells is an independent biomarker of progression-free survival of endometrioid endometrial carcinoma. Virchows Arch. 2021, 479, 883–891. [Google Scholar] [CrossRef]
- Bouziyane, A.; Lamsisi, M.; Benaguida, H.; Benhessou, M.; El Kerroumi, M.; Ennaji, M.M. Diagnostic Value of MicroRNA 21 in Endometrial Cancer and Benign Lesions and its Differential Expression with Clinicopathological Parameters. Microrna 2021, 10, 146–152. [Google Scholar] [CrossRef]
- Lu, L.G.; Zhang, G.M. Serum miR-205-5p level for non-small-cell lung cancer diagnosis. Thorac. Cancer 2022, 13, 1102–1103. [Google Scholar] [CrossRef]
- Jiang, M.; Zhang, P.; Hu, G.; Xiao, Z.; Xu, F.; Zhong, T.; Huang, F.; Kuang, H.; Zhang, W. Relative expressions of miR-205-5p, miR-205-3p, and miR-21 in tissues and serum of non-small cell lung cancer patients. Mol. Cell Biochem. 2013, 383, 67–75. [Google Scholar] [CrossRef]
- Zhou, J.; Cao, L.; Chen, Z. Differentiation of benign thyroid nodules from malignant thyroid nodules through miR-205-5p and thyroid-stimulating hormone receptor mRNA. Hormones 2021, 20, 571–580. [Google Scholar] [CrossRef]
- Karaayvaz, M.; Zhang, C.; Liang, S.; Shroyer, K.R.; Ju, J. Prognostic significance of miR-205 in endometrial cancer. PLoS ONE 2012, 7, e35158. [Google Scholar] [CrossRef] [PubMed]
- Jin, C.; Liang, R. miR-205 promotes epithelial-mesenchymal transition by targeting AKT signaling in endometrial cancer cells. J. Obstet. Gynaecol. Res. 2015, 41, 1653–1660. [Google Scholar] [CrossRef]
- Zhuo, Z.; Yu, H. miR-205 inhibits cell growth by targeting AKT-mTOR signaling in progesterone-resistant endometrial cancer Ishikawa cells. Oncotarget 2017, 8, 28042–28051. [Google Scholar] [CrossRef] [PubMed]
- Torres, A.; Kozak, J.; Korolczuk, A.; Rycak, D.; Wdowiak, P.; Maciejewski, R.; Torres, K. Locked nucleic acid-inhibitor of miR-205 decreases endometrial cancer cells proliferation in vitro and in vivo. Oncotarget 2016, 7, 73651–73663. [Google Scholar] [CrossRef]
- Lu, Z.; Xu, Y.; Yao, Y.; Jiang, S. miR-205-5p contributes to paclitaxel resistance and progression of endometrial cancer by downregulating FOXO1. Oncol. Res. 2019. [Google Scholar] [CrossRef]
- Ying, X.; Wu, Q.; Wu, X.; Zhu, Q.; Wang, X.; Jiang, L.; Chen, X. Epithelial ovarian cancer-secreted exosomal miR-222-3p induces polarization of tumor-associated macrophages. Oncotarget 2016, 7, 43076–43087. [Google Scholar] [CrossRef] [PubMed]
- Jiang, K.; Li, G.; Chen, W.; Song, L.; Wei, T.; Li, Z.; Gong, R.; Lei, J.; Shi, H.; Zhu, J. Plasma Exosomal miR-146b-5p and miR-222-3p are Potential Biomarkers for Lymph Node Metastasis in Papillary Thyroid Carcinomas. Onco Targets Ther. 2020, 13, 1311–1319. [Google Scholar] [CrossRef]
- Liu, B.; Che, Q.; Qiu, H.; Bao, W.; Chen, X.; Lu, W.; Li, B.; Wan, X. Elevated MiR-222-3p promotes proliferation and invasion of endometrial carcinoma via targeting ERα. PLoS ONE 2014, 9, e87563. [Google Scholar] [CrossRef]
