A Review of FDA-Approved Multi-Target Angiogenesis Drugs for Brain Tumor Therapy
Abstract
:1. Introduction
2. Kinases as Targets for Anti-Angiogenic Therapy
3. Evaluation of FDA-Approved Multi-Target Anti-Angiogenic Inhibitors in Preclinical Models of Brain Tumors
3.1. Axitinib
3.2. Sorafenib
3.3. Lenvatinib
3.4. Pazopanib
3.5. Sunitinib
3.6. Cabozantinib
3.7. Nintedanib
3.8. Regorafenib
3.9. Aflibercept
3.10. Ramucirumab
Study | Study Area | Materials | Signaling Pathway | Molecular Mechanism |
---|---|---|---|---|
Lu et al., 2015 [97] | United States of America | Human glioma cells, Human GSCs, Human umbilical vein endothelial cells, Human brain microvascular endothelial cells, mice | No signaling pathway mentioned VEGFRs/PDGFR | Axitinib exhibits anti-angiogenic activity and prolongs survival of mice bearing orthotopic GBMs. |
Morelli et al., 2016 [98] | Italy | Human glioma cells | No signaling pathway mentioned | Axitinib induces DNA damage response (DDR) characterized by γ-H2AX phosphorylation and Chk1 kinase activation leading to G2/M cell cycle arrest and mitotic catastrophe in glioma cell lines. Combined exposure to axitinib and bortezomib was more effective in inhibiting cell viability of all glioma cell lines. |
Krcek et al., 2017 [99] | Germany | Human glioma cells | MAPKAP VEGFR2/phospholipase C/protein kinase C/ERK | The combination of axitinib and irradiation could be a potent strategy in the treatment of GBM. |
Oprita et al., 2023 [100] | Romania | Human glioma cell line | No signaling pathway mentioned | Axitinib and sorafenib retarded GB1B cell growth in terms of dose and duration. |
Saha et al., 2018 [101] | United States of America | GFP-positive mouse, Mouse brain microvascular endothelial cells (MBMECs), Human primary and recurrent GSCs | PDGFR/ERK/Akt | Axitinib has a dose-dependent anti-angiogenic effect while the antitumor effects of axtinib + G47Δ-mIL12 were mainly T-cell dependent. |
Schwinn et al., 2021 [102] | Germany | Human medulloblastoma cells, mice | No signaling pathway mentioned | The combination of axitinib and gemcitabine has cytotoxic effects on medulloblastoma cells and favorable tolerability in xenograft models. |
Yu et al., 2006 [109] | United America | Human glioma cells | Akt | Sorafenib interacts synergistically with bortezomib to induce apoptosis in glioma cells. |
Siegelin et al., 2010 [110] | United States of America | Established or human glioma cells, mice | PI3K/AKT | Sorafenib has potent anti-glioma activity in vitro and in vivo. |
Yang et al., 2010 [111] | United States of America | Human GBM cells | Akt, MAPK | The inhibition of STAT3 signaling by sorafenib contributes to growth arrest and induction of apoptosis in glioblastoma cells. |
Carra et al., 2013 [112] | Italy | Human GBM cells | MAPK PI-3/Akt | Sorafenib reduces proliferation of glioblastoma cultures, and this effect depends, at least in part, on the inhibition of PI3K/Akt and MAPK pathways. Sorafenib significantly induces apoptosis/cell death via downregulation of the survival factor Mcl-1. Sorafenib has a selective action on glioblastoma stem cells. |
Riedel et al., 2016 [113] | Germany | Human GBM cells | MAPK, Akt | Sorafenib had only minor effects on cell survival when administered alone and failed to enhance GBM cell killing by irradiation, TMZ or combined treatment, and instead rather caused resistance in some cell lines. |
Wilisch-Neumann et al., 2014 [114] | Germany | Human meningioma cells | MAPK PI-3/Akt | Sorafenib reduce meningioma cell motility and brain invasion. |
Jia Li et al., 2017 [121] | China | Human glioma cells, nude mice | No signaling pathway mentioned | Lenvatinib significantly increased apoptosis in glioma cell lines, and tumor growth was significantly inhibited in tumor-bearing mice. |
Bouard et al., 2007 [130] | France | GBM cell lines, intra-cerebral xenograft models | No signaling pathway mentioned | Sunitinib had potent anti-angiogenic activity and prolonged survival. |
D’Amico et al., 2012 [131] | USA | mice | No signaling pathway mentioned | The addition of sunitinib to radiotherapy enhances the effects of radiation in the brain and delays GBM growth without altering overall survival at the studied doses. |
Gravina et al., 2017 [132] | Italy | GBM cells, subcutaneous xenografts, intracranial xenografts | No signaling pathway mentioned | An enhanced survival effect on GBM-bearing mice which were treated with a combination of PRX177561 and bevacizumab or sunitinib |
Andrae et al., 2012 [135] | Germany | Human meningioma cells | PI3K/AKT ERK | Sunitinib strongly reduced meningioma cell migration in vitro, and had cytostatic effects. |
Dang et al., 2025 [154] | China | GBM cells | No signaling pathway mentioned | Nintedanib exerted significant inhibitory effects on GBM cells. Drug delivery through nanotechnology may represent a new strategy for GBM treatment |
4. Clinical Trials Assessing the Effectiveness of FDA-Approved Anti-Angiogenic Inhibitors
4.1. Axitinib
Trial Reference | Year | Who Tumor Grade, Histology Reference | Number of Patients | Clinical Trial Phase | Regimen | Signaling Pathways | Endpoints | Systemic Toxicity and Other Adverse Events |
---|---|---|---|---|---|---|---|---|
Duernik et al. [179] | 2018 | IV, rGBM | 79 | II | Axitinib 5 mg twice daily. Axitinib 5 mg twice daily and Lomustine 130 mg/m2 orally as a single dose every 6 weeks | not mentioned | 6 m PFS OS | neutropenia in the axitinib plus lomustine arm |
Awada et al. [180] | 2020 | IV, rGBM | 54 | II | Axitinib 5 mg twice daily and avelumab 10 mg/kg intravenous every 2 weeks for patients with a daily dose of ≤8 mg of methylprednisolone. Patients with a higher dose of corticotherapy started with Axitinib 5 mg twice daily and added Avelumab 10 mg/kg intravenous every 2 weeks after 6 weeks if the corticotherapy dosage reached ≤8 mg. | not mentioned | 6 mPFS OS | dysphonia lymphopenia arterial hypertension diarrhea |
Reardon et al. [182] | 2011 | IV, rGBM | 32 | II | Sorafenib 400 mg twice daily and temozolomide 50 mg/m | not mentioned | PFS-6 OS Toxicity of sorafenib and temozolomide The pharmacokinetics of sorafenib when combined with daily temozolomide | grade 2 and 3 elevation of amylase or lipase occurred in 2 and 4 patients grade 2 and 3 palmar-plantar erythrodysesthesia (PPE) occurred in 1(3%) and 6 (19%) patients fatigue rash infection electrolyte disturbances intracranial hemorrhage |
Peereboom et al. [183] | 2013 | IV rGBM | 24 | II | Sorafenib 200 mg twice daily and tipifarnib 200 mg twice daily | Ras/Raf/Mek/ERK | Define DLT and determine the MTD | fatigue lipase diarrhea nausea pain rash AST ALT |
Den et al. [184] | 2014 | WHO III grade or GBM | 15 | I | Radiation therapy consisted of a conventionally fractionated regimen to a total dose of 60 Gy, administered in 30 daily fractions of 2 Gy, with or without volumetric modulated arc therapy. Cohort 1 received a single daily oral dose of 200 mg, cohort 2 received 200 mg Sb BID and cohort 3 received 400 mg. After a break of 4 weeks, patients were treated in the maintenance phase with TMZ (150 mg m−2 on d1–5 for the first cycle of 28 days) followed for a total of up to six cycles of TMZ given at 200 mg m−2 on d1–5/28 if the first cycle was tolerated without significant side effects. Sorafenib restarted with 400 mg daily. | MAPK | The safety profile and tolerability of Sb when administered in conjunction with TMZ and RT and to establish the MTD of this combination. Secondary objectives were to evaluate pharmacokinetics (PKs), tumor response and survival. | thrombocytopenia fatigue hand–foot skin reaction |
Nabors et al. [185] | 2011 | GBM, anaplastic astrocytoma, or anaplastic oligodendroglioma | 47 | I | Sorafenib 400 mg twice daily | Ras/Raf/MAPK | MTD | dermatological toxicity fatigue hyperglycemia hypertension hypophosphatemia nausea back pain joint pain. |
Hottinger et al. [186] | 2014 | WHO grade III or GBM | 15 | I | Radiation therapy consisted of a conventionally fractionated regimen to a total dose of 60 Gy, administered in 30 daily fractions of 2 Gy, with or without volumetric modulated arc therapy. Three dose levels for Sb were planned as follows: cohort 1 received a single daily oral dose of 200 mg, cohort 2 received200 mg Sb and cohort 3 received 400 mg. After a break of 4 weeks, patients were treated in the maintenance phase with TMZ (150 mg m 2 on d1–5 for the first cycle of 28 days) followed for a total of up to six cycles of TMZ given at 200 mg m 2 on d1–5/28 if the first cycle was tolerated without significant side effects. Sorafenib was restarted on day 1 of the first cycle at 400 mg. | MAPK | The safety and maximum tolerated dose (MTD) of Sb in combination with radiation therapy (RT) and temozolomide (TMZ) | thrombocytopenia fatigue hand–foot skin reaction skin rush dyslipidemia diarrhea hypertension heart rate abnormalities |
Chen et al. [187] | 2020 | GBM or gliosarcoma | 57 | I/II | Patients initially received sorafenib at 200 mg BID and erlotinib at 100 mg QD. | Ras/Raf/MAPK | MTD of sorafenib + erlotinib, charac terization of toxicities, and evaluation of drug interactions via pharmacokinetics studies. 6-month PFS (PFS6) | lymphocyte count decreased hypophosphatemia fatigue diarrhea lipase increased abdominal pain arthralgia dysphasia |
Reardon et al. [188] | 2012 | rGBM | 32 | II | 24 mg Levantinib once daily in 28 cycles | Not mentioned | PFS-6 | hypertension fatigue headache proteinuria diarrhea fatigue hypertension one patient died due to pulmonary embolism |
Lwin et al. [189] | 2020 | GBM | 31 | II | len 20 mg/d + pembro 200 mg Q3W for 35 cycles or until confirmed PD | Not mentioned | Efficacy and safety of lenvatinib plus pembro in pts with previously treated advanced solid tumors. Secondary endpoints included disease control rate (DCR), duration of response (DOR), PFS, and OS | manageable toxicity |
Iwamoto et al. [190] | 2010 | rGBM | 35 | II | Pazopanib 800 mg orally daily on 28-day cycles | Not mentioned | PFS6 OS | anemia leukopenia lymphopenia neutropenia thrombocytopenia arterial hypertension fatigue excessive sweating weight loss decubitus ulcer dry skin flushing hand–foot syndrome hypopigmentation pruritus anorexia constipation diarrhea abdominal distension flatulence gastritis heartburn nausea CNS hemorrhage epistaxis elevated ALT elevated AST hyperbilirubinemia hypermagnesemia hypoalbuminemia hypophosphatemia joint or limb pain proteinuria abdominal pain thromboembolic event |
Reardon et al. [191] | 2013 | rGBM | 75 | I/II | Pazopanib 400 mg q.d. plus lapatinib 1000 mg | Not mentioned | 6-month PFS Pharmacokinetics Maximum observed C Concentration time to maximum concentration Concentration 24 h post-dose | diarrhea fatigue hypertension nausea elevated ALT thrombocytopenia neutropenia elevated AST rash |
Burzynski et al. [192] | 2014 | GBM | 11 | preliminary | Pazopanib 200 mg/daily–400 mg/daily Everolimus 5–10 mg/daily Sirolimus 1–3 mg daily Dasatinib 50 mg/daily Vorinostat 200–300 mg/daily Erlotinib 100–150 mg/daily Lapatinib 750 mg/daily Bevacizumab 2.5–10 mg/daily | Not mentioned | Further phase I/II clinical trials with PB in combination with pazopanib, dasatinib, everolimus and BVZ in patients with RGBM who failed standard surgery, radiation therapy and chemotherapy | anemia leukopenia thrombocytopenia hypertension fatigue sweating (diaphoresis) rash diarrhea dysphagia mucositis/stomatitis (clinical exam) hemorrhage, CNS alkaline phosphatase hyponatremia proteinuria neuropathy: sensory (paresthesia) pain: neck |
Saada et al. [193] | 2024 | GBM | 35 | I/II | 800 mg orally daily on 28-day cycles | Not mentioned | PFS6 OS | hypertension increase ALT asthenia nausea diarrhea thrombopenia neutropenia anemia |
Wuthrick et al. 2011 [194] | 2011 | Primary brain tumors and metastatic central nervous system malignancies | 15 | I | 37.5 mg sunitinib | Not mentioned | PFS OS | leukopenia thrombocytopenia anemia lymphopenia neutropenia hyponatremia hyperglycemia hypocalcemia hypercarbia hyperuremia hypokalemia elevated creatinine hyperbilirubinemia hypoproteinemia hypoalbuminemia elevated Alk. Phosphatase elevated ALT elevated AST fatigue pain dermatitis chest pain alopecia edema nausea anorexia diarrhea dyspepsia emesis mucositis seizure dysphasia drooling/difficulty chewing headache motor neuropathy DVT pulmonary embolism dyspnea epistaxis vaginal bleeding hypertension |
Neyns, et al. [195] | 2011 | HGG | 21 | II | 37.5 mg sunitinib | Not mentioned | PFS OS | skin toxicity neutropenia thrombocytopenia lymphocytopenia |
Duernick et al. [196] | 2015 | Anaplastic or low-grade glioma | 13 | II | Sunitinib malate (Sutent, Pfizer) was administered at a daily dose of 25 mg for 28 consecutive days followed by a 14-day treatment-free interval. Lomustine (CCNU) was administered as a single dose (80 mg/m2) on day 14 of the 6-week treatment cycle | Not mentioned | PFS OS | fatigue mucositis thrombocytopenia lymphopenia neutropenia |
Wetmore et al. [197] | 2016 | Recurrent or refractory high-grade glioma or ependymoma | 30 | II | Sunitinib, 15 mg/m2 | Not mentioned | PFS OS | alanine aminotransferase increased aspartate aminotransferase increased lipase increased lymphocyte count decreased neutrophil count decreased serum amylase increased white blood cell decreased diarrhea fatigue intracranial hemorrhage rash maculo-papular skin and subcutaneous tissue disorders—Other (rash, acne) |
Wuthrick et al. [198] | 2014 | Recurrent high-grade glioma | 11 | I | 37.5 mg sunitinib The fSRT doses delivered ranged from 30 to 42 Gy in 2.5- to 3.75-Gy fractions | (PI3K)-Akt-mTOR | Safety and toxicity profile of continuous daily-dosed sunitinib when combined with hypofractionated stereotactic RT (fSRT) for recurrent high-grade gliomas (rHGG). | leukopenia anemia thrombocytopenia fatigue candidiasis nausea vomiting diarrhea hypocalcemia hyponatremia acid reflux xerostomia hypoproteinemia hypochloremia elevated ALT elevated AST pain cough alopecia aphasia stomatitis anorexia hyperglycemia elevated ALP muscle weakness esophagitis hypertension |
Faye et al. [199] | 2023 | MGMT promoter GBM | 37 | II | 12.5 mg of daily sunitinib for 7 days, followed by concurrent chemoradiation plus 12.5 mg sunitinib, then adjuvant TMZ | Not mentioned | PFS OS safety | fatigue anemia leukopenia lymphocytopenia neutropenia thrombocytopenia pulmonary embolism deep vein thrombosis appetite loss (anorexia) constipation diarrhea dysgeusia (taste alteration) increased liver enzyme increased creatinine hyperglycemia nausea vomiting (emesis) weight loss (anorexia) seizures speech impairment ataxia muscle atrophy/weakness neuropathy cognitive disturbance confusion mood (depression/anxiety) dizziness drowsiness headache fever brain infection alopecia hypertension tachycardia coughing dyspnea shortness of breath on exertion |
Janssen et al. [200] | 2024 | Recurrent GBM | 55 | II/III | High-dose intermittent sunitinib 300 mg once weekly (Q1W, part 1) or 700 mg once every two weeks (Q2W, part 2) or lomustine | Not mentioned | PFS OS | blurred vision diarrhea dysgeusia fatigue flu-like symptoms headache hypertension hypothyroidism mucositis oral muscle weakness lower limb musculoskeletal disorders nausea oral pain palmar–plantar erythrodysesthesia syndrome rash septic bursitis skin discoloration syncope tooth infection vertigo vomiting anemia lymphocyte count decreased neutrophil count decreased platelet count decreased white blood cell decreased alanine aminotransferase increased alkaline phosphatase increased aspartate aminotransferase increased GGT increased |
