Heterogeneity of the Immunological and Pathogenic Profiles in Patients Hospitalize Early Versus Late During an Acute Vital Illness as Shown in Native SARS-CoV-2 Infection
Abstract
:1. Introduction
2. Results
2.1. Time-Cluster of Individuals Depending on the Time of Hospitalization
2.2. Characterization of Demographical and Clinical Variables Between Clusters
2.3. Infectious Patterns for Cluster Patients
2.4. Immune and Coagulation Features of Each of the Clusters
2.5. Symptomology Presentation of Patients in Different Clusters
2.6. Biological Markers of End-Organ Damage Across Clusters
2.7. Clinical Outcomes Across Clusters
3. Discussion
4. Materials and Methods
4.1. Recruitment of Individuals for the Study
4.2. Symptoms Data
4.3. Clinical Data
4.4. Sample Collection and Processing
4.5. Assessment of Pathogen Burden and Specific Humoral Response
4.6. Assessment of Nonspecific Immune and Coagulation Response
4.7. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Schenten, D.; Medzhitov, R. The control of adaptive immune responses by the innate immune system. Adv. Immunol. 2011, 109, 87–124. [Google Scholar] [CrossRef]
- Okin, D.; Medzhitov, R. Evolution of inflammatory diseases. Curr. Biol. 2012, 22, R733–R740. [Google Scholar] [CrossRef]
- Ward, P.A.; Gao, H. Sepsis, complement and the dysregulated inflammatory response. J. Cell Mol. Med. 2009, 13, 4154–4160. [Google Scholar] [CrossRef]
- Tahaghoghi-Hajghorbani, S.; Zafari, P.; Masoumi, E.; Rajabinejad, M.; Jafari-Shakib, R.; Hasani, B.; Rafiei, A. The role of dysregulated immune responses in COVID-19 pathogenesis. Virus. Res. 2020, 290, 198197. [Google Scholar] [CrossRef] [PubMed]
- Yu, K.; He, J.; Wu, Y.; Xie, B.; Liu, X.; Wei, B.; Zhou, H.; Lin, B.; Zuo, Z.; Wen, W.; et al. Dysregulated adaptive immune response contributes to severe COVID-19. Cell Res. 2020, 30, 814–816. [Google Scholar] [CrossRef]
- Jain, V.; Yuan, J.-M. Predictive symptoms and comorbidities for severe COVID-19 and intensive care unit admission: A systematic review and meta-analysis. Int. J. Public Health 2020, 65, 533–546. [Google Scholar] [CrossRef]
- D’Cruz, R.F.; Waller, D.; Perrin, F.; Periselneris, J.; Norton, S.; Smith, L.-J.; Patrick, T.; Walder, D.; Heitmann, A.; Lee, K.; et al. Chest radiography is a poor predictor of respiratory symptoms and functional impairment in survivors of severe COVID-19 pneumonia. ERJ Open Res. 2021, 7, 00655–2020. [Google Scholar] [CrossRef] [PubMed]
- Liu, F.; Li, L.; Xu, M.; Wu, J.; Luo, D.; Zhu, Y.; Li, B.; Song, X.; Zhou, X. Prognostic value of interleukin-6, C-reactive protein, and procalcitonin in patients with COVID-19. J. Clin. Virol. 2020, 127, 104370. [Google Scholar] [CrossRef] [PubMed]
- Ridker, P.M. From C-Reactive Protein to Interleukin-6 to Interleukin-1. Circ. Res. 2016, 118, 145–156. [Google Scholar] [CrossRef]
- Minejima, E.; Bensman, J.; She, R.C.; Mack, W.J.; Tran, M.T.; Ny, P.; Lou, M.; Yamaki, J.; Nieberg, P.; Ho, J.; et al. A Dysregulated Balance of Proinflammatory and Anti-Inflammatory Host Cytokine Response Early During Therapy Predicts Persistence and Mortality in Staphylococcus aureus Bacteremia. Crit. Care. Med. 2016, 44, 671–679. [Google Scholar] [CrossRef] [PubMed]
- Bermejo-Martin, J.F.; González-Rivera, M.; Almansa, R.; Micheloud, D.; Tedim, A.P.; Domínguez-Gil, M.; Resino, S.; Martín-Fernández, M.; Murua, P.R.; Pérez-García, F.; et al. Viral RNA load in plasma is associated with critical illness and a dysregulated host response in COVID-19. Crit. Care (Lond. Engl.) 2020, 24, 691. [Google Scholar] [CrossRef] [PubMed]