- Wu, Q.; Yu, L.; Lin, X.; Zheng, Q.; Zhang, S.; Chen, D.; Pan, X.; Huang, Y. Combination of Serum miRNAs with Serum Exosomal miRNAs in Early Diagnosis for Non-Small-Cell Lung Cancer. Cancer Manag. Res. 2020, 12, 485–495. [Google Scholar] [CrossRef]
- Bogaczyk, A.; Potocka, N.; Paszek, S.; Skrzypa, M.; Zuchowska, A.; Kośny, M.; Kluz, M.; Zawlik, I.; Kluz, T. Absolute Quantification of Selected microRNAs Expression in Endometrial Cancer by Digital PCR. Int. J. Mol. Sci. 2024, 25, 3286. [Google Scholar] [CrossRef]
- He, L.; Zhu, W.; Chen, Q.; Yuan, Y.; Wang, Y.; Wang, J.; Wu, X. Ovarian cancer cell-secreted exosomal miR-205 promotes metastasis by inducing angiogenesis. Theranostics 2019, 9, 8206–8220. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Li, B.; Zhao, H.; Chang, J. The expression and clinical significance of serum miR-205 for breast cancer and its role in detection of human cancers. Int. J. Clin. Exp. Med. 2015, 8, 3034–3043. [Google Scholar] [PubMed]
- Ibrahim, S.; Hedia, M.; Taqi, M.O.; Derbala, M.K.; Mahmoud, K.G.M.; Ahmed, Y.; Ismail, S.; El-Belely, M. Alterations in the Expression Profile of Serum miR-155, miR-223, miR-17, miR-200a, miR-205, as well as Levels of Interleukin 6, and Prostaglandins during Endometritis in Arabian Mares. Vet. Sci. 2021, 8, 98. [Google Scholar] [CrossRef]
- Guo, J.; Liu, Q.; Li, Z.; Guo, H.; Bai, C.; Wang, F. miR-222-3p promotes osteosarcoma cell migration and invasion through targeting TIMP3. Onco Targets Ther. 2018, 11, 8643–8653. [Google Scholar] [CrossRef] [PubMed]
- Tepebaşı, M.Y.; Öztürk, Ö. miR-21, miR-221, and miR-222 upregulation in lung cancer promotes metastasis by reducing oxidative stress and apoptosis. Rev. Assoc. Med. Bras. 2023, 69, e20221688. [Google Scholar] [CrossRef]
- Fu, X.; Li, Y.; Alvero, A.; Li, J.; Wu, Q.; Xiao, Q.; Peng, Y.; Hu, Y.; Li, X.; Yan, W.; et al. MicroRNA-222-3p/GNAI2/AKT axis inhibits epithelial ovarian cancer cell growth and associates with good overall survival. Oncotarget 2016, 7, 80633–80654. [Google Scholar] [CrossRef]
- Grabia, S.; Smyczynska, U.; Pagacz, K.; Fendler, W. NormiRazor: Tool applying GPU-accelerated computing for determination of internal references in microRNA transcription studies. BMC Bioinform. 2020, 21, 425. [Google Scholar] [CrossRef]
FIGO 2009 | |
---|---|
Stage I | Confirmed to the corpus uteri |
IA | No or less than half myometrial invasion |
IB | Invasion equal to more than half of the myometrial |
IC | |
Stage II | Invasion of cervical stroma without extrauterine extension |
IIA | |
IIB | |
IIC | |
Stage III | Local and/or regional spread of the tumour |
IIIA | Tumour invades the serosa of the corpus uteri and/or adnexa |
IIIB | Vaginal involvement and/or parametrial involvement |
IIIC | Metastases to pelvic and/or para-aortic lymph nodes |
IIIC1 Positive pelvic nodes | |
IIIC2 Positive paraaortic nodes with or without positive pelvic lymph nodes | |
Stage IV | Tumour invades bladder and/or bowel mucosa, and/or distant metastases |
FIGO 2023 | |
---|---|
Stage I | Limited to the uterine body and ovary |