Kaley et al. [201] | 2014 | Anaplastic meningioma | 36 | II | Sunitinib was administered at 50 mg/d for days 1–28 of every 42-day cycle | Not mentioned | PF6 Radiographic response safety | CNS hemorrhage thrombotic microangiopathy neutropenia hypophosphatemia fatigue thrombocytopenia lymphopenia leukopenia hypertension headache ALT AST dehydration pain, abdomen hyperglycemia rash, hand-foot reaction vomiting pancreatitis hypocalcemia confusion diarrhea creatinine hypomagnesemia prolonged QTc interval right ventricular enlargement thrombosis/embolism hyperuricemia gastrointestinal perforation |
Cardona et al. [202] | 2019 | WHO II or WHO III meningiomas | 31 | II | Octreotide acetate LAR [O]/everolimus [E] (30 mg IM q28 days/10 mg PO q/day), sunitinib [Su] (50 mg PO q/day for days 1–28 of 42 days) or bevacizumab [Bev] (10 mg/kg IV days 1 and 15) | Not mentioned | PFS OS | fatigue hypothyroidism |
Schiff et al. [203] | 2016 | HGG | 26 | I | Cabozantinib at a dose of 40 mg or 60 mg daily | MET | Grade 3/4 adverse events Maximum tolerated dose | thrombocytopenia fatigue constipation nausea diarrhea elevated ALT neutropenia elevated AST leukopenia elevated LDH hypertension |
Cloughesy et al. [204] | 2018 | Progressive GBM | 152 | II | Cabozantinib starting dose of 140 mg/day, but the starting dose was amended to 100 mg/day because of toxicity. | MET | PF6 OS | fatigue diarrhea decreased appetite PPES nausea headache constipation hypertension weight decreased dysphonia AST increased ALT increased convulsion LDH increased hypophosphatemia confusional state stomatitis vomiting abdominal pain thrombocytopenia pain in extremity insomnia gait disturbance hair color changes leukopenia lipase increased cough dysgeusia anxiety oral pain depression dry skin hemiparesis dyspepsia edema peripheral oropharyngeal pain rash hypokalemia neutropenia dyspnea dizziness cognitive disorder lymphopenia proteinuria aphasia vision blurred bilirubin increased epistaxis skin discoloration |
Muhic et al. [205] | 2013 | Recurrent GBM | 13 | II | Nintedanib was given orally at a dose of 200 mg twice daily | Not mentioned | PF OS | fatigue loss of appetite, diarrhea nausea |
Norden et al. [206] | 2015 | HGG | 36 | II | Nintedanib was given orally at a dose of 200 mg twice daily | Not mentioned | PF OS | treatment was well tolerated |
Lombardi et al. [207] | 2019 | Relapsed GB | 124 | II | Regorafenib 160 mg once daily for the first 3 weeks of each 4-week cycle or lomustine 110 mg/m2 once every 6 weeks | Not mentioned | PFS OS toxicity | hand–foot skin reaction increased lipase blood bilirubin increased |
Chiesa et al. [208] | 2022 | Recurrent GBM | 30 | II | Regorafenib was administered orally at a dose of 160 mg/day for the first 3 weeks of each 4-week cycle | MAPK pathway | PFS OS | thrombocytopenia fatigue hand–foot syndrome diarrhea hyperbilirubinemia |
Rudà et al. [209] | 2022 | Recurrent GBM | 66 | I/II | Regorafenib daily dose was gradually increased from 80 to 160 mg across the first 2 cycles. | Not mentioned | PFS OS toxicity | grade 3–4 toxicity |
Fasano et al. [210] | 2023 | Recurrent GBM | 56 | II | 160 mg of regorafenib (four 40 mg tablets) per day orally for three weeks in a four-week cycle | Not mentioned | PFS OS | hand–foot skin reaction rash/desquamation piastrinopenia neutropenia hypertension fatigue voice changes vomiting hepatic AEs, aspartate aminotransferase elevation hyperbilirubinemia proteinuria fever cardiac diarrhea |
Nayak et al. [211] | 2011 | HGG | 59 | I | Aflibercept 4 mg/kg every 2 weeks | VEGF PIGF | Maximum tolerated dose Toxicities | abdominal pain Alanine aminotransferase increase Aspartate aminotransferase increase alkaline phosphatase increase bilirubin increase Gamma glutamyl transferase increase arthralgia colonic perforation colitis dehydration fatigue headache hypertension hypokalemia hyponatremia seizure nausea lung infection peripheral nerve infection 1 urinary tract infection vascular access complication leukopenia lymphopenia neutropenia thrombocytopenia |
De Groot et al. [212] | 2011 | Malignant glioma | 58 | II | Aflibercept 4 mg/kg was administered intravenously on day 1 of every 2-week cycle | VEGF PIGF | PF6 Overall radiographic response | ataxia CNS ischemia confusion dysphagia fatigue GI hemorrhage hand–foot syndrome headache hypertension hyponatremia hypophosphatemia hypoxia increased LFTs lymphopenia mucositis neutropenia pain pericarditis proteinuria rash thrombosis/embolism wound complication |
4.2. Sorafenib
4.3. Lenvatinib
4.4. Pazopanib
4.5. Sunitinib
4.6. Cabozantinib
4.7. Nintedanib
4.8. Regorafenib
4.9. Aflibercept
4.10. Ramucirumab
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Hanahan, D.; Weinberg, R.A. Hallmarks of Cancer: The next Generation. Cell 2011, 144, 646–674. [Google Scholar] [CrossRef]
- Folkman, J. Angiogenesis in Cancer, Vascular, Rheumatoid and Other Disease. Nat. Med. 1995, 1, 27–31. [Google Scholar] [CrossRef]
- Liu, Z.-L.; Chen, H.-H.; Zheng, L.-L.; Sun, L.-P.; Lei, S.-H. Angiogenic Signaling Pathways and Anti-Angiogenic Therapy for Cancer. Signal Transduct. Target. Ther. 2023, 8, 198. [Google Scholar] [CrossRef]
- Simons, M.; Gordon, E.; Claesson-Welsh, L. Mechanisms and Regulation of Endothelial VEGF Receptor Signalling. Nat. Rev. Mol. Cell Biol. 2016, 17, 611–625. [Google Scholar] [CrossRef]
- Castellino, R.C.; Durden, D.L. Mechanisms of Disease: The PI3K-Akt-PTEN Signaling Node--an Intercept Point for the Control of Angiogenesis in Brain Tumors. Nat. Clin. Pract. Neurol. 2007, 3, 682–693. [Google Scholar] [CrossRef]
- Zou, X.; Tang, X.Y.; Qu, Z.Y.; Sun, Z.W.; Ji, C.F.; Li, Y.J.; Guo, S.D. Targeting the PDGF/PDGFR Signaling Pathway for Cancer Therapy: A Review. Int. J. Biol. Macromol. 2022, 202, 539–557. [Google Scholar] [CrossRef] [PubMed]
- Ornitz, D.M.; Itoh, N. The Fibroblast Growth Factor Signaling Pathway. Wiley Interdiscip. Rev. Dev. Biol. 2015, 4, 215–266. [Google Scholar] [CrossRef] [PubMed]
- Saharinen, P.; Eklund, L.; Alitalo, K. Therapeutic Targeting of the Angiopoietin-TIE Pathway. Nat. Rev. Drug Discov. 2017, 16, 635–661. [Google Scholar] [CrossRef] [PubMed]
- Shweiki, D.; Itin, A.; Soffer, D.; Keshet, E. Vascular Endothelial Growth Factor Induced by Hypoxia May Mediate Hypoxia-Initiated Angiogenesis. Nature 1992, 359, 843–845. [Google Scholar] [CrossRef]
- Chaudhry, I.H.; O’Donovan, D.G.; Brenchley, P.E.C.; Reid, H.; Roberts, I.S.D. Vascular Endothelial Growth Factor Expression Correlates with Tumour Grade and Vascularity in Gliomas. Histopathology 2001, 39, 409–415. [Google Scholar] [CrossRef] [PubMed]
- Samoto, K.; Ikezaki, K.; Ono, M.; Shono, T.; Kohno, K.; Kuwano, M.; Fukui, M. Expression of Vascular Endothelial Growth Factor and Its Possible Relation with Neovascularization in Human Brain Tumors. Cancer Res. 1995, 55, 1189–1193. [Google Scholar]
- Auguste, P.; Gürsel, D.B.; Lemière, S.; Reimers, D.; Cuevas, P.; Carceller, F.; Di Santo, J.P.; Bikfalvi, A. Inhibition of Fibroblast Growth Factor/Fibroblast Growth Factor Receptor Activity in Glioma Cells Impedes Tumor Growth by Both Angiogenesis-Dependent and -Independent Mechanisms. Cancer Res. 2001, 61, 1717–1726. [Google Scholar]
- Westermark, B.; Heldin, C.-H.; Nistér, M. Platelet-Derived Growth Factor in Human Glioma. Glia 1995, 15, 257–263. [Google Scholar] [CrossRef] [PubMed]
- Plate, K.H. Mechanisms of Angiogenesis in the Brain. J. Neuropathol. Exp. Neurol. 1999, 58, 313–320. [Google Scholar] [CrossRef]
- Haddad-Tóvolli, R.; Dragano, N.R.V.; Ramalho, A.F.S.; Velloso, L.A. Development and Function of the Blood-Brain Barrier in the Context of Metabolic Control. Front. Neurosci. 2017, 11, 224. [Google Scholar] [CrossRef] [PubMed]
- Arvanitis, C.D.; Ferraro, G.B.; Jain, R.K. The Blood-Brain Barrier and Blood-Tumour Barrier in Brain Tumours and Metastases. Nat. Rev. Cancer 2020, 20, 26–41. [Google Scholar] [CrossRef]
- Hoosemans, L.; Vooijs, M.; Hoeben, A. Opportunities and Challenges of Small Molecule Inhibitors in Glioblastoma Treatment: Lessons Learned from Clinical Trials. Cancers 2024, 16, 3021. [Google Scholar] [CrossRef]
- Zhang, F.; Wen, L.; Wang, K.; Huang, Z.; Jin, X.; Xiong, R.; He, S.; Hu, F. Effect of Axitinib Regulating the Pathological Blood-Brain Barrier Functional Recovery for Glioblastoma Therapeutics. CNS Neurosci. Ther. 2022, 28, 411–421. [Google Scholar] [CrossRef] [PubMed]
- Pagnuzzi-Boncompagni, M.; Picco, V.; Vial, V.; Planas-Bielsa, V.; Vandenberghe, A.; Daubon, T.; Derieppe, M.A.; Montemagno, C.; Durivault, J.; Grépin, R.; et al. Antiangiogenic Compound Axitinib Demonstrates Low Toxicity and Antitumoral Effects against Medulloblastoma. Cancers 2021, 14, 70. [Google Scholar] [CrossRef] [PubMed]
- Wang, K.; Zhou, W.; Wen, L.; Jin, X.; Meng, T.; Li, S.; Hong, Y.; Xu, Y.; Yuan, H.; Hu, F. The Protective Effects of Axitinib on Blood-Brain Barrier Dysfunction and Ischemia-Reperfusion Injury in Acute Ischemic Stroke. Exp. Neurol. 2024, 379, 114870. [Google Scholar] [CrossRef] [PubMed]
- Agarwal, S.; Sane, R.; Ohlfest, J.R.; Elmquist, W.F. The Role of the Breast Cancer Resistance Protein (ABCG2) in the Distribution of Sorafenib to the Brain. J. Pharmacol. Exp. Ther. 2011, 336, 223–233. [Google Scholar] [CrossRef]
- Durmus, S.; Xu, N.; Sparidans, R.W.; Wagenaar, E.; Beijnen, J.H.; Schinkel, A.H. P-Glycoprotein (MDR1/ABCB1) and Breast Cancer Resistance Protein (BCRP/ABCG2) Restrict Brain Accumulation of the JAK1/2 Inhibitor, CYT387. Pharmacol. Res. 2013, 76, 9–16. [Google Scholar] [CrossRef]
- Oberoi, R.K.; Mittapalli, R.K.; Elmquist, W.F. Pharmacokinetic Assessment of Efflux Transport in Sunitinib Distribution to the Brain. J. Pharmacol. Exp. Ther. 2013, 347, 755–764. [Google Scholar] [CrossRef] [PubMed]
- Phoenix, T.N.; Patmore, D.M.; Boop, S.; Boulos, N.; Jacus, M.O.; Patel, Y.T.; Roussel, M.F.; Finkelstein, D.; Goumnerova, L.; Perreault, S.; et al. Medulloblastoma Genotype Dictates Blood Brain Barrier Phenotype. Cancer Cell 2016, 29, 508–522. [Google Scholar] [CrossRef]
- Wang, N.; Jain, R.K.; Batchelor, T.T. New Directions in Anti-Angiogenic Therapy for Glioblastoma. Neurotherapeutics 2017, 14, 321–332. [Google Scholar] [CrossRef] [PubMed]
- Popescu, A.M.; Purcaru, S.O.; Alexandru, O.; Dricu, A. New Perspectives in Glioblastoma Antiangiogenic Therapy. Contemp. Oncol. 2016, 20, 109–118. [Google Scholar] [CrossRef] [PubMed]
- Cohen, M.H.; Shen, Y.L.; Keegan, P.; Pazdur, R. FDA Drug Approval Summary: Bevacizumab (Avastin) as Treatment of Recurrent Glioblastoma Multiforme. Oncologist 2009, 14, 1131–1138. [Google Scholar] [CrossRef] [PubMed]
- Gilbert, M.R.; Dignam, J.J.; Armstrong, T.S.; Wefel, J.S.; Blumenthal, D.T.; Vogelbaum, M.A.; Colman, H.; Chakravarti, A.; Pugh, S.; Won, M.; et al. A Randomized Trial of Bevacizumab for Newly Diagnosed Glioblastoma. N. Engl. J. Med. 2014, 370, 699–708. [Google Scholar] [CrossRef] [PubMed]
- Chinot, O.L.; Wick, W.; Mason, W.; Henriksson, R.; Saran, F.; Nishikawa, R.; Carpentier, A.F.; Hoang-Xuan, K.; Kavan, P.; Cernea, D.; et al. Bevacizumab plus Radiotherapy-Temozolomide for Newly Diagnosed Glioblastoma. N. Engl. J. Med. 2014, 370, 709–722. [Google Scholar] [CrossRef]
- Wick, W.; Gorlia, T.; Bendszus, M.; Taphoorn, M.; Sahm, F.; Harting, I.; Brandes, A.A.; Taal, W.; Domont, J.; Idbaih, A.; et al. Lomustine and Bevacizumab in Progressive Glioblastoma. N. Engl. J. Med. 2017, 377, 1954–1963. [Google Scholar] [CrossRef]
- Friedman, H.S.; Prados, M.D.; Wen, P.Y.; Mikkelsen, T.; Schiff, D.; Abrey, L.E.; Yung, W.K.A.; Paleologos, N.; Nicholas, M.K.; Jensen, R.; et al. Bevacizumab Alone and in Combination with Irinotecan in Recurrent Glioblastoma. J. Clin. Oncol. 2009, 27, 4733–4740. [Google Scholar] [CrossRef]
- Dasanu, C.A.; Alvarez-Argote, J.; Limonadi, F.M.; Codreanu, I. Bevacizumab in Refractory Higher-Grade and Atypical Meningioma: The Current State of Affairs. Expert Opin. Biol. Ther. 2019, 19, 99–104. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.; Li, X.; Wang, H.; Chen, G.; Zhou, Y. Anti-VEGFR2 Monoclonal Antibody(MSB0254) Inhibits Angiogenesis and Tumor Growth by Blocking the Signaling Pathway Mediated by VEGFR2 in Glioblastoma. Biochem. Biophys. Res. Commun. 2022, 604, 158–164. [Google Scholar] [CrossRef] [PubMed]
- Cher, L.; Nowak, A.; Iatropoulos, G.; Lee, W.S.; Lee, S.Y.; Shim, S.R.; Yoo, J.S. ACTR-75. A multicenter, 3-ARM, open-label, phase IIA clinical trial to evaluate safety and efficacy of tanibirumab (VEGFR2 MAB), in patients with recurrent GBM assessed with K-trans and initial area under the gadolinium concentration-time curve (IAUGC). Neuro Oncol. 2017, 19, vi17. [Google Scholar] [CrossRef]
- Popescu, A.M.; Alexandru, O.; Brindusa, C.; Purcaru, S.O.; Tache, D.E.; Tataranu, L.G.; Taisescu, C.; Dricu, A. Targeting the VEGF and PDGF Signaling Pathway in Glioblastoma Treatment. Int. J. Clin. Exp. Pathol. 2015, 8, 7825–7837. [Google Scholar] [PubMed]
- Bergers, G.; Hanahan, D. Modes of Resistance to Anti-Angiogenic Therapy. Nat. Rev. Cancer 2008, 8, 592–603. [Google Scholar] [CrossRef]
- Serban, F.; Daianu, O.; Tataranu, L.G.; Artene, S.A.; Emami, G.; Georgescu, A.M.; Alexandru, O.; Purcaru, S.O.; Tache, D.E.; Danciulescu, M.M.; et al. Silencing of Epidermal Growth Factor, Latrophilin and Seven Transmembrane Domain-Containing Protein 1 (ELTD1) via SiRNA-Induced Cell Death in Glioblastoma. J. Immunoass. Immunochem. 2017, 38, 21–33. [Google Scholar] [CrossRef]
- Sevastre, A.S.; Buzatu, I.M.; Baloi, C.; Oprita, A.; Dragoi, A.; Tataranu, L.G.; Alexandru, O.; Tudorache, S.; Dricu, A. ELTD1—An Emerging Silent Actor in Cancer Drama Play. Int. J. Mol. Sci. 2021, 22, 5151. [Google Scholar] [CrossRef]
- Tataranu, L.G.; Turliuc, S.; Rizea, R.E.; Dricu, A.; Alexandru, O.; Staicu, G.A.; Kamel, A. A Synopsis of Biomarkers in Glioblastoma: Past and Present. Curr. Issues Mol. Biol. 2024, 46, 6903–6939. [Google Scholar] [CrossRef]
- Serban, F.; Artene, S.A.; Georgescu, A.M.; Purcaru, S.O.; Tache, D.E.; Alexandru, O.; Dricu, A. Epidermal Growth Factor, Latrophilin, and Seven Transmembrane Domain-Containing Protein 1 Marker, a Novel Angiogenesis Marker. Onco Targets Ther. 2015, 8, 3767. [Google Scholar] [CrossRef] [PubMed]
- Zhong, L.; Li, Y.; Xiong, L.; Wang, W.; Wu, M.; Yuan, T.; Yang, W.; Tian, C.; Miao, Z.; Wang, T.; et al. Small Molecules in Targeted Cancer Therapy: Advances, Challenges, and Future Perspectives. Signal Transduct. Target. Ther. 2021, 6, 201. [Google Scholar] [CrossRef] [PubMed]
- Mokhtari, R.B.; Homayouni, T.S.; Baluch, N.; Morgatskaya, E.; Kumar, S.; Das, B.; Yeger, H. Combination Therapy in Combating Cancer. Oncotarget 2017, 8, 38022–38043. [Google Scholar] [CrossRef] [PubMed]
- Brindisi, M.; Kessler, S.M.; Kumar, V.; Zwergel, C. Editorial: Multi-Target Directed Ligands for the Treatment of Cancer. Front. Oncol. 2022, 12, 980141. [Google Scholar] [CrossRef]
- Haibe, Y.; Kreidieh, M.; El Hajj, H.; Khalifeh, I.; Mukherji, D.; Temraz, S.; Shamseddine, A. Resistance Mechanisms to Anti-Angiogenic Therapies in Cancer. Front. Oncol. 2020, 10, 221. [Google Scholar] [CrossRef]
- US Food and Drug Administration FDA Commissioner Announces Avastin Decision|Fierce Pharma. Available online: https://www.fiercepharma.com/pharma/fda-commissioner-announces-avastin-decision-0 (accessed on 6 January 2025).
