Clinical Importance of Amyloid Beta Implication in the Detection and Treatment of Alzheimer’s Disease
Abstract
1. Introduction
1.1. Description of Amyloid Beta
1.2. The Role of Amyloid Beta in Memory Regulation
2. Diagnostic Application of Amyloid Beta
2.1. Blood Amyloid Beta
Factors Affecting the Amyloid Beta Assessment
2.2. Clinical Utility of Amyloid PET
Amyloid PET in the Early Detection of Disease
3. Therapeutic Strategies
3.1. Therapeutic Strategies Targeting Amyloid Beta
3.1.1. β- and γ-Secretase Inhibitors
3.1.2. Amyloid Beta Aggregation Inhibitors
Agent | Administration | Mechanism of Action | Indication | Clinical Status | Ref. |
---|---|---|---|---|---|
Aducanumab | Intravenously (IV) | Monoclonal antibody against Aβ oligomers. Removes Aβ | MCI, mild-to-moderate AD | In the US, approved by FDA | [76] |
Solanezumab | Intravenously (IV) | Monoclonal antibody against Aβ monomers | MCI | Phase III completed, withdrawn | [68] |
Donanemab | Intravenously (IV) | Monoclonal antibody against Aβ plaques | MCI | In the US, approved by FDA | [77,78] |
Lecanemab | Intravenously (IV) | Monoclonal antibody against Aβ protofibrils | MCI | In the US, approved by FDA | [79] |
BACE inhibitors (Lanabecestat) | Oral | Block the activity of BACE1, preventing the initial cleavage of APP | MCI | Discontinued from clinical trials (phase III and phase II) due to lack of efficacy in later stages of the disease | [80] |
BACE inhibitors (Verubecestat) | Oral | Block the activity of BACE1, preventing the initial cleavage of APP | Mild-to-moderate AD patients | Withdrawn from clinical trials (phase III) due to worse daily functioning among treated patients vs. placebo | [80,81] |
γ-secretase inhibitors (Semagacestat) | Oral | Inhibition of γ-secretase prevents the formation of amyloid beta peptides | AD | Discontinued in phase III clinical trial (semagacestat)—did not improve cognitive status and caused more adverse events (skin cancers and infections) | [82] |
γ-secretase inhibitors (Avagacestat) | Oral | Inhibition of γ-secretase prevents the formation of amyloid beta peptides | AD | Discontinued in phase II clinical trial (Avagacestat-BMS-708163): did not demonstrate efficacy and was associated with adverse dose-limiting effects | [83] |
Amyloid beta aggregation inhibitors (Clioquinol) | Oral or intravenous | These inhibitors bind to amyloid beta monomers, oligomers, or fibrils, blocking their aggregation or promoting disaggregation | Early stages of AD | Discontinued in phase II and phase III due to no significant effect of clioquinol versus placebo on the rate of cognitive decline in a cohort of patients with AD | [74] |
3.2. Therapeutic Strategies Targeting Tau
3.2.1. Kinase Inhibitors
3.2.2. Tau Aggregation Inhibitors
3.2.3. Tau Immunotherapy
3.3. Other Methods of AD Treatment in Trials
3.3.1. Anti-Neuroinflammatory Therapy
3.3.2. Microglia Modulators
3.3.3. Astrocyte Modulators
3.3.4. Insulin Resistance Management