- Masi, P.; González-Rivera, M.; Almansa, R.; Micheloud, D.; Tedim, A.P.; Domínguez-Gil, M.; Resino, S.; Martín-Fernández, M.; Murua, P.R.; Pérez-García, F.; et al. Systemic Inflammatory Response Syndrome Is a Major Contributor to COVID-19-Associated Coagulopathy: Insights From a Prospective, Single-Center Cohort Study. Circulation 2020, 142, 611–614. [Google Scholar] [CrossRef] [PubMed]
- Iba, T.; Connors, J.M.; Levy, J.H. The coagulopathy, endotheliopathy, and vasculitis of COVID-19. Inflamm. Res. 2020, 69, 1181–1189. [Google Scholar] [CrossRef] [PubMed]
- Nicolai, L.; Leunig, A.; Brambs, S.; Kaiser, R.; Weinberger, T.; Weigand, M.; Muenchhoff, M.; Hellmuth, J.C.; Ledderose, S.; Schulz, H.; et al. Immunothrombotic Dysregulation in COVID-19 Pneumonia Is Associated With Respiratory Failure and Coagulopathy. Circulation 2020, 142, 1176–1189. [Google Scholar] [CrossRef] [PubMed]
- Pepper, M.; Rodda, L.; Netland, J.; Shehata, L.; Pruner, K.; Morawski, P.; Thouvenel, C.; Takahara, K.; Eggenberger, J.; Hemann, E.; et al. Functional SARS-CoV-2-specific immune memory persists after mild COVID-19. Res. Sq. 2020. [Google Scholar] [CrossRef]
- Lotfi, R.; Kalmarzi, R.N.; Roghani, S.A. A review on the immune responses against novel emerging coronavirus (SARS-CoV-2). Immunol. Res. 2021, 69, 213–224. [Google Scholar] [CrossRef] [PubMed]
- Chu, H.; Chan, J.F.-W.; Wang, Y.; Yuen, T.T.-T.; Chai, Y.; Hou, Y.; Shuai, H.; Yang, D.; Hu, B.; Huang, X.; et al. Comparative replication and immune activation profiles of SARS-CoV-2 and SARS-CoV in human lungs: An ex vivo study with implications for the pathogenesis of COVID-19. Clin. Infect. Dis. 2020, 71, 1400–1409. [Google Scholar] [CrossRef]
- Fill Malfertheiner, S.; Brandstetter, S.; Roth, S.; Harner, S.; Buntrock-Döpke, H.; Toncheva, A.A.; Borchers, N.; Gruber, R.; Ambrosch, A.; Kabesch, M.; et al. Immune response to SARS-CoV-2 in health care workers following a COVID-19 outbreak: A prospective longitudinal study. J. Clin. Virol. 2020, 130, 104575. [Google Scholar] [CrossRef]
- Ryabkova, V.A.; Churilov, L.P.; Shoenfeld, Y. Influenza infection, SARS, MERS and COVID-19: Cytokine storm—The common denominator and the lessons to be learned. Clin. Immunol. 2021, 223, 108652. [Google Scholar] [CrossRef]
- Morsy, S. NCAM protein and SARS-CoV-2 surface proteins: In-silico hypothetical evidence for the immunopathogenesis of Guillain-Barré syndrome. Med. Hypotheses 2020, 145, 110342. [Google Scholar] [CrossRef] [PubMed]
- Gallucci, S.; Matzinger, P. Danger signals: SOS to the immune system. Curr. Opin. Immunol. 2001, 13, 114–119. [Google Scholar] [CrossRef]
- Hadj Hassine, I. COVID-19 vaccines and variants of concern: A review. Rev. Med. Virol. 2022, 32, e2313. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Brusco, M.J. Clustering binary data in the presence of masking variables. Psychol. Methods 2004, 9, 510–523. [Google Scholar] [CrossRef]
- Jouan, Y.; Grammatico-Guillon, L.; Teixera, N.; Hassen-Khodja, C.; Gaborit, C.; Salmon-Gandonnière, C.; Guillon, A.; Ehrmann, S. Healthcare trajectories before and after critical illness: Population-based insight on diverse patients clusters. Ann. Intensive Care 2019, 9, 126. [Google Scholar] [CrossRef]
- Roffman, C.E.; Buchanan, J.; Allison, G.T. Charlson comorbidities index. J. Physiother. 2016, 62, 171. [Google Scholar] [CrossRef] [PubMed]
- Knaus, W.A.; Draper, E.A.; Wagner, D.P.; Zimmerman, J.E. APACHE II: A severity of disease classification system. Crit. Care. Med. 1985, 13, 818–829. [Google Scholar] [CrossRef]
Total (n = 106) | Cluster A (n = 41) | Cluster B (n = 41) | Cluster C (n = 13) | Cluster D (n = 11) | Sig (p-Value) | |
---|---|---|---|---|---|---|