- Jayson, G.C.; Kerbel, R.; Ellis, L.M.; Harris, A.L. Antiangiogenic Therapy in Oncology: Current Status and Future Directions. Lancet 2016, 388, 518–529. [Google Scholar] [CrossRef]
- Bolognesi, M.L.; Cavalli, A. Multitarget Drug Discovery and Polypharmacology. ChemMedChem 2016, 11, 1190–1192. [Google Scholar] [CrossRef]
- Al-Abd, A.M.; Alamoudi, A.J.; Abdel-Naim, A.B.; Neamatallah, T.A.; Ashour, O.M. Anti-Angiogenic Agents for the Treatment of Solid Tumors: Potential Pathways, Therapy and Current Strategies—A Review. J. Adv. Res. 2017, 8, 591–605. [Google Scholar] [CrossRef]
- Shibuya, M. Vascular Endothelial Growth Factor (VEGF) and Its Receptor (VEGFR) Signaling in Angiogenesis. Genes Cancer 2011, 2, 1097–1105. [Google Scholar] [CrossRef]
- Atzori, M.G.; Tentori, L.; Ruffini, F.; Ceci, C.; Lisi, L.; Bonanno, E.; Scimeca, M.; Lagana, A.; Barca, S.; Caputo, M.; et al. The Anti-Vascular Endothelial Growth Factor Receptor-1 Monoclonal Antibody D16F7 Inhibits Invasiveness of Human Glioblastoma and Glioblastoma Stem Cells. J. Exp. Clin. Cancer Res. 2017, 36, 106. [Google Scholar] [CrossRef]
- Jones, K.A.; Reeves, R.; Gupta, A.; Piao, Y.; Li, S.; Lin, S.-Y.; Hu, Y. Selective Coexpression of VEGF Receptor 2 in EGFRvIII-Positive Glioblastoma Cells Prevents Cellular Senescence and Contributes to Their Aggressive Nature. Neuro Oncol. 2016, 18, 667–678. [Google Scholar] [CrossRef]
- Grau, S.J.; Trillsch, F.; Tonn, J.C.; Goldbrunner, R.H.; Noessner, E. Expression of VEGFR3 in Glioma Endothelium Correlates with Tumor Grade. J. Neurooncol. 2007, 82, 141–150. [Google Scholar] [CrossRef] [PubMed]
- Nakada, S.; Sasagawa, Y.; Tachibana, O.; Iizuka, H.; Kurose, N.; Shioya, A.; Guo, X.; Yamada, S.; Nojima, T. The Clinicopathological Analysis of Receptor Tyrosine Kinases in Meningiomas: The Expression of VEGFR-2 in Meningioma Was Associated with a Higher WHO Grade and Shorter Progression-Free Survival. Brain Tumor Pathol. 2019, 36, 7–13. [Google Scholar] [CrossRef] [PubMed]
- Weller, M.; van den Bent, M.; Preusser, M.; Le Rhun, E.; Tonn, J.C.; Minniti, G.; Bendszus, M.; Balana, C.; Chinot, O.; Dirven, L.; et al. EANO Guidelines on the Diagnosis and Treatment of Diffuse Gliomas of Adulthood. Nat. Rev. Clin. Oncol. 2021, 18, 170–186. [Google Scholar] [CrossRef] [PubMed]
- Nazarenko, I.; Hede, S.-M.; He, X.; Hedrén, A.; Thompson, J.; Lindström, M.S.; Nistér, M. PDGF and PDGF Receptors in Glioma. Upsala J. Med. Sci. 2012, 117, 99–112. [Google Scholar] [CrossRef]
- Guérit, E.; Arts, F.; Dachy, G.; Boulouadnine, B.; Demoulin, J.-B. PDGF Receptor Mutations in Human Diseases. Cell. Mol. Life Sci. 2021, 78, 3867–3881. [Google Scholar] [CrossRef] [PubMed]
- Bian, X.; Yin, S.; Yang, S.; Jiang, X.; Wang, J.; Zhang, M.; Zhang, L. Roles of Platelets in Tumor Invasion and Metastasis: A Review. Heliyon 2022, 8, e12072. [Google Scholar] [CrossRef] [PubMed]
- Joensuu, H.; Puputti, M.; Sihto, H.; Tynninen, O.; Nupponen, N.N. Amplification of Genes Encoding KIT, PDGFRalpha and VEGFR2 Receptor Tyrosine Kinases Is Frequent in Glioblastoma Multiforme. J. Pathol. 2005, 207, 224–231. [Google Scholar] [CrossRef] [PubMed]
- Cantanhede, I.G.; de Oliveira, J.R.M. PDGF Family Expression in Glioblastoma Multiforme: Data Compilation from Ivy Glioblastoma Atlas Project Database. Sci. Rep. 2017, 7, 15271. [Google Scholar] [CrossRef]
- Puputti, M.; Tynninen, O.; Sihto, H.; Blom, T.; Mäenpää, H.; Isola, J.; Paetau, A.; Joensuu, H.; Nupponen, N.N. Amplification of KIT, PDGFRA, VEGFR2, and EGFR in Gliomas. Mol. Cancer Res. 2006, 4, 927–934. [Google Scholar] [CrossRef]
- Verhaak, R.G.W.; Hoadley, K.A.; Purdom, E.; Wang, V.; Qi, Y.; Wilkerson, M.D.; Miller, C.R.; Ding, L.; Golub, T.; Mesirov, J.P.; et al. Integrated Genomic Analysis Identifies Clinically Relevant Subtypes of Glioblastoma Characterized by Abnormalities in PDGFRA, IDH1, EGFR, and NF1. Cancer Cell 2010, 17, 98–110. [Google Scholar] [CrossRef]
- Knobbe, C.B.; Reifenberger, G. Genetic Alterations and Aberrant Expression of Genes Related to the Phosphatidyl-Inositol-3’-Kinase/Protein Kinase B (Akt) Signal Transduction Pathway in Glioblastomas. Brain Pathol. 2003, 13, 507–518. [Google Scholar] [CrossRef]
- Peng, G.; Wang, Y.; Ge, P.; Bailey, C.; Zhang, P.; Zhang, D.; Meng, Z.; Qi, C.; Chen, Q.; Chen, J.; et al. The HIF1α-PDGFD-PDGFRα Axis Controls Glioblastoma Growth at Normoxia/Mild-Hypoxia and Confers Sensitivity to Targeted Therapy by Echinomycin. J. Exp. Clin. Cancer Res. 2021, 40, 278. [Google Scholar] [CrossRef]
- Maher, E.A.; Furnari, F.B.; Bachoo, R.M.; Rowitch, D.H.; Louis, D.N.; Cavenee, W.K.; DePinho, R.A. Malignant Glioma: Genetics and Biology of a Grave Matter. Genes Dev. 2001, 15, 1311–1333. [Google Scholar] [CrossRef] [PubMed]
- Carapancea, M.; Cosaceanu, D.; Budiu, R.; Kwiecinska, A.; Tataranu, L.; Ciubotaru, V.; Alexandru, O.; Banita, M.; Pisoschi, C.; Bäcklund, M.L.; et al. Dual Targeting of IGF-1R and PDGFR Inhibits Proliferation in High-Grade Gliomas Cells and Induces Radiosensitivity in JNK-1 Expressing Cells. J. Neurooncol. 2007, 85, 245–254. [Google Scholar] [CrossRef] [PubMed]
- Carapancea, M.; Alexandru, O.; Fetea, A.S.; Dragutescu, L.; Castro, J.; Georgescu, A.; Popa-Wagner, A.; Bäcklund, M.L.; Lewensohn, R.; Dricu, A. Growth Factor Receptors Signaling in Glioblastoma Cells: Therapeutic Implications. J. Neurooncol. 2009, 92, 137–147. [Google Scholar] [CrossRef] [PubMed]
- Hermanson, M.; Funa, K.; Hartman, M.; Claesson-Welsh, L.; Heldin, C.-H.; Westermark, B.; Nistér, M. Platelet-Derived Growth Factor and Its Receptors in Human Glioma Tissue: Expression of Messenger RNA and Protein Suggests the Presence of Autocrine and Paracrine Loops. Cancer Res. 1992, 52, 3213–3219. [Google Scholar]
- Black, P.M.; Carroll, R.; Glowacka, D.; Riley, K.; Dashner, K. Platelet-Derived Growth Factor Expression and Stimulation in Human Meningiomas. J. Neurosurg. 1994, 81, 388–393. [Google Scholar] [CrossRef]
- Katoh, M. Fibroblast Growth Factor Receptors as Treatment Targets in Clinical Oncology. Nat. Rev. Clin. Oncol. 2019, 16, 105–122. [Google Scholar] [CrossRef] [PubMed]
- Groner, B.; Lucks, P.; Borghouts, C. The Function of Stat3 in Tumor Cells and Their Microenvironment. Semin. Cell Dev. Biol. 2008, 19, 341–350. [Google Scholar] [CrossRef]
- Toyoda, K.; Oishi, H.; Shimizu, K.; Miyamoto, S.; Kuroda, S.; Hida, K. Initial Contact of Glioblastoma Cells with Existing Normal Brain Endothelial Cells Strengthens the Barrier Function via Fibroblast Growth Factor 2 Secretion: A New in Vitro Blood–Brain Barrier Model. Cell. Mol. Neurobiol. 2013, 33, 489–501. [Google Scholar] [CrossRef] [PubMed]
- Stan, A.C.; Nemati, M.N.; Pietsch, T.; Hüll, M.; Graf, R.; Seifert, V. In Vivo Inhibition of Angiogenesis and Growth of the Human U-87 Malignant Glial Tumor by Treatment with an Antibody against Basic Fibroblast Growth Factor. J. Neurosurg. 1995, 82, 1044–1052. [Google Scholar] [CrossRef] [PubMed]
- Lamszus, K.; Lengler, U.; Schmidt, N.O.; Stavrou, D.; Ergün, S.; Westphal, M. Vascular Endothelial Growth Factor, Hepatocyte Growth Factor/Scatter Factor, Basic Fibroblast Growth Factor, and Placenta Growth Factor in Human Meningiomas and Their Relation to Angiogenesis and Malignancy. Neurosurgery 2000, 46, 938–948. [Google Scholar] [CrossRef]
- Dumont, D.J.; Yamaguchi, T.P.; Conlon, R.A.; Rossant, J.; Breitman, M.L. Tek, a Novel Tyrosine Kinase Gene Located on Mouse Chromosome 4, Is Expressed in Endothelial Cells and Their Presumptive Precursors. Oncogene 1992, 7, 1471–1480. [Google Scholar]
- Fukuhara, S.; Sako, K.; Minami, T.; Noda, K.; Kim, H.-R.; Kodama, T.; Shibuya, M.; Takakura, N.; Koh, G.Y.; Mochizuki, N. Differential Function of Tie2 at Cell–Cell Contacts and Cell–Substratum Contacts Regulated by Angiopoietin-1. Nat. Cell Biol. 2008, 10, 513–526. [Google Scholar] [CrossRef]
- Saharinen, P.; Eklund, L.; Pulkki, K.; Bono, P.; Alitalo, K. Angiopoietins Assemble Distinct Tie2 Signalling Complexes in Endothelial Cell–Cell and Cell–Matrix Contacts. Nat. Cell Biol. 2008, 10, 527–537. [Google Scholar] [CrossRef] [PubMed]
- Oike, Y.; Akao, M.; Kubota, Y.; Suda, T. Angiopoietin-like Proteins: Potential New Targets for Metabolic Syndrome Therapy. Trends. Mol. Med. 2005, 11, 473–479. [Google Scholar] [CrossRef] [PubMed]
- Ma, T.; Liu, L.; Wang, Z.; Cai, H.; Hu, W.; Jia, W.; Yuan, Z.; Yuan, J.; Zhong, T. Viral G Protein-Coupled Receptor up-Regulates Angiopoietin-like 4 Promoting Angiogenesis and Vascular Permeability in Kaposi’s Sarcoma. Proc. Natl. Acad. Sci. USA 2010, 107, 14363–14368. [Google Scholar] [CrossRef] [PubMed]
- Brunckhorst, M.K.; Wang, H.; Lu, R.; Yu, Q. Angiopoietin-4 Promotes Glioblastoma Progression by Enhancing Tumor Cell Viability and Angiogenesis. Cancer Res. 2010, 70, 7283–7293. [Google Scholar] [CrossRef] [PubMed]
- Audero, E.; Cascone, I.; Zanon, I.; Previtali, S.C.; Piva, R.; Schiffer, D.; Bussolino, F. Expression of Angiopoietin-1 in Human Glioblastomas Regulates Tumor-Induced Angiogenesis: In Vivo and in Vitro Studies. Arter. Thromb. Vasc. Biol. 2001, 21, 536–541. [Google Scholar] [CrossRef]
- Fukumura, D.; Kloepper, J.; Amoozgar, Z.; Duda, D.G.; Jain, R.K. Enhancing Cancer Immunotherapy Using Antiangiogenics: Opportunities and Challenges. Nat. Rev. Clin. Oncol. 2018, 15, 325–340. [Google Scholar] [CrossRef]
- Ilhan, A.; Gartner, W.; Neziri, D.; Czech, T.; Base, W.; Hörl, W.H.; Wagner, L. Angiogenic Factors in Plasma of Brain Tumour Patients. Anticancer Res. 2009, 29, 731–736. [Google Scholar]
- Rini, B.I.; Escudier, B.; Tomczak, P.; Kaprin, A.; Szczylik, C.; Hutson, T.E.; Michaelson, M.D.; Gorbunova, V.A.; Gore, M.E.; Rusakov, I.G.; et al. Comparative Effectiveness of Axitinib versus Sorafenib in Advanced Renal Cell Carcinoma (AXIS): A Randomised Phase 3 Trial. Lancet 2011, 378, 1931–1939. [Google Scholar] [CrossRef]
- Tiako, M.J.; Lebrun-Vignes, B.; Martin, M.; Zohar, S.; Salem, J.-E. A Profile of Avelumab plus Axitinib in the Treatment of Renal Cell Carcinoma. Ther. Clin. Risk Manag. 2022, 18, 683–698. [Google Scholar] [CrossRef]
- Kania, R.S. Structure-Based Design and Characterization of Axitinib. In Kinase Inhibitor Drugs; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2009; pp. 167–201. [Google Scholar]
- Escudier, B.; Porta, C.; Schmidinger, M.; Rioux-Leclercq, N.; Bex, A.; Khoo, V.; Grünwald, V.; Gillessen, S.; Horwich, A.; ESMO Guidelines Committee. Renal Cell Carcinoma: ESMO Clinical Practice Guidelines for Diagnosis, Treatment and Follow-Up. Ann. Oncol. 2019, 30, 706–720. [Google Scholar] [CrossRef]
- Chen, Y.; Tortorici, M.A.; Garrett, M.; Hee, B.; Fujiwara, Y.; Mulay, M. Clinical Pharmacology of Axitinib. Clin. Pharmacokinet. 2013, 52, 713–725. [Google Scholar] [CrossRef] [PubMed]
- Pfizer Inc. INLYTA® (Axitinib) Tablets for Oral. Administration. Available online: https://www.accessdata.fda.gov/drugsatfda_docs/label/2012/202324lbl.pdf (accessed on 2 December 2024).