3.3.5. Microbiome Therapy
3.3.6. Role of Artificial Intelligence in Diagnosis and Treatment of AD
4. Selected Legal Aspects of the Diagnostic and Therapeutic Implications of Amyloid Beta in Neurodegenerative Diseases
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Akasaka-Manya, K.; Manya, H. The Role of APP O-Glycosylation in Alzheimer’s Disease. Biomolecules 2020, 10, 1569. [Google Scholar] [CrossRef]
- Chen, G.F.; Xu, T.H.; Yan, Y.; Zhou, Y.R.; Jiang, Y.; Melcher, K.; Xu, H.E. Amyloid Beta: Structure, Biology and Structure-Based Therapeutic Development. Acta Pharmacol. Sin. 2017, 38, 1205–1235. [Google Scholar] [CrossRef]
- Marsh, S.E.; Blurton-Jones, M. Examining the Mechanisms That Link β-Amyloid and α-Synuclein Pathologies. Alzheimer’s Res. Ther. 2012, 4, 11. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Chen, H.; Li, R.; Sterling, K.; Song, W. Amyloid β-Based Therapy for Alzheimer’s Disease: Challenges, Successes and Future. Signal Transduct. Target. Ther. 2023, 8, 248. [Google Scholar] [CrossRef] [PubMed]
- Niu, Z.; Gui, X.; Feng, S.; Reif, B. Aggregation Mechanisms and Molecular Structures of Amyloid-β in Alzheimer’s Disease. Chem. A Eur. J. 2024, 30, e202400277. [Google Scholar] [CrossRef]
- Parhizkar, S.; Holtzman, D.M. APOE Mediated Neuroinflammation and Neurodegeneration in Alzheimer’s Disease. Semin. Immunol. 2022, 59, 101594. [Google Scholar] [CrossRef] [PubMed]
- Schneider, J.A. Neuropathology of Dementia Disorders. Contin. Lifelong Learn. Neurol. 2022, 28, 834–851. [Google Scholar] [CrossRef] [PubMed]
- Serrano-Pozo, A.; Das, S.; Hyman, B.T. APOE and Alzheimer’s Disease: Advances in Genetics, Pathophysiology, and Therapeutic Approaches. Lancet Neurol. 2021, 20, 68–80. [Google Scholar] [CrossRef]
- Raulin, A.C.; Doss, S.V.; Trottier, Z.A.; Ikezu, T.C.; Bu, G.; Liu, C.C. ApoE in Alzheimer’s Disease: Pathophysiology and Therapeutic Strategies. Mol. Neurodegener. 2022, 17, 72. [Google Scholar] [CrossRef] [PubMed]
- Hong, S.; Beja-Glasser, V.F.; Nfonoyim, B.M.; Frouin, A.; Li, S.; Ramakrishnan, S.; Merry, K.M.; Shi, Q.; Rosenthal, A.; Barres, B.A.; et al. Complement and Microglia Mediate Early Synapse Loss in Alzheimer Mouse Models. Science 2016, 352, 712–716. [Google Scholar] [CrossRef]
- Jia, L.; Zhu, M.; Kong, C.; Pang, Y.; Zhang, H.; Qiu, Q.; Wei, C.; Tang, Y.; Wang, Q.; Li, Y.; et al. Blood Neuro-Exosomal Synaptic Proteins Predict Alzheimer’s Disease at the Asymptomatic Stage. Alzheimer’s Dement. 2021, 17, 49–60. [Google Scholar] [CrossRef]
- Webers, A.; Heneka, M.T.; Gleeson, P.A. The Role of Innate Immune Responses and Neuroinflammation in Amyloid Accumulation and Progression of Alzheimer’s Disease. Immunol. Cell Biol. 2020, 98, 28–41. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Zong, S.; Cui, X.; Wang, X.; Wu, S.; Wang, L.; Liu, Y.; Lu, Z. The Effects of Microglia-Associated Neuroinflammation on Alzheimer’s Disease. Front. Immunol. 2023, 14, 1117172. [Google Scholar] [CrossRef]