IA | Tumour occurring only in the endometrium OR non-aggressive histological type (low-grade EC, with invasion of less than half of the uterine muscle, with negative LVSI or with focal LVSI involvement OR tumour with good prognosis |
IA1 Non-aggressive histological type occurring in a polyp in the endometrium OR confined to the uterine mucosa | |
IA2 Non-aggressive histological types involving less than half of the myometrium with negative or positive focalLVSI | |
IA3 Low-grade EC limited to the uterus and ovaries | |
IB | Non-aggressive types of EC with invasion of half or most of the myometrium and with or without focal LVSI |
IC | Aggressive histological types occurring in polyps or confined to the uterine mucosa |
Stage II | Invasion of cervical stroma without extrauterine extension OR with substantial LVSI OR aggressive histological types with myometrial invasion |
IIA | Non-aggressive histological types of EC involving the stroma of the cervix |
IIB | Non-aggressive histological types including substantial LVSI |
IIC | Aggressive histological types with any myometrial involvement |
Stage III | Local and/or regional EC infiltration of any histological subtype |
IIIA | Invasion of uterine serosa, adnexa, or both by direct extension or metastasis |
IIIA1 Invasion of ovary or fallopian tube (outside of grade IA3 criteria) | |
IIIA2 Invasion of uterine serosa or extension through uterine serosa | |
IIIB | Invaginal and/or parametrial or pelvic peritoneal EC |
IIIB1 Invaginal and/or parametrial EC | |
IIIB2 Metastases to pelvic peritoneum | |
IIIC | Metastasis to the pelvic or para-aortic lymph nodes or both |
IIIC1 Metastasis to the pelvic lymph nodes IIIC1i Micrometastasis IIIC1ii Macrometastasis | |
IIIC2 Metastases to para-aortic lymph nodes up to renal vessels, with or without metastases to pelvic lymph nodes IIIC2i Micrometastasis IIIC2ii Macrometastasis | |
Stage IV | Tumour invasion of the bladder mucosa and/or intestinal mucosa and/or distant metastases |
IVA Invasion of the bladder mucosa and/or the intestinal/bowel mucosa | |
IVB Abdominal peritoneal metastasis beyond the pelvis | |
IVC Distant metastasis, including metastasis to any extra- or intra-abdominal lymph nodes above the renal vessels, lungs, liver, brain, or bone |
Characteristic | Overall, n = 37 1 | Study Group, n = 18 1 | Control Group, n = 19 1 | p-Value 2 |
---|---|---|---|---|
Age | 53 (42–92) | 60 (48–82) | 48 (42–92) | 0.002 |
First period | 14 (11–17) | 13 (11–16) | 14 (11–17) | 0.2 |
Last menstrual period | 50 (40–61) | 50 (40–58) | 48 (42–61) | 0.2 |
Births | 2 (0–4) | 2 (0–4) | 2 (0–3) | 0.6 |
BMI | 26.4 (20.08–50.2) | 27.25 (22.1–50.2) | 25.39 (20.08–34.19) | 0.058 |
Hypertension | 0.2 | |||
No | 27 (73%) | 11 (61%) | 16 (84%) | |
Yes | 10 (27%) | 7 (39%) | 3 (16%) | |
DM | 0.046 | |||
No | 33 (89%) | 14 (78%) | 19 (100%) | |
Yes | 4 (11%) | 4 (22%) | 0 (0%) | |
Hypothyroidism | 0.020 | |||
No | 32 (86%) | 13 (72%) | 19 (100%) | |