- Cohen, E.E.W.; Rosen, L.S.; Vokes, E.E.; Kies, M.S.; Forastiere, A.A.; Worden, F.P.; Kane, M.A.; Sherman, S.I.; Kim, S.-J.; Bycott, P.W.; et al. Axitinib Is an Active Treatment for All Histologic Subtypes of Advanced Thyroid Cancer: Results from a Phase II Study. J. Clin. Oncol. 2008, 26, 4708–4713. [Google Scholar] [CrossRef]
- Paik, E.S.; Kim, T.-H.; Cho, Y.J.; Ryu, J.; Choi, J.-J.; Lee, Y.-Y.; Kim, T.-J.; Choi, C.-H.; Kim, W.Y.; Sa, J.K.; et al. Preclinical Assessment of the VEGFR Inhibitor Axitinib as a Therapeutic Agent for Epithelial Ovarian Cancer. Sci. Rep. 2020, 10, 4904. [Google Scholar] [CrossRef] [PubMed]
- Hui, E.P.; Ma, B.B.Y.; Loong, H.H.F.; Mo, F.; Li, L.; King, A.D.; Wang, K.; Ahuja, A.T.; Chan, C.M.L.; Hui, C.W.C.; et al. Efficacy, Safety, and Pharmacokinetics of Axitinib in Nasopharyngeal Carcinoma: A Preclinical and Phase II Correlative Study. Clin. Cancer Res. 2018, 24, 1030–1037. [Google Scholar] [CrossRef] [PubMed]
- Lin, Z.-Z.; Lin, C.-H.; Wang, Y.-J.; Chao, Y.; Chiou, J.-Y.; Yen, C.-J.; Lee, K.-D.; Wang, C.-K.; Chang, J.W.C.; Huang, C.-T. A Multicenter Phase II Study of Second-Line Axitinib for Patients with Advanced Hepatocellular Carcinoma Failing First-Line Sorafenib Monotherapy. Oncologist 2020, 25, e1280–e1285. [Google Scholar] [CrossRef]
- Schiller, J.H.; Larson, T.; Ou, S.-H.I.; Golshan, F.; Mandrekar, S.J.; Carbone, D.P.; Li, S.; Bair, A.H.; Knost, J.A. Efficacy and Safety of Axitinib in Patients with Advanced Non–Small-Cell Lung Cancer: Results from a Phase II Study. J. Clin. Oncol. 2009, 27, 3836–3841. [Google Scholar] [CrossRef] [PubMed]
- Fruehauf, J.P.; Lutzky, J.; McDermott, D.F.; Brown, C.K.; Meric, J.B.; Rosbrook, B.; Wang, J.; Kiedrowski, T.; Gulyas, S.; Sandor, V. Multicenter, Phase II Study of Axitinib, a Selective Second-Generation Inhibitor of Vascular Endothelial Growth Factor Receptors 1, 2, and 3, in Patients with Metastatic Melanoma. Clin. Cancer Res. 2011, 17, 7462–7469. [Google Scholar] [CrossRef]
- Wilmes, L.J.; Pallavicini, M.G.; Fleming, L.M.; Gibbs, J.; Wang, D.; Li, K.-L.; Partridge, S.C.; Henry, R.G.; Shalinsky, D.R.; Hu-Lowe, D.; et al. AG-013736, a Novel Inhibitor of VEGF Receptor Tyrosine Kinases, Inhibits Breast Cancer Growth and Decreases Vascular Permeability as Detected by Dynamic Contrast-Enhanced Magnetic Resonance Imaging. Magn. Reson. Imaging 2007, 25, 319–327. [Google Scholar] [CrossRef] [PubMed]
- Grávalos, C.; Carrato, A.; Tobeña, M.; Rodriguez-Garrote, M.; Soler, G.; Vieitez, J.M.; Robles, L.; Valladares-Ayerbes, M.; Polo, E.; Limón, M.L.; et al. A Randomized Phase II Study of Axitinib as Maintenance Therapy After First-Line Treatment for Metastatic Colorectal Cancer. Clin. Color. Cancer 2018, 17, e323–e329. [Google Scholar] [CrossRef] [PubMed]
- Lu, L.; Saha, D.; Martuza, R.L.; Rabkin, S.D.; Wakimoto, H. Single Agent Efficacy of the VEGFR Kinase Inhibitor Axitinib in Preclinical Models of Glioblastoma. J. Neurooncol. 2015, 121, 91–100. [Google Scholar] [CrossRef]
- Morelli, M.B.; Amantini, C.; Nabissi, M.; Cardinali, C.; Santoni, M.; Bernardini, G.; Santoni, A.; Santoni, G. Axitinib Induces Senescence-Associated Cell Death and Necrosis in Glioma Cell Lines. Oncotarget 2017, 8, 2632–2643. [Google Scholar] [CrossRef]
- Krcek, R.; Matschke, V.; Theis, V.; Adamietz, I.A.; Bühler, H.; Theiss, C. Vascular Endothelial Growth Factor, Irradiation, and Axitinib Have Diverse Effects on Motility and Proliferation of Glioblastoma Multiforme Cells. Front. Oncol. 2017, 7, 182. [Google Scholar] [CrossRef]
- Opriţa, A.; Dobrescu, M.A.; Manea, E.V.; Popescu, Ş.O.; Sevastre, A.S.; Pîrvu, A.S.; Buzatu, I.M.; Tache, D.E. In Vitro Evaluation of Axitinib and Sorafenib Treatment in Glioblastoma Cell Viability and Morphology. Rom. J. Morphol. Embryol. 2023, 64, 173–180. [Google Scholar] [CrossRef] [PubMed]
- Saha, D.; Wakimoto, H.; Peters, C.W.; Antoszczyk, S.J.; Rabkin, S.D.; Martuza, R.L. Combinatorial Effects of VEGFR Kinase Inhibitor Axitinib and Oncolytic Virotherapy in Mouse and Human Glioblastoma Stem-Like Cell Models. Clin. Cancer Res. 2018, 24, 3409–3422. [Google Scholar] [CrossRef]
- Schwinn, S.; Mokhtari, Z.; Thusek, S.; Schneider, T.; Sirén, A.-L.; Tiemeyer, N.; Caruana, I.; Miele, E.; Schlegel, P.G.; Beilhack, A.; et al. Cytotoxic Effects and Tolerability of Gemcitabine and Axitinib in a Xenograft Model for C-Myc Amplified Medulloblastoma. Sci. Rep. 2021, 11, 14062. [Google Scholar] [CrossRef] [PubMed]
- Walter, J.; Freitag, D.; Grube, S.; Dunisch, P.; Kalff, R.; Ewald, C. Multi Tyrosin Kinase Inihibition by Axitinib in the Treatment of Human Meningiomas. In Proceedings of the Deutsche Gesellschaft für Neurochirurgie; German Medical Science GMS Publishing House, Düsseldorf, Germany, 26–29 May 2013. [Google Scholar]
- Bayer NEXAVAR (Sorafenib) Tablets, for Oral Use. Available online: https://www.accessdata.fda.gov/drugsatfda_docs/label/2018/021923s020lbl.pdf (accessed on 2 December 2024).
- Roberts, P.J.; Der, C.J. Targeting the Raf-MEK-ERK Mitogen-Activated Protein Kinase Cascade for the Treatment of Cancer. Oncogene 2007, 26, 3291–3310. [Google Scholar] [CrossRef]
- Wilhelm, S.M.; Carter, C.; Tang, L.; Wilkie, D.; McNabola, A.; Rong, H.; Chen, C.-M.; Zhang, X.; Vincent, P.; McHugh, M. BAY 43-9006 Exhibits Broad Spectrum Oral Antitumor Activity and Targets the Raf/MEK/ERK Pathway and Receptor Tyrosine Kinases Involved in Tumor Progression and Angiogenesis. Cancer Res. 2004, 64, 7099–7109. [Google Scholar] [CrossRef]
- Liu, L.; Cao, Y.; Chen, C.; Zhang, X.; McNabola, A.; Wilkie, D.; Wilhelm, S.; Lynch, M.; Carter, C. Sorafenib Blocks the RAF/MEK/ERK Pathway, Inhibits Tumor Angiogenesis, and Induces Tumor Cell Apoptosis in Hepatocellular Carcinoma Model PLC/PRF/5. Cancer Res. 2006, 66, 11851–11858. [Google Scholar] [CrossRef] [PubMed]
- Awada, A.; Hendlisz, A.; Gil, T.; Bartholomeus, S.; Mano, M.; de Valeriola, D.; Strumberg, D.; Brendel, E.; Haase, C.G.; Schwartz, B.; et al. Phase I Safety and Pharmacokinetics of BAY 43-9006 Administered for 21 Days on/7 Days off in Patients with Advanced, Refractory Solid Tumours. Br. J. Cancer 2005, 92, 1855–1861. [Google Scholar] [CrossRef]
- Yu, C.; Friday, B.B.; Lai, J.-P.; Yang, L.; Sarkaria, J.; Kay, N.E.; Carter, C.A.; Roberts, L.R.; Kaufmann, S.H.; Adjei, A.A. Cytotoxic Synergy between the Multikinase Inhibitor Sorafenib and the Proteasome Inhibitor Bortezomib in Vitro: Induction of Apoptosis through Akt and c-Jun NH2-Terminal Kinase Pathways. Mol. Cancer Ther. 2006, 5, 2378–2387. [Google Scholar] [CrossRef] [PubMed]
- Siegelin, M.D.; Raskett, C.M.; Gilbert, C.A.; Ross, A.H.; Altieri, D.C. Sorafenib Exerts Anti-Glioma Activity in Vitro and in Vivo. Neurosci. Lett. 2010, 478, 165–170. [Google Scholar] [CrossRef]
- Yang, F.; Brown, C.; Buettner, R.; Hedvat, M.; Starr, R.; Scuto, A.; Schroeder, A.; Jensen, M.; Jove, R. Sorafenib Induces Growth Arrest and Apoptosis of Human Glioblastoma Cells through the Dephosphorylation of Signal Transducers and Activators of Transcription 3. Mol. Cancer Ther. 2010, 9, 953–962. [Google Scholar] [CrossRef] [PubMed]
- Carra, E.; Barbieri, F.; Marubbi, D.; Pattarozzi, A.; Favoni, R.E.; Florio, T.; Daga, A. Sorafenib Selectively Depletes Human Glioblastoma Tumor-Initiating Cells from Primary Cultures. Cell Cycle 2013, 12, 491–500. [Google Scholar] [CrossRef]
- Riedel, M.; Struve, N.; Müller-Goebel, J.; Köcher, S.; Petersen, C.; Dikomey, E.; Rothkamm, K.; Kriegs, M. Sorafenib Inhibits Cell Growth but Fails to Enhance Radio- and Chemosensitivity of Glioblastoma Cell Lines. Oncotarget 2016, 7, 61988–61995. [Google Scholar] [CrossRef]
- Wilisch-Neumann, A.; Pachow, D.; Kirches, E.; Mawrin, C. MS-29: Sorafenib and regorafenib inhibit growth and migration of meningioma cells. Neuro Oncol. 2014, 16, v132. [Google Scholar] [CrossRef]
- Matsui, J.; Funahashi, Y.; Uenaka, T.; Watanabe, T.; Tsuruoka, A.; Asada, M. Multi-Kinase Inhibitor E7080 Suppresses Lymph Node and Lung Metastases of Human Mammary Breast Tumor MDA-MB-231 via Inhibition of Vascular Endothelial Growth Factor Receptor (VEGF-R) 2 and VEGF-R3 Kinase. Clin. Cancer Res. 2008, 14, 5459–5465. [Google Scholar] [CrossRef]
- Glen, H.; Mason, S.; Patel, H.; Nathubhai, A.; Muralikrishnan, S.; Pillai, M. E7080, a Multi-Targeted Tyrosine Kinase Inhibitor Suppresses Tumor Cell Migration and Invasion. BMC Cancer 2011, 11, 309. [Google Scholar] [CrossRef] [PubMed]
- Shumaker, R.; Aluri, J.; Fan, J.; Martinez, G.; Pentikis, H.; Ren, M. Influence of Hepatic Impairment on Lenvatinib Pharmacokinetics Following Single-Dose Oral Administration. J. Clin. Pharmacol. 2015, 55, 317–327. [Google Scholar] [CrossRef]
- Dubbelman, A.-C.; Rosing, H.; Nijenhuis, C.; Huitema, A.D.R.; Mergui-Roelvink, M.; Gupta, A.; Verbel, D.; Thompson, G.; Shumaker, R.; Schellens, J.H.M.; et al. Pharmacokinetics and Excretion of (14)C-Lenvatinib in Patients with Advanced Solid Tumors or Lymphomas. Investig. New Drugs 2015, 33, 233–240. [Google Scholar] [CrossRef] [PubMed]
- Matsui, J.; Yamamoto, Y.; Funahashi, Y.; Tsuruoka, A.; Watanabe, T.; Wakabayashi, T.; Uenaka, T.; Asada, M. E7080, a Novel Inhibitor That Targets Multiple Kinases, Has Potent Antitumor Activities against Stem Cell Factor Producing Human Small Cell Lung Cancer H146, Based on Angiogenesis Inhibition. Int. J. Cancer 2008, 122, 664–671. [Google Scholar] [CrossRef]
- Ikuta, K.; Yano, S.; Trung, V.T.; Hanibuchi, M.; Goto, H.; Li, Q.; Wang, W.; Yamada, T.; Ogino, H.; Kakiuchi, S.; et al. E7080, a Multi-Tyrosine Kinase Inhibitor, Suppresses the Progression of Malignant Pleural Mesothelioma with Different Proangiogenic Cytokine Production Profiles. Clin. Cancer Res. 2009, 15, 7229–7237. [Google Scholar] [CrossRef]
- Li, J.; Zou, C.-L.; Zhang, Z.-M.; Lv, L.-J.; Qiao, H.-B.; Chen, X.-J. A Multi-targeted Tyrosine Kinase Inhibitor Lenvatinib for the Treatment of Mice with Advanced Glioblastoma. Mol. Med. Rep. 2017, 16, 7105–7111. [Google Scholar] [CrossRef] [PubMed]
- US Food and Drug Administration, Center for Drug Evaluation and Research (CDER). Pazopanib Clinical Pharmacology and Biopharmaceutics Review. Available online: http://www.accessdata.fda.gov/drugsatfda_docs/nda/2009/022465s000_ClinPharmR.pdf (accessed on 2 December 2024).