- Jaberi, S.; Fahnestock, M. Mechanisms of the Beneficial Effects of Exercise on Brain-Derived Neurotrophic Factor Expression in Alzheimer’s Disease. Biomolecules 2023, 13, 1577. [Google Scholar] [CrossRef]
- Sivakumar, B.; Krishnan, A. Mesencephalic Astrocyte-Derived Neurotrophic Factor (MANF): An Emerging Therapeutic Target for Neurodegenerative Disorders. Cells 2023, 12, 1032. [Google Scholar] [CrossRef]
- Kamatham, P.T.; Shukla, R.; Khatri, D.K.; Vora, L.K. Pathogenesis, Diagnostics, and Therapeutics for Alzheimer’s Disease: Breaking the Memory Barrier. Ageing Res. Rev. 2024, 101, 102481. [Google Scholar] [CrossRef] [PubMed]
- Jia, J.; Ning, Y.; Chen, M.; Wang, S.; Yang, H.; Li, F.; Ding, J.; Li, Y.; Zhao, B.; Lyu, J.; et al. Biomarker Changes during 20 Years Preceding Alzheimer’s Disease. N. Engl. J. Med. 2024, 390, 712–722. [Google Scholar] [CrossRef] [PubMed]
- Billings, L.M.; Oddo, S.; Green, K.N.; McGaugh, J.L.; LaFerla, F.M. Intraneuronal Aβ Causes the Onset of Early Alzheimer’s Disease-Related Cognitive Deficits in Transgenic Mice. Neuron 2005, 45, 675–688. [Google Scholar] [CrossRef]
- Jeremic, D.; Jiménez-Díaz, L.; Navarro-López, J.D. Past, Present and Future of Therapeutic Strategies against Amyloid-β Peptides in Alzheimer’s Disease: A Systematic Review. Ageing Res. Rev. 2021, 72, 101496. [Google Scholar] [CrossRef] [PubMed]
- Morley, J.E.; Farr, S.A. Hormesis and Amyloid-β Protein: Physiology or Pathology? J. Alzheimer’s Dis. 2012, 29, 487–492. [Google Scholar] [CrossRef]
- Gendron, M.E.; Thorin-Trescases, N.; Mamarbachi, A.M.; Villeneuve, L.; Théorêt, J.F.; Mehri, Y.; Thorin, E. Time-Dependent Beneficial Effect of Chronic Polyphenol Treatment with Catechin on Endothelial Dysfunction in Aging Mice. Dose-Response 2012, 10, 108–119. [Google Scholar] [CrossRef]
- Wang, W.; Zhao, F.; Ma, X.; Perry, G.; Zhu, X. Mitochondria Dysfunction in the Pathogenesis of Alzheimer’s Disease: Recent Advances. Mol. Neurodegener. 2020, 15, 30. [Google Scholar] [CrossRef]
- Che, J.; Sun, Y.; Deng, Y.; Zhang, J. Blood-Brain Barrier Disruption: A Culprit of Cognitive Decline? Fluids Barriers CNS 2024, 21, 63. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.; Chen, F.; Han, Z.; Yin, Z.; Ge, X.; Lei, P. Relationship Between Amyloid-β Deposition and Blood–Brain Barrier Dysfunction in Alzheimer’s Disease. Front. Cell Neurosci. 2021, 15, 695479. [Google Scholar] [CrossRef] [PubMed]
- Cai, Z.; Qiao, P.F.; Wan, C.Q.; Cai, M.; Zhou, N.K.; Li, Q. Role of Blood-Brain Barrier in Alzheimer’s Disease. J. Alzheimer’s Dis. 2018, 63, 1223–1234. [Google Scholar] [CrossRef]
- Dansson, H.V.; Stempfle, L.; Egilsdóttir, H.; Schliep, A.; Portelius, E.; Blennow, K.; Zetterberg, H.; Johansson, F.D. Predicting Progression and Cognitive Decline in Amyloid-Positive Patients with Alzheimer’s Disease. Alzheimer’s Res. Ther. 2021, 13, 151. [Google Scholar] [CrossRef]