Yes | 5 (14%) | 5 (28%) | 0 (0%) |
Degree of Differentiation: | Number of Patients Examined: | Percentage of Female Patients Surveyed |
---|---|---|
G1 | 0 | 0 |
G2 | 12 | 67% |
G3 | 6 | 33% |
FIGO stage: | ||
FIGO I | 14 | 78% |
FIGO II | 2 | 11% |
FIGO III | 2 | 11% |
Absolute Expression (Copies/µL) | Study Group, N = 18 1 | Control Group, N = 19 1 | p-Value 2 |
---|---|---|---|
miR-21-5p | 655,024 (161,648–2,061,856) | 938,736 (118,688–3,424,496) | 0.3 |
miR-205-5p | 10,164 (381.52–113,472) | 181.52 (0.0–7336.8) | <0.001 |
miR-222-3p | 50,132 (10,192–145,704) | 112,168 (35,104–421,912) | 0.003 |
miRNA | Study Group | Control Group | Fold Change | log2FC | p-Value 1 | Benjamini–Hochberg Adjusted p Value 2 | ||
---|---|---|---|---|---|---|---|---|
Mean | SD | Mean | SD | |||||
miR-21-5p | 5.79 | 0.35 | 5.92 | 0.49 | 0.98 | −0.03 | 0.36 | 0.576 |
miR-205-5p | 3.93 | 0.7 | 2.68 | 0.71 | 1.47 | 0.55 | <0.001 | <0.001 |
miR-222-3p | 4.63 | 0.36 | 5.03 | 0.32 | 0.92 | −0.12 | <0.001 | 0.002 |
Absolute Expression (Copies/µL) | Study Group, N = 18 1 | Control Group, N = 19 1 | p-Value 2 |
---|---|---|---|
cel-miR-39-3p | 16,200 (2825.6–22,320) | 17,664 (4682.4–49,608) | 0.408 |
miR-21-5p | 36,768 (4920.8–231,216) | 38,832 (5545.6–157,976) | 0.599 |
miR-205-5p | 203.88 (17.9–3722) | 260.8 (26.66–492.8) | 0.799 |
miR-222-3p | 964.2 (74.86–7570) | 2366 (301–10,114) | 0.019 |
miRNA | Study Group | Control Group | Fold Change | log2FC | p-Value 1 | Benjamini–Hochberg Adjusted p Value 2 | ||
---|---|---|---|---|---|---|---|---|
Mean | SD | Mean | SD | |||||
miR-39-3p | 4.14 | 0.21 | 4.20 | 0.28 | 0.99 | −0.02 | 0.403 | 0.576 |
miR-21-5p | 4.54 | 0.50 | 4.60 | 0.34 | 0.99 | −0.02 | 0.664 | 0.778 |
miR-205-5p | 2.35 | 0.67 | 2.28 | 0.36 | 1.03 | 0.04 | 0.700 | 0.778 |
miR-222-3p | 3.00 | 0.54 | 3.39 | 0.32 | 0.89 | −0.18 | 0.011 | 0.022 |
Endometrial Cancer | OR (Odds Ratio) | Lower 95% Confidence Interval | Upper 95% Confidence Interval | p-Value |
---|---|---|---|---|
Age | 1.09 | 1.01 | 1.17 | 0.029 |
First period | 0.73 | 0.47 | 1.12 | 0.150 |
Last menstrual period | 1.08 | 0.94 | 1.25 | 0.285 |
Number of Births | 1.28 | 0.66 | 2.46 | 0.465 |
At least one birth | 1.79 | 0.36 | 8.90 | 0.479 |
Number of Caesarean sections (CS) | 0.58 | 0.18 | 1.86 | 0.362 |
At least one CS | 0.75 | 0.14 | 3.94 | 0.734 |
At least one miscarriage | 1.08 | 0.25 | 4.60 | 0.920 |
BMI | 1.14 | 0.99 | 1.30 | 0.060 |
Good BMI (20–25) | 0.22 | 0.05 | 1.03 | 0.054 |
Overweight (BMI => 25) | 4.50 | 0.97 | 20.83 | 0.054 |
Obesity (BMI >= 30) | 2.67 | 0.55 | 12.88 | 0.222 |
Hypertension | 3.39 | 0.72 | 16.07 | 0.124 |
Tissue miR-21-5p (log) | 0.47 | 0.10 | 2.27 | 0.349 |
Tissue miR-205-5p (log) | 10.91 | 2.27 | 52.48 | 0.003 |
Tissue miR-222-3p | 0.02 | 0.002 | 0.35 | 0.006 |
Serum miR-39-9p | 0.39 | 0.03 | 5.94 | 0.495 |
Serum miR-21-5p | 0.70 | 0.15 | 3.36 | 0.654 |
Serum miR-205-5p | 1.29 | 0.37 | 4.50 | 0.691 |
Serum miR-222-3p | 0.12 | 0.02 | 0.74 | 0.022 |