- Novartis VOTRIENT® (Pazopanib) Tablets, for Oral Use. Available online: https://www.novartis.com/us-en/sites/novartis_us/files/votrient.pdf (accessed on 2 December 2024).
- Imbs, D.-C.; Paludetto, M.-N.; Négrier, S.; Powell, H.; Lafont, T.; White-Koning, M.; Chatelut, E.; Thomas, F. Determination of Unbound Fraction of Pazopanib in Vitro and in Cancer Patients Reveals Albumin as the Main Binding Site. Investig. New Drugs 2016, 34, 41–48. [Google Scholar] [CrossRef]
- European Medicines Agency Votrient® (Pazopanib): Summary of Product Characteristics. Available online: https://www.ema.europa.eu/en/documents/product-information/votrient-epar-product-information_en.pdf (accessed on 29 April 2012).
- Deng, Y.; Sychterz, C.; Suttle, A.B.; Dar, M.M.; Bershas, D.; Negash, K.; Qian, Y.; Chen, E.P.; Gorycki, P.D.; Ho, M.Y.K. Bioavailability, Metabolism and Disposition of Oral Pazopanib in Patients with Advanced Cancer. Xenobiotica 2013, 43, 443–453. [Google Scholar] [CrossRef]
- Kumar, R.; Knick, V.B.; Rudolph, S.K.; Johnson, J.H.; Crosby, R.M.; Crouthamel, M.-C.; Hopper, T.M.; Miller, C.G.; Harrington, L.E.; Onori, J.A.; et al. Pharmacokinetic-Pharmacodynamic Correlation from Mouse to Human with Pazopanib, a Multikinase Angiogenesis Inhibitor with Potent Antitumor and Antiangiogenic Activity. Mol. Cancer Ther. 2007, 6, 2012–2021. [Google Scholar] [CrossRef]
- Pfizer Inc. SUTENT- Sunitinib Malate Capsule. Available online: https://labeling.pfizer.com/ShowLabeling.aspx?id=607 (accessed on 6 January 2025).
- Kassem, M.G.; Motiur Rahman, A.F.M.; Korashy, H.M. Sunitinib Malate. Profiles Drug Subst. Excip. Relat. Methodol. 2012, 37, 363–388. [Google Scholar] [CrossRef] [PubMed]
- De Boüard, S.; Herlin, P.; Christensen, J.G.; Lemoisson, E.; Gauduchon, P.; Raymond, E.; Guillamo, J.S. Antiangiogenic and Anti-Invasive Effects of Sunitinib on Experimental Human Glioblastoma. Neuro Oncol. 2007, 9, 412–423. [Google Scholar] [CrossRef] [PubMed]
- D’Amico, R.; Lei, L.; Kennedy, B.C.; Sisti, J.; Ebiana, V.; Crisman, C.; Christensen, J.G.; Gil, O.; Rosenfeld, S.S.; Canoll, P.; et al. The Addition of Sunitinib to Radiation Delays Tumor Growth in a Murine Model of Glioblastoma. Neurol. Res. 2012, 34, 252–261. [Google Scholar] [CrossRef] [PubMed]
- Gravina, G.L.; Mancini, A.; Marampon, F.; Colapietro, A.; Delle Monache, S.; Sferra, R.; Vitale, F.; Richardson, P.J.; Patient, L.; Burbidge, S.; et al. The Brain-Penetrating CXCR4 Antagonist, PRX177561, Increases the Antitumor Effects of Bevacizumab and Sunitinib in Preclinical Models of Human Glioblastoma. J. Hematol. Oncol. 2017, 10, 5. [Google Scholar] [CrossRef] [PubMed]
- Dabkeviciute, G.; Maccioni, E.; Petrikaite, V. Effect of Sunitinib Derivatives on Glioblastoma Single-Cell Migration and 3D Cell Cultures. Am. J. Cancer Res. 2023, 13, 1377–1386. [Google Scholar] [PubMed]
- Ho, K.H.; Lee, Y.T.; Chen, P.H.; Shih, C.M.; Cheng, C.H.; Chen, K.C. Guanabenz Sensitizes Glioblastoma Cells to Sunitinib by Inhibiting GADD34-Mediated Autophagic Signaling. Neurotherapeutics 2021, 18, 1371–1392. [Google Scholar] [CrossRef] [PubMed]
- Andrae, N.; Kirches, E.; Hartig, R.; Haase, D.; Keilhoff, G.; Kalinski, T.; Mawrin, C. Sunitinib Targets PDGF-Receptor and Flt3 and Reduces Survival and Migration of Human Meningioma Cells. Eur. J. Cancer 2012, 48, 1831–1841. [Google Scholar] [CrossRef] [PubMed]
- Ferguson, M.J.; Rhodes, S.D.; Jiang, L.; Li, X.; Yuan, J.; Yang, X.; Zhang, S.; Vakili, S.T.; Territo, P.; Hutchins, G.; et al. Preclinical Evidence for the Use of Sunitinib Malate in the Treatment of Plexiform Neurofibromas. Pediatr. Blood Cancer 2016, 63, 206–213. [Google Scholar] [CrossRef]
- Lacy, S.A.; Miles, D.R.; Nguyen, L.T. Clinical Pharmacokinetics and Pharmacodynamics of Cabozantinib. Clin. Pharmacokinet. 2017, 56, 477–491. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, L.; Holland, J.; Ramies, D.; Mamelok, R.; Benrimoh, N.; Ciric, S.; Marbury, T.; Preston, R.A.; Heuman, D.M.; Gavis, E.; et al. Effect of Renal and Hepatic Impairment on the Pharmacokinetics of Cabozantinib. J. Clin. Pharmacol. 2016, 56, 1130–1140. [Google Scholar] [CrossRef] [PubMed]
- Yakes, F.M.; Chen, J.; Tan, J.; Yamaguchi, K.; Shi, Y.; Yu, P.; Qian, F.; Chu, F.; Bentzien, F.; Cancilla, B.; et al. Cabozantinib (XL184), a Novel MET and VEGFR2 Inhibitor, Simultaneously Suppresses Metastasis, Angiogenesis, and Tumor Growth. Mol. Cancer Ther. 2011, 10, 2298–2308. [Google Scholar] [CrossRef] [PubMed]
- Bentzien, F.; Zuzow, M.; Heald, N.; Gibson, A.; Shi, Y.; Goon, L.; Yu, P.; Engst, S.; Zhang, W.; Huang, D.; et al. In Vitro and in Vivo Activity of Cabozantinib (XL184), an Inhibitor of RET, MET, and VEGFR2, in a Model of Medullary Thyroid Cancer. Thyroid 2013, 23, 1569–1577. [Google Scholar] [CrossRef] [PubMed]
- Patnaik, A.; Swanson, K.D.; Csizmadia, E.; Solanki, A.; Landon-Brace, N.; Gehring, M.P.; Helenius, K.; Olson, B.M.; Pyzer, A.R.; Wang, L.C.; et al. Cabozantinib Eradicates Advanced Murine Prostate Cancer by Activating Antitumor Innate Immunity. Cancer Discov. 2017, 7, 750–765. [Google Scholar] [CrossRef] [PubMed]
- Fioramonti, M.; Fausti, V.; Pantano, F.; Iuliani, M.; Ribelli, G.; Lotti, F.; Pignochino, Y.; Grignani, G.; Santini, D.; Tonini, G.; et al. Cabozantinib Affects Osteosarcoma Growth Through A Direct Effect On Tumor Cells and Modifications In Bone Microenvironment. Sci. Rep. 2018, 8, 4177. [Google Scholar] [CrossRef]
- Fuse, M.A.; Plati, S.K.; Burns, S.S.; Dinh, C.T.; Bracho, O.; Yan, D.; Mittal, R.; Shen, R.; Soulakova, J.N.; Copik, A.J.; et al. Combination Therapy with C-Met and Src Inhibitors Induces Caspase-Dependent Apoptosis of Merlin-Deficient Schwann Cells and Suppresses Growth of Schwannoma Cells. Mol. Cancer Ther. 2017, 16, 2387–2398. [Google Scholar] [CrossRef] [PubMed]
- Gebreyohannes, Y.K.; Schöffski, P.; Van Looy, T.; Wellens, J.; Vreys, L.; Cornillie, J.; Vanleeuw, U.; Aftab, D.T.; Debiec-Rychter, M.; Sciot, R.; et al. Cabozantinib Is Active against Human Gastrointestinal Stromal Tumor Xenografts Carrying Different KIT Mutations. Mol. Cancer Ther. 2016, 15, 2845–2852. [Google Scholar] [CrossRef]
- Hage, C.; Rausch, V.; Giese, N.; Giese, T.; Schönsiegel, F.; Labsch, S.; Nwaeburu, C.; Mattern, J.; Gladkich, J.; Herr, I. The Novel C-Met Inhibitor Cabozantinib Overcomes Gemcitabine Resistance and Stem Cell Signaling in Pancreatic Cancer. Cell Death Dis. 2013, 4, e627. [Google Scholar] [CrossRef]
- Navis, A.C.; Bourgonje, A.; Wesseling, P.; Wright, A.; Hendriks, W.; Verrijp, K.; van der Laak, J.A.W.M.; Heerschap, A.; Leenders, W.P.J. Effects of Dual Targeting of Tumor Cells and Stroma in Human Glioblastoma Xenografts with a Tyrosine Kinase Inhibitor against C-MET and VEGFR2. PLoS ONE 2013, 8, e58262. [Google Scholar] [CrossRef] [PubMed]
- Kotecha, R.; Tonse, R.; Appel, H.; Odia, Y.; Kotecha, R.R.; Rabinowits, G.; Mehta, M.P. Regression of Intracranial Meningiomas Following Treatment with Cabozantinib. Curr. Oncol. 2021, 28, 1537–1543. [Google Scholar] [CrossRef] [PubMed]
- Apoverlag MeinAPOVERLAG—Austria-Codex Online. Available online: https://mein.apoverlag.at/austriacodex (accessed on 6 January 2025).
- Hilberg, F.; Roth, G.J.; Krssak, M.; Kautschitsch, S.; Sommergruber, W.; Tontsch-Grunt, U.; Garin-Chesa, P.; Bader, G.; Zoephel, A.; Quant, J.; et al. BIBF 1120: Triple Angiokinase Inhibitor with Sustained Receptor Blockade and Good Antitumor Efficacy. Cancer Res. 2008, 68, 4774–4782. [Google Scholar] [CrossRef]
- Gabasa, M.; Ikemori, R.; Hilberg, F.; Reguart, N.; Alcaraz, J. Nintedanib Selectively Inhibits the Activation and Tumour-Promoting Effects of Fibroblasts from Lung Adenocarcinoma Patients. Br. J. Cancer 2017, 117, 1128–1138. [Google Scholar] [CrossRef] [PubMed]
- Shimizu, T.; Sagara, A.; Fukuchi, Y.; Muto, A. Single-agent Nintedanib Suppresses Metastatic Osteosarcoma Growth by Inhibiting Tumor Vascular Formation. Oncol. Lett. 2024, 27, 123. [Google Scholar] [CrossRef]
- Da Silva, R.F.; Nogueira-Pangrazi, E.; Kido, L.A.; Montico, F.; Arana, S.; Kumar, D.; Raina, K.; Agarwal, R.; Cagnon, V.H.A. Nintedanib Antiangiogenic Inhibitor Effectiveness in Delaying Adenocarcinoma Progression in Transgenic Adenocarcinoma of the Mouse Prostate (TRAMP). J. Biomed. Sci. 2017, 24, 31. [Google Scholar] [CrossRef]
- Török, S.; Cserepes, T.M.; Rényi-Vámos, F.; Döme, B. Nintedanib (BIBF 1120) in the Treatment of Solid Cancers: An Overview of Biological and Clinical Aspects. Magy Onkol. 2012, 56, 199–208. [Google Scholar] [PubMed]
- Dang, Y.; Zhao, Z.; Wang, B.; Du, A.; Li, S.; Yuan, G.; Pan, Y. Polymeric Polylactic Acid-Glycolic Acid-Based Nanoparticles Deliver Nintedanib Across the Blood-Brain Barrier to Inhibit Glioblastoma Growth. Int. J. Mol. Sci. 2025, 26, 443. [Google Scholar] [CrossRef] [PubMed]
- Food and Drug Administration, Stivarga® (Regorafenib) [Prescribing Information. 2015]. Available online: https://www.accessdata.fda.gov/drugsatfda_docs/label/2015/203085s004lbl.pdf (accessed on 27 April 2017).