- Greenberg, S.M.; Bacskai, B.J.; Hernandez-Guillamon, M.; Pruzin, J.; Sperling, R.; van Veluw, S.J. Cerebral Amyloid Angiopathy and Alzheimer Disease—One Peptide, Two Pathways. Nat. Rev. Neurol. 2020, 16, 30–42. [Google Scholar] [CrossRef]
- Ferman, T.J.; Aoki, N.; Crook, J.E.; Murray, M.E.; Graff-Radford, N.R.; van Gerpen, J.A.; Uitti, R.J.; Wszolek, Z.K.; Graff-Radford, J.; Pedraza, O.; et al. The Limbic and Neocortical Contribution of α-Synuclein, Tau, and Amyloid β to Disease Duration in Dementia with Lewy Bodies. Alzheimer’s Dement. 2018, 14, 330–339. [Google Scholar] [CrossRef] [PubMed]
- Tetter, S.; Arseni, D.; Murzin, A.G.; Buhidma, Y.; Peak-Chew, S.Y.; Garringer, H.J.; Newell, K.L.; Vidal, R.; Apostolova, L.G.; Lashley, T.; et al. TAF15 Amyloid Filaments in Frontotemporal Lobar Degeneration. Nature 2024, 625, 345–351. [Google Scholar] [CrossRef] [PubMed]
- Head, E.; Helman, A.M.; Powell, D.; Schmitt, F.A. Down Syndrome, Beta-Amyloid and Neuroimaging. Free Radic. Biol. Med. 2018, 114, 102–109. [Google Scholar] [CrossRef]
- Ramos-Cejudo, J.; Wisniewski, T.; Marmar, C.; Zetterberg, H.; Blennow, K.; de Leon, M.J.; Fossati, S. Traumatic Brain Injury and Alzheimer’s Disease: The Cerebrovascular Link. EBioMedicine 2018, 28, 21–30. [Google Scholar] [CrossRef]
- Nakamura, A.; Kaneko, N.; Villemagne, V.L.; Kato, T.; Doecke, J.; Doré, V.; Fowler, C.; Li, Q.X.; Martins, R.; Rowe, C.; et al. High Performance Plasma Amyloid-β Biomarkers for Alzheimer’s Disease. Nature 2018, 554, 249–254. [Google Scholar] [CrossRef]
- Simrén, J.; Elmgren, A.; Blennow, K.; Zetterberg, H. Fluid Biomarkers in Alzheimer’s Disease. In Advances in Clinical Chemistry; Elsevier: Amsterdam, The Netherlands, 2023; Volume 112. [Google Scholar]
- Burkett, B.J.; Babcock, J.C.; Lowe, V.J.; Graff-Radford, J.; Subramaniam, R.M.; Johnson, D.R. PET Imaging of Dementia: Update 2022. Clin. Nucl. Med. 2022, 47, 763–773. [Google Scholar] [CrossRef] [PubMed]
- Ramusino, M.C.; Garibotto, V.; Bacchin, R.; Altomare, D.; Dodich, A.; Assal, F.; Mendes, A.; Costa, A.; Tinazzi, M.; Morbelli, S.D.; et al. Incremental Value of Amyloid-PET versus CSF in the Diagnosis of Alzheimer’s Disease. Eur. J. Nucl. Med. Mol. Imaging 2020, 47, 270–280. [Google Scholar] [CrossRef]
- Li, D.; Mielke, M.M. An Update on Blood-Based Markers of Alzheimer’s Disease Using the SiMoA Platform. Neurol. Ther. 2019, 8, 73–82. [Google Scholar] [CrossRef] [PubMed]
- Arslan, B.; Zetterberg, H.; Ashton, N.J. Blood-Based Biomarkers in Alzheimer’s Disease—Moving towards a New Era of Diagnostics. Clin. Chem. Lab. Med. 2024, 62, 1063–1069. [Google Scholar] [CrossRef]
- Huber, H.; Blennow, K.; Zetterberg, H.; Boada, M.; Jeromin, A.; Weninger, H.; Nuñez-Llaves, R.; Aguilera, N.; Ramis, M.; Simrén, J.; et al. Biomarkers of Alzheimer’s Disease and Neurodegeneration in Dried Blood Spots—A New Collection Method for Remote Settings. Alzheimer’s Dement. 2024, 20, 2340–2352. [Google Scholar] [CrossRef] [PubMed]