miRNA | N | R Coefficient | p-Value |
---|---|---|---|
miR-21-5p | 37 | −0.23 | 0.176 |
miR-205-5p | 37 | 0.02 | 0.896 |
miR-222-3p | 37 | −0.02 | 0.885 |
Endometrial Cancer | OR (Odds Ratio) | Lower 95% Confidence Interval | Upper 95% Confidence Interval | p-Value |
---|---|---|---|---|
Age | 1.08 | 0.94 | 1.24 | 0.301 |
Tissue miR-205-5p | 24.3 | 0.5 | 1170.34 | 0.107 |
Tissue miR-222-3p | 0.002 | 0.000001 | 3.07 | 0.095 |
Serum miR-222-3p | 0.002 | 0.000000 | 18.91 | 0.179 |
Figo < 2 (N = 14) | Figo = >2 (N = 4) | p-Value | Benjamini–Hochberg Adjusted p Value 3 | |||
---|---|---|---|---|---|---|
Mean | SD | Mean | SD | |||
Serum miR-39-3p 1 | 4.11 | 0.23 | 4.24 | 0.09 | 0.222 | 0.7 |
Serum miR-21-5p 2 | 4.62 | 0.53 | 4.25 | 0.23 | 0.203 | 0.444 |
Tissue miR-21-5p 2 | 5.73 | 0.34 | 6 | 0.36 | 0.189 | 0.444 |
Tissue miR-205-5p 2 | 3.94 | 0.68 | 3.87 | 0.9 | 0.857 | 0.857 |
Tissue miR-222-3p 2 | 4.64 | 0.38 | 4.6 | 0.33 | 0.843 | 0.857 |
Serum miR-205-5p 2 | 2.54 | 0.62 | 1.68 | 0.32 | 0.017 | 0.17 |
Serum miR-222-3p 2 | 3.05 | 0.6 | 2.82 | 0.2 | 0.464 | 0.7 |
Non G3 (N = 12) | G3 (N = 6) | p-Value | Benjamini–Hochberg Adjusted p Value 3 | |||
---|---|---|---|---|---|---|
Mean | SD | Mean | SD | |||
Serum miR-39-3p 1 | 4.12 | 0.25 | 4.19 | 0.42 | 0.543 | 0.776 |
Tissue miR-21-5p 2 | 5.78 | 0.36 | 5.80 | 0.37 | 0.894 | 0.99 |
Tissue miR-205-5p 2 | 3.82 | 0.78 | 4.13 | 0.53 | 0.389 | 0.776 |
Tissue miR-222-3p 2 | 4.71 | 0.38 | 4.46 | 0.24 | 0.152 | 0.507 |
Serum miR-21-5p 2 | 4.53 | 0.55 | 4.55 | 0.42 | 0.935 | 0.99 |
Serum miR-205-5p 2 | 2.59 | 0.66 | 1.86 | 0.38 | 0.024 | 0.12 |
Serum miR-222-3p 2 | 2.93 | 0.56 | 3.15 | 0.5 | 0.441 | 0.776 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bogaczyk, A.; Potocka, N.; Paszek, S.; Skrzypa, M.; Zuchowska, A.; Kośny, M.; Kluz-Barłowska, M.; Wróbel, A.; Wróbel, J.; Zawlik, I.; et al. MiR-205-5p and MiR-222-3p as Potential Biomarkers of Endometrial Cancer. Int. J. Mol. Sci. 2025, 26, 2615. https://doi.org/10.3390/ijms26062615
Bogaczyk A, Potocka N, Paszek S, Skrzypa M, Zuchowska A, Kośny M, Kluz-Barłowska M, Wróbel A, Wróbel J, Zawlik I, et al. MiR-205-5p and MiR-222-3p as Potential Biomarkers of Endometrial Cancer. International Journal of Molecular Sciences. 2025; 26(6):2615. https://doi.org/10.3390/ijms26062615
Chicago/Turabian StyleBogaczyk, Anna, Natalia Potocka, Sylwia Paszek, Marzena Skrzypa, Alina Zuchowska, Michał Kośny, Marta Kluz-Barłowska, Andrzej Wróbel, Jan Wróbel, Izabela Zawlik, and et al. 2025. "MiR-205-5p and MiR-222-3p as Potential Biomarkers of Endometrial Cancer" International Journal of Molecular Sciences 26, no. 6: 2615. https://doi.org/10.3390/ijms26062615
APA StyleBogaczyk, A., Potocka, N., Paszek, S., Skrzypa, M., Zuchowska, A., Kośny, M., Kluz-Barłowska, M., Wróbel, A., Wróbel, J., Zawlik, I., & Kluz, T. (2025). MiR-205-5p and MiR-222-3p as Potential Biomarkers of Endometrial Cancer. International Journal of Molecular Sciences, 26(6), 2615. https://doi.org/10.3390/ijms26062615