- Parsad, S.; Ratain, M.J. Food Effect Studies for Oncology Drug Products. Clin. Pharmacol. Ther. 2017, 101, 606–612. [Google Scholar] [CrossRef]
- Keunecke, A.; Hoefman, S.; Drenth, H.J.; Zisowsky, J.; Cleton, A.; Ploeger, B.A. Population Pharmacokinetics of Regorafenib in Solid Tumours: Exposure in Clinical Practice Considering Enterohepatic Circulation and Food Intake. Br. J. Clin. Pharmacol. 2020, 86, 2362–2376. [Google Scholar] [CrossRef]
- Subramonian, D.; Phanhthilath, N.; Rinehardt, H.; Flynn, S.; Huo, Y.; Zhang, J.; Messer, K.; Mo, Q.; Huang, S.; Lesperance, J.; et al. Regorafenib Is Effective against Neuroblastoma in Vitro and in Vivo and Inhibits the RAS/MAPK, PI3K/Akt/MTOR and Fos/Jun Pathways. Br. J. Cancer 2020, 123, 568–579. [Google Scholar] [CrossRef] [PubMed]
- Hu, X.; Wu, L.W.; Zhang, Z.Y.; Chen, M.L.; Li, Y.L.; Zhang, C. The Anti-Tumor Effect of Regorafenib in Lung Squamous Cell Carcinoma in Vitro. Biochem. Biophys. Res. Commun. 2018, 503, 1123–1129. [Google Scholar] [CrossRef]
- Munoz Garcia, J.; Vargas-Franco, J.W.; Bompas, E.; Cochonneau, D.; Ollivier, E.; Kerzerho, J.; Brahmi, M.; Blay, J.-Y.; Heymann, M.-F.; Lezot, F.; et al. Effect of Dual Properties of Regorafenib in Osteosarcoma on Tumor Progression and Bone Parameters in Mouse Preclinical Models. J. Clin. Oncol. 2023, 41, e23501. [Google Scholar] [CrossRef]
- Wilhelm, S.M.; Dumas, J.; Adnane, L.; Lynch, M.; Carter, C.A.; Schütz, G.; Thierauch, K.H.; Zopf, D. Regorafenib (BAY 73-4506): A New Oral Multikinase Inhibitor of Angiogenic, Stromal and Oncogenic Receptor Tyrosine Kinases with Potent Preclinical Antitumor Activity. Int. J. Cancer 2011, 129, 245–255. [Google Scholar] [CrossRef]
- Deshors, P.; Arnauduc, F.; Boëlle, B.; Cohen-Jonathan Moyal, E.; Courtade-Saïdi, M.; Evrard, S.M. Impact of Regorafenib on Endothelial Transdifferentiation of Glioblastoma Stem-like Cells. Cancers 2022, 14, 1551. [Google Scholar] [CrossRef]
- Mongiardi, M.P.; Buccarelli, M.; Formato, A.; Orecchini, E.; Salbini, M.; Ricci, V.; Orsini, T.; Putti, S.; Chiesa, S.; Ricci-Vitiani, L.; et al. Characterization of Glioblastoma Cells Response to Regorafenib. Cancers 2022, 14, 6193. [Google Scholar] [CrossRef]
- Jiang, J.; Zhang, L.; Chen, H.; Lei, Y.; Zhang, T.; Wang, Y.; Jin, P.; Lan, J.; Zhou, L.; Huang, Z.; et al. Regorafenib Induces Lethal Autophagy Arrest by Stabilizing PSAT1 in Glioblastoma. Autophagy 2020, 16, 106–122. [Google Scholar] [CrossRef] [PubMed]
- Chiang, I.T.; Liu, Y.C.; Liu, H.S.; Ali, A.A.A.; Chou, S.Y.; Hsu, T.I.; Hsu, F.T. Regorafenib Reverses Temozolomide-Induced CXCL12/CXCR4 Signaling and Triggers Apoptosis Mechanism in Glioblastoma. Neurotherapeutics 2022, 19, 616–634. [Google Scholar] [CrossRef] [PubMed]
- Tuchen, M.; Wilisch-Neumann, A.; Daniel, E.A.; Baldauf, L.; Pachow, D.; Scholz, J.; Angenstein, F.; Stork, O.; Kirches, E.; Mawrin, C. Receptor Tyrosine Kinase Inhibition by Regorafenib/Sorafenib Inhibits Growth and Invasion of Meningioma Cells. Eur. J. Cancer 2017, 73, 9–21. [Google Scholar] [CrossRef] [PubMed]
- Stewart, M.W. Aflibercept (VEGF-TRAP): The next Anti-VEGF Drug. Inflamm. Allergy Drug Targets 2011, 10, 497–508. [Google Scholar] [CrossRef] [PubMed]
- Stewart, M.W. Extended Duration Vascular Endothelial Growth Factor Inhibition in the Eye: Failures, Successes, and Future Possibilities. Pharmaceutics 2018, 10, 21. [Google Scholar] [CrossRef]
- Kim, D.Y.; Choi, J.A.; Koh, J.Y.; Yoon, Y.H. Efficacy and Safety of Aflibercept in in Vitro and in Vivo Models of Retinoblastoma. J. Exp. Clin. Cancer Res. 2016, 35, 171. [Google Scholar] [CrossRef]
- Chiron, M.; Bagley, R.G.; Pollard, J.; Mankoo, P.K.; Henry, C.; Vincent, L.; Geslin, C.; Baltes, N.; Bergstrom, D.A. Differential Antitumor Activity of Aflibercept and Bevacizumab in Patient-Derived Xenograft Models of Colorectal Cancer. Mol. Cancer Ther. 2014, 13, 1636–1644. [Google Scholar] [CrossRef] [PubMed]
- Wachsberger, P.R.; Burd, R.; Cardi, C.; Thakur, M.; Daskalakis, C.; Holash, J.; Yancopoulos, G.D.; Dicker, A.P. VEGF Trap in Combination with Radiotherapy Improves Tumor Control in U87 Glioblastoma. Int. J. Radiat. Oncol. Biol. Phys. 2007, 67, 1526–1537. [Google Scholar] [CrossRef] [PubMed]
- Gomez-Manzano, C.; Holash, J.; Fueyo, J.; Xu, J.; Conrad, C.A.; Aldape, K.D.; De Groot, J.F.; Ekele, B.N.; Yung, W.K.A. VEGF Trap Induces Antiglioma Effect at Different Stages of Disease. Neuro Oncol. 2008, 10, 940–945. [Google Scholar] [CrossRef] [PubMed]
- Eli Lilly and Company Prescribing Information for CYRAMZA (Ramucirumab) Injection, for Intravenous UseInitial U.S. Approval: 2014. Available online: https://uspl.lilly.com/cyramza/cyramza.html#pi (accessed on 6 January 2025).
- Spratlin, J.L.; Cohen, R.B.; Eadens, M.; Gore, L.; Camidge, D.R.; Diab, S.; Leong, S.; O’Bryant, C.; Chow, L.Q.M.; Serkova, N.J.; et al. Phase I Pharmacologic and Biologic Study of Ramucirumab (IMC-1121B), a Fully Human Immunoglobulin G1 Monoclonal Antibody Targeting the Vascular Endothelial Growth Factor Receptor-2. J. Clin. Oncol. 2010, 28, 780–787. [Google Scholar] [CrossRef]
- Refolo, M.G.; Lotesoriere, C.; Lolli, I.R.; Messa, C.; D’Alessandro, R. Molecular Mechanisms of Synergistic Action of Ramucirumab and Paclitaxel in Gastric Cancers Cell Lines. Sci. Rep. 2020, 10, 7162. [Google Scholar] [CrossRef] [PubMed]
- Rini, B.I.; Schiller, J.H.; Fruehauf, J.P.; Cohen, E.E.W.; Tarazi, J.; Rosbrook, B.; Kim, S.J.; Bair, A.H.; Macek, J.; Wood, J. Diastolic Blood Pressure as a Biomarker of Axitinib Efficacy in Solid Tumors. Clin. Cancer Res. 2011, 17, 3841–3849. [Google Scholar] [CrossRef] [PubMed]
- Rixe, O.; Bukowski, R.M.; Michaelson, M.D.; Wilding, G.; Hudes, G.R.; Bolte, O.; Motzer, R.J. Axitinib Treatment in Patients with Cytokine-Refractory Metastatic Renal-Cell Cancer: A Phase II Study. Lancet Oncol. 2007, 8, 975–984. [Google Scholar] [CrossRef] [PubMed]
- Dutcher, J.P.; Hutson, T.E.; Michaelson, M.D.; Rixe, O.; Kaelin, W.G.; Stein, M.N.; Law, C.; Ho, P.T.; Wu, B.; Motzer, R.J. Sequential Axitinib (AG-013736) Therapy of Patients with Metastatic Clear Cell Renal Cell Cancer (RCC) Refractory to Sunitinib and Sorafenib, Cytokines and Sorafenib, or Sorafenib Alone. J. Clin. Oncol. 2008, 26, 5127. [Google Scholar] [CrossRef]
- Duerinck, J.; Du Four, S.; Bouttens, F.; Andre, C.; Verschaeve, V.; Van Fraeyenhove, F.; Chaskis, C.; D’Haene, N.; Le Mercier, M.; Rogiers, A.; et al. Randomized Phase II Trial Comparing Axitinib with the Combination of Axitinib and Lomustine in Patients with Recurrent Glioblastoma. J. Neurooncol. 2018, 136, 115–125. [Google Scholar] [CrossRef]
- Awada, G.; Ben Salama, L.; De Cremer, J.; Schwarze, J.K.; Fischbuch, L.; Seynaeve, L.; Du Four, S.; Vanbinst, A.-M.; Michotte, A.; Everaert, H.; et al. Axitinib plus Avelumab in the Treatment of Recurrent Glioblastoma: A Stratified, Open-Label, Single-Center Phase 2 Clinical Trial (GliAvAx). J. Immunother. Cancer 2020, 8, e001146. [Google Scholar] [CrossRef]
- Phadnis, S.; Hagiwara, M.; Yaffe, A.; Mitchell, C.; Nicolaides, T.; Akshintala, S.; Hochman, T.; Goldberg, J.; Allen, J.; Karajannis, M. NFB-08. Phase II study of axitinib in patients with neurofibromatosis type 2 and progressive vestibular schwannomas. Neuro Oncol. 2020, 22, iii419. [Google Scholar] [CrossRef]
- Reardon, D.A.; Vredenburgh, J.J.; Desjardins, A.; Peters, K.; Gururangan, S.; Sampson, J.H.; Marcello, J.; Herndon, J.E.; McLendon, R.E.; Janney, D.; et al. Effect of CYP3A-Inducing Anti-Epileptics on Sorafenib Exposure: Results of a Phase II Study of Sorafenib plus Daily Temozolomide in Adults with Recurrent Glioblastoma. J. Neurooncol. 2011, 101, 57–66. [Google Scholar] [CrossRef] [PubMed]
- Peereboom, D.M.; Ahluwalia, M.S.; Ye, X.; Supko, J.G.; Hilderbrand, S.L.; Phuphanich, S.; Nabors, L.B.; Rosenfeld, M.R.; Mikkelsen, T.; Grossman, S.A.; et al. NABTT 0502: A Phase II and Pharmacokinetic Study of Erlotinib and Sorafenib for Patients with Progressive or Recurrent Glioblastoma Multiforme. Neuro Oncol. 2013, 15, 490–496. [Google Scholar] [CrossRef]
- Den, R.B.; Kamrava, M.; Sheng, Z.; Werner-Wasik, M.; Dougherty, E.; Marinucchi, M.; Lawrence, Y.R.; Hegarty, S.; Hyslop, T.; Andrews, D.W.; et al. A Phase I Study of the Combination of Sorafenib with Temozolomide and Radiation Therapy for the Treatment of Primary and Recurrent High-Grade Gliomas. Int. J. Radiat. Oncol. Biol. Phys. 2013, 85, 321–328. [Google Scholar] [CrossRef] [PubMed]
- Nabors, L.B.; Supko, J.G.; Rosenfeld, M.; Chamberlain, M.; Phuphanich, S.; Batchelor, T.; Desideri, S.; Ye, X.; Wright, J.; Gujar, S.; et al. Phase I Trial of Sorafenib in Patients with Recurrent or Progressive Malignant Glioma. Neuro Oncol. 2011, 13, 1324–1330. [Google Scholar] [CrossRef]
- Hottinger, A.F.; Ben Aissa, A.; Espeli, V.; Squiban, D.; Dunkel, N.; Vargas, M.I.; Hundsberger, T.; Mach, N.; Schaller, K.; Weber, D.C.; et al. Phase I Study of Sorafenib Combined with Radiation Therapy and Temozolomide as First-Line Treatment of High-Grade Glioma. Br. J. Cancer 2014, 110, 2655–2661. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Kuhn, J.; Lamborn, K.R.; Abrey, L.E.; DeAngelis, L.M.; Lieberman, F.; Robins, H.I.; Chang, S.M.; Yung, W.K.A.; Drappatz, J.; et al. Phase I/II Study of Sorafenib in Combination with Erlotinib for Recurrent Glioblastoma as Part of a 3-Arm Sequential Accrual Clinical Trial: NABTC 05-02. Neurooncol. Adv. 2020, 2, vdaa124. [Google Scholar] [CrossRef]
- Reardon, D.A.; Pan, E.; Fan, J.; Mink, J.; Barboriak, D.P.; Vredenburgh, J.J.; Desjardins, A.; Peters, K.; O’Brien, J.P.; Wen, P.Y. A Phase 2 Trial of the Multitargeted Kinase Inhibitor Lenvatinib (E7080) in Patients (PTS) with Recurrent Glioblastoma (GBM) And Disease Progression Following Prior Bevacizumab Treatment. Ann. Oncol. 2012, 23, ix146. [Google Scholar] [CrossRef]
- Lwin, Z.; Gomez-Roca, C.; Saada-Bouzid, E.; Yanez, E.; Munoz, F.L.; Im, S.A.; Castanon, E.; Senellart, H.; Graham, D.; Voss, M.; et al. LEAP-005: Phase II Study of Lenvatinib (Len) plus Pembrolizumab (Pembro) in Patients (Pts) with Previously Treated Advanced Solid Tumours. Ann. Oncol. 2020, 31, S1170. [Google Scholar] [CrossRef]
- Iwamoto, F.M.; Lamborn, K.R.; Robins, H.I.; Butowski, N.A.; Chang, S.M.; Prados, M.D.; Fine, H.A. Phase II Trial of Pazopanib (GW786034), an Oral Multi-Targeted Angiogenesis Inhibitor, for Adults with Recurrent Glioblastoma (North American Brain Tumor Consortium Study 06-02). Neuro Oncol. 2010, 12, 855–861. [Google Scholar] [CrossRef]
- Reardon, D.A.; Groves, M.D.; Wen, P.Y.; Nabors, L.; Mikkelsen, T.; Rosenfeld, S.; Raizer, J.; Barriuso, J.; McLendon, R.E.; Suttle, A.B.; et al. A Phase I/II Trial of Pazopanib in Combination with Lapatinib in Adult Patients with Relapsed Malignant Glioma. Clin. Cancer Res. 2013, 19, 900–908. [Google Scholar] [CrossRef] [PubMed]
- Burzynski, S.R.; Janicki, T.J.; Burzynski, G.S.; Brookman, S. Preliminary Findings on the Use of Targeted Therapy with Pazopanib and Other Agents in Combination with Sodium Phenylbutyrate in the Treatment of Glioblastoma Multiforme. J. Cancer Ther. 2014, 5, 1423–1437. [Google Scholar] [CrossRef]