- Jack, C.R.; Andrews, J.S.; Beach, T.G.; Buracchio, T.; Dunn, B.; Graf, A.; Hansson, O.; Ho, C.; Jagust, W.; McDade, E.; et al. Revised Criteria for Diagnosis and Staging of Alzheimer’s Disease: Alzheimer’s Association Workgroup. Alzheimer’s Dement. 2024, 20, 5143–5169. [Google Scholar] [CrossRef]
- Chatziefstathiou, A.; Canaslan, S.; Kanata, E.; Vekrellis, K.; Constantinides, V.C.; Paraskevas, G.P.; Kapaki, E.; Schmitz, M.; Zerr, I.; Xanthopoulos, K.; et al. SIMOA Diagnostics on Alzheimer’s Disease and Frontotemporal Dementia. Biomedicines 2024, 12, 1253. [Google Scholar] [CrossRef]
- Arber, C.; Alatza, A.; Leckey, C.A.; Paterson, R.W.; Zetterberg, H.; Wray, S. Mass Spectrometry Analysis of Tau and Amyloid-Beta in IPSC-Derived Models of Alzheimer’s Disease and Dementia. J. Neurochem. 2021, 159, 305–317. [Google Scholar] [CrossRef]
- Li, Y.; Schindler, S.E.; Bollinger, J.G.; Ovod, V.; Mawuenyega, K.G.; Weiner, M.W.; Shaw, L.M.; Masters, C.L.; Fowler, C.J.; Trojanowski, J.Q.; et al. Validation of Plasma Amyloid-β 42/40 for Detecting Alzheimer Disease Amyloid Plaques. Neurology 2022, 98, e688–e699. [Google Scholar] [CrossRef] [PubMed]
- Young, K.A.; Mancera, R.L. Review: Investigating the Aggregation of Amyloid Beta with Surface Plasmon Resonance: Do Different Approaches Yield Different Results? Anal. Biochem. 2022, 654, 114828. [Google Scholar] [CrossRef]
- Lee, Y.K.; Lee, K.S.; Kim, W.M.; Sohn, Y.S. Detection of Amyloid-Β42 Using a Waveguide-Coupled Bimetallic Surface Plasmon Resonance Sensor Chip in the Intensity Measurement Mode. PLoS ONE 2014, 9, e98992. [Google Scholar] [CrossRef]
- Kusuma, S.A.F.; Harmonis, J.A.; Pratiwi, R.; Hasanah, A.N. Gold Nanoparticle-Based Colorimetric Sensors: Properties and Application in Detection of Heavy Metals and Biological Molecules. Sensors 2023, 23, 8172. [Google Scholar] [CrossRef] [PubMed]
- Le, P.G.; Choi, S.H.; Cho, S. Alzheimer’s Disease Biomarker Detection Using Field Effect Transistor-Based Biosensor. Biosensors 2023, 13, 987. [Google Scholar] [CrossRef] [PubMed]
- Sweers, K.; van der Werf, K.; Bennink, M.; Subramaniam, V. Nanomechanical Properties of α-Synuclein Amyloid Fibrils: A Comparative Study by Nanoindentation, Harmonic Force Microscopy, and Peakforce QNM. Nanoscale Res. Lett. 2011, 6, 270. [Google Scholar] [CrossRef] [PubMed]
- Klunk, W.E.; Koeppe, R.A.; Price, J.C.; Benzinger, T.L.; Devous, M.D.; Jagust, W.J.; Johnson, K.A.; Mathis, C.A.; Minhas, D.; Pontecorvo, M.J.; et al. The Centiloid Project: Standardizing Quantitative Amyloid Plaque Estimation by PET. Alzheimer’s Dement. 2015, 11, 1–15.e4. [Google Scholar] [CrossRef]
- Tehrani, M.J.; Matsuda, I.; Yamagata, A.; Kodama, Y.; Matsunaga, T.; Sato, M.; Toyooka, K.; McElheny, D.; Kobayashi, N.; Shirouzu, M.; et al. E22G Aβ40 Fibril Structure and Kinetics Illuminate How Aβ40 Rather than Aβ42 Triggers Familial Alzheimer’s. Nat. Commun. 2024, 15, 7045. [Google Scholar] [CrossRef]