Age [X ± SD] | 58.95 ± 18.23 | 55.2 ± 19.8 | 62.5 ± 14.6 | 58.46 ± 16.9 | 60.3 ± 24.2 | 0.56 |
Over 60 (%) | 56.6% | 56.10% | 58.50% | 46.20% | 63.60% | 0.86 |
BMI [X ± S.D.] | 31.71 ± 8.91 | 30.5 ± 6.8 | 32.7 ± 9.4 | 34.5 ± 12.6 | 28.5 ± 7.8 | 0.51 |
Gender | ||||||
Male (%) | 59.5% | 70.70% | 46.30% | 69.20% | 54.50% | |
Female (%) | 39.6% | 29.30% | 53.70% | 30.80% | 36.40% | 0.026 |
Not Reported (%) | 0.9% | 0% | 0% | 0% | 9.10% | |
Race | ||||||
White/Caucasian/Hispanic Latino [%] | 27.3% | 29.20% | 19.50% | 53.90% | 18% | |
Black [%] | 62.3% | 65.90% | 70.70% | 30.80% | 54.50% | 0.171 |
Other/Asian/unknown [%] | 10.3% | 4.90% | 9.70% | 15.40% | 27.30% | |
Clinical trajectory | ||||||
Admitted to the I.C.U. [%] | 50% | 43.90% | 51.20% | 53.80% | 63.60% | 0.68 |
Noninvasive Intubated [%] | 33% | 26.80% | 31.70% | 38.50% | 54.50% | 0.36 |
Extracorporeal membrane oxygenation [%] | 9.4% | 0% | 9.80% | 23.10% * | 27.30% * | 0.011 |
Length of stay in the Hospital [X ± S.D.] | 17.51 ± 26.122 | 11.4 ± 13.6 | 16.3 ± 24.7 | 28.8 ± 46 | 31.6 ± 29.9 | 0.066 |
Length of stay in the I.C.U. [X ± S.D.] | 10.92 ± 24.533 | 5.63 ± 12.6 | 8.78 ± 19.6 | 27.91 ± 48.5 | 23.44 ± 34 | 0.182 |
APACHE SCORE 1 h [X ± S.D.] | 11.13 ± 7.809 | 9.6 ± 7.1 | 9.1 ± 8.3 | 10.23 ± 5.4 | 15.82 ± 9.7 | 0.22 |
APAHE SCORE 24 h [X ± SD] | 11.04 ± 7.313 | 10.1 ± 8.2 | 10.6 ± 6.3 | 11.2 ± 6.5 | 15.6 ± 7.7 | 0.079 |
Preexisting conditions | ||||||
Myocardial infarction [%] | 5.7% | 9.80% | 4.90% | 0% | 0% | 0.428 |
Congestive heart failure [%] | 15.1% | 9.80% | 14.60% | 15.40% | 36.40% | 0.187 |
Peripheral vascular disease [%] | 7.5% | 9.80% | 2.40% | 0% | 27.30% | 0.029 |
Cerebrovascular stroke [%] | 11.3% | 7.30% | 14.60% | 7.70% | 18.2 | 0.617 |
Chronic obstructive pulmonary disease [%] | 14.2% | 17.10% | 14.60% | 7.70% | 9.10% | 0.8 |
Diabetes mellitus [%] | 34.9% | 31.70% | 39.00% | 23.10% | 45.50% | 0.61 |
Chronic kidney disease [%] | 24.5% | 22.00% | 29.30% | 23.10% | 18.20% | 0.82 |
Solid tumor [%] | 10.4% | 9.80% | 14.60% | 7.70% | 0.00% | 0.53 |
Smoking status | ||||||
Smoker [%] | 9.43% | 17.10% | 4.90% | 0.00% | 9.10% | |
Former smoker [%] | 32.08% | 24.40% | 39.00% | 38.50% | 27.30% | 0.38 |
Non-smoker [%] | 58.49% | 58.50% | 56.10% | 61.50% | 63.60% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Laudanski, K.; Sayed Ahmed, A.; Mahmoud, M.A.; Antar, M.; Gad, H. Heterogeneity of the Immunological and Pathogenic Profiles in Patients Hospitalize Early Versus Late During an Acute Vital Illness as Shown in Native SARS-CoV-2 Infection. Int. J. Mol. Sci. 2025, 26, 2349. https://doi.org/10.3390/ijms26052349
Laudanski K, Sayed Ahmed A, Mahmoud MA, Antar M, Gad H. Heterogeneity of the Immunological and Pathogenic Profiles in Patients Hospitalize Early Versus Late During an Acute Vital Illness as Shown in Native SARS-CoV-2 Infection. International Journal of Molecular Sciences. 2025; 26(5):2349. https://doi.org/10.3390/ijms26052349
Chicago/Turabian StyleLaudanski, Krzysztof, Ahmed Sayed Ahmed, Mohamed A. Mahmoud, Mohamed Antar, and Hossam Gad. 2025. "Heterogeneity of the Immunological and Pathogenic Profiles in Patients Hospitalize Early Versus Late During an Acute Vital Illness as Shown in Native SARS-CoV-2 Infection" International Journal of Molecular Sciences 26, no. 5: 2349. https://doi.org/10.3390/ijms26052349
APA StyleLaudanski, K., Sayed Ahmed, A., Mahmoud, M. A., Antar, M., & Gad, H. (2025). Heterogeneity of the Immunological and Pathogenic Profiles in Patients Hospitalize Early Versus Late During an Acute Vital Illness as Shown in Native SARS-CoV-2 Infection. International Journal of Molecular Sciences, 26(5), 2349. https://doi.org/10.3390/ijms26052349