- Saada-Bouzid, E.; Frenel, J.-S.; Augereau, P.; Bourg, V.; Gal, J.; Jacquinot, F.; Gourmelon, C.; Chateau, Y.; Barriere, J.; Bondiau, P.-Y. Phase I/II Study of Pazopanib and Temozolomide in Patients with Newly Diagnosed and Resected Glioblastoma: Pazoglio Trial. J. Clin. Oncol. 2023, 41, e14024. [Google Scholar] [CrossRef]
- Wuthrick, E.J.; Kamrava, M.; Curran, W.J.; Werner-Wasik, M.; Camphausen, K.A.; Hyslop, T.; Axelrod, R.; Andrews, D.W.; Glass, J.; MacHtay, M.; et al. A Phase 1b Trial of the Combination of the Antiangiogenic Agent Sunitinib and Radiation Therapy for Patients with Primary and Metastatic Central Nervous System Malignancies. Cancer 2011, 117, 5548–5559. [Google Scholar] [CrossRef]
- Neyns, B.; Sadones, J.; Chaskis, C.; Dujardin, M.; Everaert, H.; Lv, S.; Duerinck, J.; Tynninen, O.; Nupponen, N.; Michotte, A.; et al. Phase II Study of Sunitinib Malate in Patients with Recurrent High-Grade Glioma. J. Neurooncol. 2011, 103, 491–501. [Google Scholar] [CrossRef] [PubMed]
- Duerinck, J.; Du Four, S.; Sander, W.; Van Binst, A.-M.; Everaert, H.; Michotte, A.; Hau, P.; Neyns, B. Sunitinib Malate plus Lomustine for Patients with Temozolomide-Refractory Recurrent Anaplastic or Low-Grade Glioma. Anticancer Res. 2015, 35, 5551–5557. [Google Scholar] [PubMed]
- Wetmore, C.; Daryani, V.M.; Billups, C.A.; Boyett, J.M.; Leary, S.; Tanos, R.; Goldsmith, K.C.; Stewart, C.F.; Blaney, S.M.; Gajjar, A. Phase II Evaluation of Sunitinib in the Treatment of Recurrent or Refractory High-Grade Glioma or Ependymoma in Children: A Children’s Oncology Group Study ACNS1021. Cancer Med. 2016, 5, 1416–1424. [Google Scholar] [CrossRef] [PubMed]
- Wuthrick, E.J.; Curran, W.J.; Camphausen, K.; Lin, A.; Glass, J.; Evans, J.; Andrews, D.W.; Axelrod, R.; Shi, W.; Werner-Wasik, M.; et al. A Pilot Study of Hypofractionated Stereotactic Radiation Therapy and Sunitinib in Previously Irradiated Patients with Recurrent High-Grade Glioma. Int. J. Radiat. Oncol. Biol. Phys. 2014, 90, 369–375. [Google Scholar] [CrossRef] [PubMed]
- Faye, M.D.; Easaw, J.; De Robles, P.; Agnihotram, R.; Torres-Vasquez, A.; Lamonde, F.; Petrecca, K.; Owen, S.; Panet-Raymond, V.; Shenouda, G.; et al. Phase II Trial of Concurrent Sunitinib, Temozolomide, and Radiotherapy with Adjuvant Temozolomide for Newly Diagnosed MGMT Unmethylated Glioblastoma. Neurooncol. Adv. 2023, 5, vdad106. [Google Scholar] [CrossRef]
- Janssen, J.B.E.; Brahm, C.G.; Driessen, C.M.L.; Nuver, J.; Labots, M.; Kouwenhoven, M.C.M.; Aliaga, E.S.; Enting, R.H.; de Groot, J.C.; Walenkamp, A.M.E.; et al. The STELLAR Trial: A Phase II/III Randomized Trial of High-Dose, Intermittent Sunitinib in Patients with Recurrent Glioblastoma. Brain Commun. 2024, 6, fcae241. [Google Scholar] [CrossRef]
- Kaley, T.J.; Wen, P.; Schiff, D.; Ligon, K.; Haidar, S.; Karimi, S.; Lassman, A.B.; Nolan, C.P.; De Angelis, L.M.; Gavrilovic, I.; et al. Phase II Trial of Sunitinib for Recurrent and Progressive Atypical and Anaplastic Meningioma. Neuro Oncol. 2015, 17, 116–121. [Google Scholar] [CrossRef] [PubMed]
- Cardona, A.F.; Ruiz-Patiño, A.; Zatarain-Barrón, Z.L.; Hakim, F.; Jiménez, E.; Mejía, J.A.; Ramón, J.F.; Useche, N.; Bermúdez, S.; Pineda, D.; et al. Systemic Management of Malignant Meningiomas: A Comparative Survival and Molecular Marker Analysis between Octreotide in Combination with Everolimus and Sunitinib. PLoS ONE 2019, 14, e0217340. [Google Scholar] [CrossRef]
- Schiff, D.; Desjardins, A.; Cloughesy, T.; Mikkelsen, T.; Glantz, M.; Chamberlain, M.C.; Reardon, D.A.; Wen, P.Y. Phase 1 Dose Escalation Trial of the Safety and Pharmacokinetics of Cabozantinib Concurrent with Temozolomide and Radiotherapy or Temozolomide after Radiotherapy in Newly Diagnosed Patients with High-Grade Gliomas. Cancer 2016, 122, 582–587. [Google Scholar] [CrossRef]
- Cloughesy, T.F.; Drappatz, J.; De Groot, J.; Prados, M.D.; Reardon, D.A.; Schiff, D.; Chamberlain, M.; Mikkelsen, T.; Desjardins, A.; Ping, J.; et al. Phase II Study of Cabozantinib in Patients with Progressive Glioblastoma: Subset Analysis of Patients with Prior Antiangiogenic Therapy. Neuro Oncol. 2018, 20, 259–267. [Google Scholar] [CrossRef] [PubMed]
- Muhic, A.; Poulsen, H.S.; Sorensen, M.; Grunnet, K.; Lassen, U. Phase II Open-Label Study of Nintedanib in Patients with Recurrent Glioblastoma Multiforme. J. Neurooncol. 2013, 111, 205–212. [Google Scholar] [CrossRef] [PubMed]
- Norden, A.D.; Schiff, D.; Ahluwalia, M.S.; Lesser, G.J.; Nayak, L.; Lee, E.Q.; Rinne, M.L.; Muzikansky, A.; Dietrich, J.; Purow, B.; et al. Phase II Trial of Triple Tyrosine Kinase Receptor Inhibitor Nintedanib in Recurrent High-Grade Gliomas. J. Neurooncol. 2015, 121, 297–302. [Google Scholar] [CrossRef] [PubMed]
- Lombardi, G.; De Salvo, G.L.; Brandes, A.A.; Eoli, M.; Rudà, R.; Faedi, M.; Lolli, I.; Pace, A.; Daniele, B.; Pasqualetti, F.; et al. Regorafenib Compared with Lomustine in Patients with Relapsed Glioblastoma (REGOMA): A Multicentre, Open-Label, Randomised, Controlled, Phase 2 Trial. Lancet Oncol. 2019, 20, 110–119. [Google Scholar] [CrossRef]
- Chiesa, S.; Mangraviti, A.; Martini, M.; Cenci, T.; Mazzarella, C.; Gaudino, S.; Bracci, S.; Martino, A.; Della Pepa, G.M.; Offi, M.; et al. Clinical and NGS Predictors of Response to Regorafenib in Recurrent Glioblastoma. Sci. Rep. 2022, 12, 16265. [Google Scholar] [CrossRef]
- Rudà, R.; Bruno, F.; Pellerino, A.; Pronello, E.; Palmiero, R.; Bertero, L.; Crasto, S.; Polo, V.; Vitaliani, R.; Trincia, E.; et al. Observational Real-Life Study on Regorafenib in Recurrent Glioblastoma: Does Dose Reduction Reduce Toxicity While Maintaining the Efficacy? J. Neurooncol. 2022, 160, 389–402. [Google Scholar] [CrossRef]
- Fasano, M.; Pirozzi, M.; Famiglietti, V.; Facchini, S.; Caterino, M.; Caroprese, M.; Barillaro, A.; Di Giovanni, I.; Auriemma, A.; Fattoruso, S.I.S.; et al. Clinical Activity of Regorafenib in Elderly Patients with Recurrent Glioblastoma. Mol. Clin. Oncol. 2023, 18, 9. [Google Scholar] [CrossRef]
- Nayak, L.; de Groot, J.; Wefel, J.S.; Cloughesy, T.F.; Lieberman, F.; Chang, S.M.; Omuro, A.; Drappatz, J.; Batchelor, T.T.; DeAngelis, L.M.; et al. Phase I Trial of Aflibercept (VEGF Trap) with Radiation Therapy and Concomitant and Adjuvant Temozolomide in Patients with High-Grade Gliomas. J. Neurooncol. 2017, 132, 181. [Google Scholar] [CrossRef] [PubMed]
- De Groot, J.F.; Lamborn, K.R.; Chang, S.M.; Gilbert, M.R.; Cloughesy, T.F.; Aldape, K.; Yao, J.; Jackson, E.F.; Lieberman, F.; Robins, H.I.; et al. Phase II Study of Aflibercept in Recurrent Malignant Glioma: A North American Brain Tumor Consortium Study. J. Clin. Oncol. 2011, 29, 2689–2695. [Google Scholar] [CrossRef] [PubMed]
- Strumberg, D.; Richly, H.; Hilger, R.A.; Schleucher, N.; Korfee, S.; Tewes, M.; Faghih, M.; Brendel, E.; Voliotis, D.; Haase, C.G.; et al. Phase I Clinical and Pharmacokinetic Study of the Novel Raf Kinase and Vascular Endothelial Growth Factor Receptor Inhibitor BAY 43-9006 in Patients with Advanced Refractory Solid Tumors. J. Clin. Oncol. 2005, 23, 965–972. [Google Scholar] [CrossRef] [PubMed]
- Ratain, M.J.; Eisen, T.; Stadler, W.M.; Flaherty, K.T.; Kaye, S.B.; Rosner, G.L.; Gore, M.; Desai, A.A.; Patnaik, A.; Xiong, H.Q.; et al. Phase II Placebo-Controlled Randomized Discontinuation Trial of Sorafenib in Patients with Metastatic Renal Cell Carcinoma. J. Clin. Oncol. 2006, 24, 2505–2512. [Google Scholar] [CrossRef] [PubMed]
- Escudier, B.; Eisen, T.; Stadler, W.M.; Szczylik, C.; Oudard, S.; Siebels, M.; Negrier, S.; Chevreau, C.; Solska, E.; Desai, A.A.; et al. Sorafenib in Advanced Clear-Cell Renal-Cell Carcinoma. N. Engl. J. Med. 2007, 356, 125–134. [Google Scholar] [CrossRef] [PubMed]
- Lang, L. FDA Approves Sorafenib for Patients With Inoperable Liver Cancer. Gastroenterology 2008, 134, 379. [Google Scholar] [CrossRef]
- McFarland, D.C.; Misiukiewicz, K.J. Sorafenib in Radioactive Iodine-Refractory Well-Differentiated Metastatic Thyroid Cancer. Onco Targets Ther. 2014, 7, 1291–1299. [Google Scholar] [CrossRef]
- Gounder, M.M.; Mahoney, M.R.; Van Tine, B.A.; Ravi, V.; Attia, S.; Deshpande, H.A.; Gupta, A.A.; Milhem, M.M.; Conry, R.M.; Movva, S.; et al. Sorafenib for Advanced and Refractory Desmoid Tumors. N. Engl. J. Med. 2018, 379, 2417–2428. [Google Scholar] [CrossRef] [PubMed]
- Cascinu, S.; Berardi, R.; Sobrero, A.; Bidoli, P.; Labianca, R.; Siena, S.; Ferrari, D.; Barni, S.; Aitini, E.; Zagonel, V.; et al. Sorafenib Does Not Improve Efficacy of Chemotherapy in Advanced Pancreatic Cancer: A GISCAD Randomized Phase II Study. Dig. Liver Dis. 2014, 46, 182–186. [Google Scholar] [CrossRef]
- Ott, P.A.; Hamilton, A.; Min, C.; Safarzadeh-Amiri, S.; Goldberg, L.; Yoon, J.; Yee, H.; Buckley, M.; Christos, P.J.; Wright, J.J.; et al. A Phase II Trial of Sorafenib in Metastatic Melanoma with Tissue Correlates. PLoS ONE 2010, 5, e15588. [Google Scholar] [CrossRef]
- Chauhan, S.J.; Thyagarajan, A.; Sahu, R.P. Effects of MiRNA-149-5p and Platelet-Activating Factor-Receptor Signaling on the Growth and Targeted Therapy Response on Lung Cancer Cells. Int. J. Mol. Sci. 2022, 23, 6772. [Google Scholar] [CrossRef]
- Bronte, G.; Andreis, D.; Bravaccini, S.; Maltoni, R.; Cecconetto, L.; Schirone, A.; Farolfi, A.; Fedeli, A.; Serra, P.; Donati, C.; et al. Sorafenib for the Treatment of Breast Cancer. Expert Opin. Pharmacother. 2017, 18, 621–630. [Google Scholar] [CrossRef]
- Karajannis, M.A.; Legault, G.; Fisher, M.J.; Milla, S.S.; Cohen, K.J.; Wisoff, J.H.; Harter, D.H.; Goldberg, J.D.; Hochman, T.; Merkelson, A.; et al. Phase II Study of Sorafenib in Children with Recurrent or Progressive Low-Grade Astrocytomas. Neuro Oncol. 2014, 16, 1408. [Google Scholar] [CrossRef] [PubMed]
- Cabanillas, M.E.; Schlumberger, M.; Jarzab, B.; Martins, R.G.; Pacini, F.; Robinson, B.; McCaffrey, J.C.; Shah, M.H.; Bodenner, D.L.; Topliss, D.; et al. A Phase 2 Trial of Lenvatinib (E7080) in Advanced, Progressive, Radioiodine-Refractory, Differentiated Thyroid Cancer: A Clinical Outcomes and Biomarker Assessment. Cancer 2015, 121, 2749–2756. [Google Scholar] [CrossRef] [PubMed]
- Schlumberger, M.; Tahara, M.; Wirth, L.J.; Robinson, B.; Brose, M.S.; Elisei, R.; Habra, M.A.; Newbold, K.; Shah, M.H.; Hoff, A.O.; et al. Lenvatinib versus Placebo in Radioiodine-Refractory Thyroid Cancer. N. Engl. J. Med. 2015, 372, 621–630. [Google Scholar] [CrossRef] [PubMed]
- Nair, A.; Lemery, S.J.; Yang, J.; Marathe, A.; Zhao, L.; Zhao, H.; Jiang, X.; He, K.; Ladouceur, G.; Mitra, A.K.; et al. FDA Approval Summary: Lenvatinib for Progressive, Radio-Iodine-Refractory Differentiated Thyroid Cancer. Clin. Cancer Res. 2015, 21, 5205–5208. [Google Scholar] [CrossRef]
- Federal Drug Administration FDA Approves Drug Combo for Kidney Cancer. Cancer Discov. 2016, 6, 687–688. [CrossRef] [PubMed]
- Personeni, N.; Pressiani, T.; Rimassa, L. Lenvatinib for the Treatment of Unresectable Hepatocellular Carcinoma: Evidence to Date. J. Hepatocell. Carcinoma 2019, 6, 31–39. [Google Scholar] [CrossRef]
- Food and Drug Administration Oncology (Cancer)/Hematologic Malignancies Approval Notifications|FDA. Available online: https://www.fda.gov/drugs/resources-information-approved-drugs/oncology-cancerhematologic-malignancies-approval-notifications (accessed on 3 December 2024).
- Arance, A.; de la Cruz-Merino, L.; Petrella, T.M.; Jamal, R.; Ny, L.; Carneiro, A.; Berrocal, A.; Márquez-Rodas, I.; Spreafico, A.; Atkinson, V.; et al. Phase II LEAP-004 Study of Lenvatinib Plus Pembrolizumab for Melanoma With Confirmed Progression on a Programmed Cell Death Protein-1 or Programmed Death Ligand 1 Inhibitor Given as Monotherapy or in Combination. J. Clin. Oncol. 2023, 41, 75–85. [Google Scholar] [CrossRef]
- Shalata, W.; Iraqi, M.; Bhattacharya, B.; Fuchs, V.; Roisman, L.C.; Cohen, A.Y.; Massalha, I.; Yakobson, A.; Prasad, M.; Elkabets, M.; et al. Rapid Response to the Combination of Lenvatinib and Pembrolizumab in Patients with Advanced Carcinomas (Lung Adenocarcinoma and Malignant Pleural Mesothelioma). Cancers 2021, 13, 3630. [Google Scholar] [CrossRef]
- González-Martín, A.; Chung, H.C.; Saada-Bouzid, E.; Yanez, E.; Senellart, H.; Cassier, P.A.; Basu, B.; Corr, B.R.; Girda, E.; Dutcus, C.; et al. Lenvatinib plus Pembrolizumab for Patients with Previously Treated Advanced Ovarian Cancer: Results from the Phase 2 Multicohort LEAP-005 Study. Gynecol. Oncol. 2024, 186, 182–190. [Google Scholar] [CrossRef]
- Chung, H.C.; Saada-Bouzid, E.; Longo, F.; Yanez, E.; Im, S.-A.; Castanon, E.; Desautels, D.N.; Graham, D.M.; Garcia-Corbacho, J.; Lopez, J.; et al. Lenvatinib plus Pembrolizumab for Patients with Previously Treated, Advanced, Triple-Negative Breast Cancer: Results from the Triple-Negative Breast Cancer Cohort of the Phase 2 LEAP-005 Study. Cancer 2024, 130, 3278–3288. [Google Scholar] [CrossRef]
- Ueno, M.; Ikeda, M.; Sasaki, T.; Nagashima, F.; Mizuno, N.; Shimizu, S.; Ikezawa, H.; Hayata, N.; Nakajima, R.; Morizane, C. Phase 2 Study of Lenvatinib Monotherapy as Second-Line Treatment in Unresectable Biliary Tract Cancer: Primary Analysis Results. BMC Cancer 2020, 20, 1105. [Google Scholar] [CrossRef] [PubMed]
- Capdevila, J.; Fazio, N.; Lopez, C.; Teulé, A.; Valle, J.W.; Tafuto, S.; Custodio, A.; Reed, N.; Raderer, M.; Grande, E.; et al. Lenvatinib in Patients With Advanced Grade 1/2 Pancreatic and Gastrointestinal Neuroendocrine Tumors: Results of the Phase II TALENT Trial (GETNE1509). J. Clin. Oncol. 2021, 39, 2304–2312. [Google Scholar] [CrossRef]
- Sternberg, C.N.; Davis, I.D.; Mardiak, J.; Szczylik, C.; Lee, E.; Wagstaff, J.; Barrios, C.H.; Salman, P.; Gladkov, O.A.; Kavina, A.; et al. Pazopanib in Locally Advanced or Metastatic Renal Cell Carcinoma: Results of a Randomized Phase III Trial. J. Clin. Oncol. 2010, 28, 1061–1068. [Google Scholar] [CrossRef]
- van der Graaf, W.T.A.; Blay, J.-Y.; Chawla, S.P.; Kim, D.-W.; Bui-Nguyen, B.; Casali, P.G.; Schöffski, P.; Aglietta, M.; Staddon, A.P.; Beppu, Y.; et al. Pazopanib for Metastatic Soft-Tissue Sarcoma (PALETTE): A Randomised, Double-Blind, Placebo-Controlled Phase 3 Trial. Lancet 2012, 379, 1879–1886. [Google Scholar] [CrossRef] [PubMed]
- Demetri, G.D.; van Oosterom, A.T.; Garrett, C.R.; Blackstein, M.E.; Shah, M.H.; Verweij, J.; McArthur, G.; Judson, I.R.; Heinrich, M.C.; Morgan, J.A.; et al. Efficacy and Safety of Sunitinib in Patients with Advanced Gastrointestinal Stromal Tumour after Failure of Imatinib: A Randomised Controlled Trial. Lancet 2006, 368, 1329–1338. [Google Scholar] [CrossRef] [PubMed]
- Motzer, R.J.; Rini, B.I.; Bukowski, R.M.; Curti, B.D.; George, D.J.; Hudes, G.R.; Redman, B.G.; Margolin, K.A.; Merchan, J.R.; Wilding, G.; et al. Sunitinib in Patients with Metastatic Renal Cell Carcinoma. JAMA 2006, 295, 2516–2524. [Google Scholar] [CrossRef] [PubMed]
- Raymond, E.; Dahan, L.; Raoul, J.-L.; Bang, Y.-J.; Borbath, I.; Lombard-Bohas, C.; Valle, J.; Metrakos, P.; Smith, D.; Vinik, A.; et al. Sunitinib Malate for the Treatment of Pancreatic Neuroendocrine Tumors. N. Engl. J. Med. 2011, 364, 501–513. [Google Scholar] [CrossRef] [PubMed]
- Blumenthal, G.M.; Cortazar, P.; Zhang, J.J.; Tang, S.; Sridhara, R.; Murgo, A.; Justice, R.; Pazdur, R. FDA Approval Summary: Sunitinib for the Treatment of Progressive Well-Differentiated Locally Advanced or Metastatic Pancreatic Neuroendocrine Tumors. Oncologist 2012, 17, 1108–1113. [Google Scholar] [CrossRef]
- Kreisl, T.N.; Smith, P.; Sul, J.; Salgado, C.; Iwamoto, F.M.; Shih, J.H.; Fine, H.A. Continuous Daily Sunitinib for Recurrent Glioblastoma. J. Neurooncol. 2013, 111, 41–48. [Google Scholar] [CrossRef]
- Hutterer, M.; Nowosielski, M.; Haybaeck, J.; Embacher, S.; Stockhammer, F.; Gotwald, T.; Holzner, B.; Capper, D.; Preusser, M.; Marosi, C.; et al. A Single-Arm Phase II Austrian/German Multicenter Trial on Continuous Daily Sunitinib in Primary Glioblastoma at First Recurrence (SURGE 01-07). Neuro Oncol. 2014, 16, 92–102. [Google Scholar] [CrossRef]
- Pan, E.; Yu, D.; Yue, B.; Potthast, L.; Chowdhary, S.; Smith, P.; Chamberlain, M. A Prospective Phase II Single-Institution Trial of Sunitinib for Recurrent Malignant Glioma. J. Neurooncol. 2012, 110, 111–118. [Google Scholar] [CrossRef] [PubMed]
- Balaña, C.; Gil, M.J.; Perez, P.; Reynes, G.; Gallego, O.; Ribalta, T.; Capellades, J.; Gonzalez, S.; Verger, E. Sunitinib Administered Prior to Radiotherapy in Patients with Non-Resectable Glioblastoma: Results of a Phase II Study. Target. Oncol. 2014, 9, 321–329. [Google Scholar] [CrossRef] [PubMed]
- Reardon, D.A.; Vredenburgh, J.J.; Coan, A.; Desjardins, A.; Peters, K.B.; Gururangan, S.; Sathornsumetee, S.; Rich, J.N.; Herndon, J.E.; Friedman, H.S. Phase I Study of Sunitinib and Irinotecan for Patients with Recurrent Malignant Glioma. J. Neurooncol. 2011, 105, 621–627. [Google Scholar] [CrossRef]
- Choueiri, T.K.; Halabi, S.; Sanford, B.L.; Hahn, O.; Michaelson, M.D.; Walsh, M.K.; Feldman, D.R.; Olencki, T.; Picus, J.; Small, E.J.; et al. Cabozantinib Versus Sunitinib As Initial Targeted Therapy for Patients With Metastatic Renal Cell Carcinoma of Poor or Intermediate Risk: The Alliance A031203 CABOSUN Trial. J. Clin. Oncol. 2017, 35, 591–597. [Google Scholar] [CrossRef]
- Abou-Alfa, G.K.; Meyer, T.; Cheng, A.-L.; El-Khoueiry, A.B.; Rimassa, L.; Ryoo, B.-Y.; Cicin, I.; Merle, P.; Chen, Y.; Park, J.-W.; et al. Cabozantinib in Patients with Advanced and Progressing Hepatocellular Carcinoma. N. Engl. J. Med. 2018, 379, 54–63. [Google Scholar] [CrossRef]
- Powles, T.; Burotto, M.; Escudier, B.; Apolo, A.B.; Bourlon, M.T.; Shah, A.Y.; Suárez, C.; Porta, C.; Barrios, C.H.; Richardet, M.; et al. Nivolumab plus Cabozantinib versus Sunitinib for First-Line Treatment of Advanced Renal Cell Carcinoma: Extended Follow-up from the Phase III Randomised CheckMate 9ER Trial. ESMO Open 2024, 9, 102994. [Google Scholar] [CrossRef]
- American Cancer Society About Thyroid Cancer|Thyroid Cancer Overview|American Cancer Society. Available online: https://www.cancer.org/cancer/types/thyroid-cancer/about.html (accessed on 6 January 2025).
- Pulmonary Fibrosis Foundation (PFF) Pulmonary Fibrosis Foundation Applauds First-Ever FDA-Approved IPF Drugs. Available online: https://pulmonaryhypertensionnews.com/news/2-ipf-drugs-get-fda-approval-pulmonary-fibrosis-foundations-praise/ (accessed on 6 October 2014).
- Flaherty, K.R.; Wells, A.U.; Cottin, V.; Devaraj, A.; Walsh, S.L.F.; Inoue, Y.; Richeldi, L.; Kolb, M.; Tetzlaff, K.; Stowasser, S.; et al. Nintedanib in Progressive Fibrosing Interstitial Lung Diseases. N. Engl. J. Med. 2019, 381, 1718–1727. [Google Scholar] [CrossRef] [PubMed]
- Wells, A.U.; Flaherty, K.R.; Brown, K.K.; Inoue, Y.; Devaraj, A.; Richeldi, L.; Moua, T.; Crestani, B.; Wuyts, W.A.; Stowasser, S.; et al. Nintedanib in Patients with Progressive Fibrosing Interstitial Lung Diseases-Subgroup Analyses by Interstitial Lung Disease Diagnosis in the INBUILD Trial: A Randomised, Double-Blind, Placebo-Controlled, Parallel-Group Trial. Lancet Respir. Med. 2020, 8, 453–460. [Google Scholar] [CrossRef]
- Grothey, A.; Van Cutsem, E.; Sobrero, A.; Siena, S.; Falcone, A.; Ychou, M.; Humblet, Y.; Bouché, O.; Mineur, L.; Barone, C.; et al. Regorafenib Monotherapy for Previously Treated Metastatic Colorectal Cancer (CORRECT): An International, Multicentre, Randomised, Placebo-Controlled, Phase 3 Trial. Lancet 2013, 381, 303–312. [Google Scholar] [CrossRef]
- Bruix, J.; Qin, S.; Merle, P.; Granito, A.; Huang, Y.H.; Bodoky, G.; Pracht, M.; Yokosuka, O.; Rosmorduc, O.; Breder, V.; et al. Regorafenib for Patients with Hepatocellular Carcinoma Who Progressed on Sorafenib Treatment (RESORCE): A Randomised, Double-Blind, Placebo-Controlled, Phase 3 Trial. Lancet 2017, 389, 56–66. [Google Scholar] [CrossRef]
- Werner, J.M.; Wollring, M.M.; Tscherpel, C.; Rosen, E.K.; Werr, L.; Stetter, I.; Rueß, D.; Ruge, M.I.; Brunn, A.; Al Shughri, A.; et al. Multimodal Imaging Findings in Patients with Glioblastoma with Extensive Coagulative Necrosis Related to Regorafenib. Neuro Oncol. 2023, 25, 1193–1195. [Google Scholar] [CrossRef] [PubMed]
- Wen, P.Y.; Rodon, J.A.; Mason, W.; Beck, J.T.; Degroot, J.; Donnet, V.; Mills, D.; El-Hashimy, M.; Rosenthal, M. Phase I, Open-Label, Multicentre Study of Buparlisib in Combination with Temozolomide or with Concomitant Radiation Therapy and Temozolomide in Patients with Newly Diagnosed Glioblastoma. ESMO Open 2020, 5, e000673. [Google Scholar] [CrossRef]
- Wen, P.Y.; Mellinghoff, I.K.; Buxton, M.B.; Cavenee, W.K.; Colman, H.; De Groot, J.F.; Ellingson, B.M.; Gordon, G.B.; Khasraw, M.; Lassman, A.B.; et al. GBM AGILE: A Global, Phase 2/3 Adaptive Platform Trial to Evaluate Multiple Regimens in Newly Diagnosed and Recurrent Glioblastoma. J. Clin. Oncol. 2021, 39, TPS2074. [Google Scholar] [CrossRef]
- Tannock, I.F.; Fizazi, K.; Ivanov, S.; Karlsson, C.T.; Fléchon, A.; Skoneczna, I.; Orlandi, F.; Gravis, G.; Matveev, V.; Bavbek, S.; et al. Aflibercept versus Placebo in Combination with Docetaxel and Prednisone for Treatment of Men with Metastatic Castration-Resistant Prostate Cancer (VENICE): A Phase 3, Double-Blind Randomised Trial. Lancet Oncol. 2013, 14, 760–768. [Google Scholar] [CrossRef] [PubMed]
- Allegra, C.J.; Lakomy, R.; Tabernero, J.; Prausová, J.; Ruff, P.; Van Hazel, G.; Moiseyenko, V.M.; Ferry, D.R.; McKendrick, J.J.; Cutsem, E. Van Effects of Prior Bevacizumab (B) Use on Outcomes from the VELOUR Study: A Phase III Study of Aflibercept (Afl) and FOLFIRI in Patients (Pts) with Metastatic Colorectal Cancer (MCRC) after Failure of an Oxaliplatin Regimen. J. Clin. Oncol. 2012, 30, 3505. [Google Scholar] [CrossRef]
- De Groot, J.F.; Cloughesy, T.; Lieberman, F.S.; Chang, S.M.; Omuro, A.M.P.; Drappatz, J.; Batchelor, T.; DeAngelis, L.M.; Gilbert, M.R.; Yung, W.K.A.; et al. Phase I Study of Aflibercept (VEGF Trap) and Temozolomide in Newly Diagnosed, High-Grade Glioma. J. Clin. Oncol. 2011, 29, 2043. [Google Scholar] [CrossRef]
- Aprile, G.; Bonotto, M.; Ongaro, E.; Pozzo, C.; Giuliani, F. Critical Appraisal of Ramucirumab (IMC-1121B) for Cancer Treatment: From Benchside to Clinical Use. Drugs 2013, 73, 2003–2015. [Google Scholar] [CrossRef]
- Wilke, H.; Muro, K.; Van Cutsem, E.; Oh, S.C.; Bodoky, G.; Shimada, Y.; Hironaka, S.; Sugimoto, N.; Lipatov, O.; Kim, T.Y.; et al. Ramucirumab plus Paclitaxel versus Placebo plus Paclitaxel in Patients with Previously Treated Advanced Gastric or Gastro-Oesophageal Junction Adenocarcinoma (RAINBOW): A Double-Blind, Randomised Phase 3 Trial. Lancet Oncol. 2014, 15, 1224–1235. [Google Scholar] [CrossRef] [PubMed]
- Garon, E.B.; Ciuleanu, T.E.; Arrieta, O.; Prabhash, K.; Syrigos, K.N.; Goksel, T.; Park, K.; Gorbunova, V.; Kowalyszyn, R.D.; Pikiel, J.; et al. Ramucirumab plus Docetaxel versus Placebo plus Docetaxel for Second-Line Treatment of Stage IV Non-Small-Cell Lung Cancer after Disease Progression on Platinum-Based Therapy (REVEL): A Multicentre, Double-Blind, Randomised Phase 3 Trial. Lancet 2014, 384, 665–673. [Google Scholar] [CrossRef] [PubMed]
- Tabernero, J.; Yoshino, T.; Cohn, A.L.; Obermannova, R.; Bodoky, G.; Garcia-Carbonero, R.; Ciuleanu, T.E.; Portnoy, D.C.; Van Cutsem, E.; Grothey, A.; et al. Ramucirumab versus Placebo in Combination with Second-Line FOLFIRI in Patients with Metastatic Colorectal Carcinoma That Progressed during or after First-Line Therapy with Bevacizumab, Oxaliplatin, and a Fluoropyrimidine (RAISE): A Randomised, Double-Blind, Multicentre, Phase 3 Study. Lancet Oncol. 2015, 16, 499–508. [Google Scholar] [CrossRef] [PubMed]
- Zhu, A.X.; Kang, Y.K.; Yen, C.J.; Finn, R.S.; Galle, P.R.; Llovet, J.M.; Assenat, E.; Brandi, G.; Pracht, M.; Lim, H.Y.; et al. Ramucirumab after Sorafenib in Patients with Advanced Hepatocellular Carcinoma and Increased α-Fetoprotein Concentrations (REACH-2): A Randomised, Double-Blind, Placebo-Controlled, Phase 3 Trial. Lancet Oncol. 2019, 20, 282–296. [Google Scholar] [CrossRef] [PubMed]
- Nakagawa, K.; Garon, E.B.; Seto, T.; Nishio, M.; Aix, S.P.; Paz-Ares, L.; Chiu, C.H.; Park, K.; Novello, S.; Nadal, E.; et al. RELAY: Final Overall Survival for Erlotinib Plus Ramucirumab or Placebo in Untreated, EGFR-Mutated Metastatic NSCLC. J. Thorac. Oncol. 2024. [Google Scholar] [CrossRef]
- Blakeley, J.O.; Fisher, J.D.; Lieberman, F.S.; Lupo, J.; Nabors, L.B.; Crane, J.; Wen, P.Y.; Cote, A.; Peereboom, D.M.; Wen, Q.; et al. Imaging Biomarkers of Ramucirumab and Olaratumab in Patients with Recurrent Glioblastoma. J. Clin. Oncol. 2013, 31, 2044. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Buzatu, I.M.; Tataranu, L.G.; Duta, C.; Stoian, I.; Alexandru, O.; Dricu, A. A Review of FDA-Approved Multi-Target Angiogenesis Drugs for Brain Tumor Therapy. Int. J. Mol. Sci. 2025, 26, 2192. https://doi.org/10.3390/ijms26052192
Buzatu IM, Tataranu LG, Duta C, Stoian I, Alexandru O, Dricu A. A Review of FDA-Approved Multi-Target Angiogenesis Drugs for Brain Tumor Therapy. International Journal of Molecular Sciences. 2025; 26(5):2192. https://doi.org/10.3390/ijms26052192
Chicago/Turabian StyleBuzatu, Iuliana Mihaela, Ligia Gabriela Tataranu, Carmen Duta, Irina Stoian, Oana Alexandru, and Anica Dricu. 2025. "A Review of FDA-Approved Multi-Target Angiogenesis Drugs for Brain Tumor Therapy" International Journal of Molecular Sciences 26, no. 5: 2192. https://doi.org/10.3390/ijms26052192
APA StyleBuzatu, I. M., Tataranu, L. G., Duta, C., Stoian, I., Alexandru, O., & Dricu, A. (2025). A Review of FDA-Approved Multi-Target Angiogenesis Drugs for Brain Tumor Therapy. International Journal of Molecular Sciences, 26(5), 2192. https://doi.org/10.3390/ijms26052192