- Krone, M.G.; Baumketner, A.; Bernstein, S.L.; Wyttenbach, T.; Lazo, N.D.; Teplow, D.B.; Bowers, M.T.; Shea, J.E. Effects of Familial Alzheimer’s Disease Mutations on the Folding Nucleation of the Amyloid β-Protein. J. Mol. Biol. 2008, 381, 221–228. [Google Scholar] [CrossRef]
- Noorani, A.A.; Yamashita, H.; Gao, Y.; Islam, S.; Sun, Y.; Nakamura, T.; Enomoto, H.; Zou, K.; Michikawa, M. High Temperature Promotes Amyloid B-Protein Production and g-Secretase Complex Formation via Hsp90. J. Biol. Chem. 2020, 295, 18010–18022. [Google Scholar] [CrossRef] [PubMed]
- Matsunaga, Y.; Zerovnik, E.; Yamada, T.; Turk, V. Conformational Changes Preceding Amyloid-Fibril Formation of Amyloid-Beta and Stefin B; Parallels in PH Dependence. Curr. Med. Chem. 2002, 9, 1717–1724. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Wu, J.; Sternke-Hoffmann, R.; Zheng, W.; Mörman, C.; Luo, J. Multivariate Effects of PH, Salt, and Zn2+ Ions on Aβ40 Fibrillation. Commun. Chem. 2022, 5, 171. [Google Scholar] [CrossRef] [PubMed]
- Liang, C.Q.; Li, Y.M. Peptides for Disrupting and Degrading Amyloids. Curr. Opin. Chem. Biol. 2021, 64, 124–130. [Google Scholar] [CrossRef] [PubMed]
- Cheignon, C.; Tomas, M.; Bonnefont-Rousselot, D.; Faller, P.; Hureau, C.; Collin, F. Oxidative Stress and the Amyloid Beta Peptide in Alzheimer’s Disease. Redox Biol. 2018, 14, 450–464. [Google Scholar] [CrossRef] [PubMed]
- Walter, M.; Wiltfang, J.; Vogelgsang, J. Pre-Analytical Sampling and Storage Conditions of Amyloid-β Peptides in Venous and Capillary Blood. J. Alzheimer’s Dis. 2020, 78, 529–535. [Google Scholar] [CrossRef]
- Chapleau, M.; Iaccarino, L.; Soleimani-Meigooni, D.; Rabinovici, G.D. The Role of Amyloid PET in Imaging Neurodegenerative Disorders: A Review. J. Nucl. Med. 2022, 63, 13S–19S. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.D.; Joseph-Mathurin, N.; Sinha, N.; Zhou, A.; Li, Y.; Friedrichsen, K.; McCullough, A.; Franklin, E.E.; Hornbeck, R.; Gordon, B.; et al. Comparing Amyloid-β Plaque Burden with Antemortem PiB PET in Autosomal Dominant and Late-Onset Alzheimer Disease. Acta Neuropathol. 2021, 142, 689–706. [Google Scholar] [CrossRef] [PubMed]
- Hansson, O.; Seibyl, J.; Stomrud, E.; Zetterberg, H.; Trojanowski, J.Q.; Bittner, T.; Lifke, V.; Corradini, V.; Eichenlaub, U.; Batrla, R.; et al. CSF Biomarkers of Alzheimer’s Disease Concord with Amyloid-β PET and Predict Clinical Progression: A Study of Fully Automated Immunoassays in BioFINDER and ADNI Cohorts. Alzheimer’s Dement. 2018, 14, 1470–1481. [Google Scholar] [CrossRef]
- Yu, T.W.; Lane, H.Y.; Lin, C.H. Novel Therapeutic Approaches for Alzheimer’s Disease: An Updated Review. Int. J. Mol. Sci. 2021, 22, 8208. [Google Scholar] [CrossRef]
- Rahman, A.; Hossen, M.A.; Chowdhury, M.F.I.; Bari, S.; Tamanna, N.; Sultana, S.S.; Haque, S.N.; Al Masud, A.; Saif-Ur-Rahman, K.M. Aducanumab for the Treatment of Alzheimer’s Disease: A Systematic Review. Psychogeriatrics 2023, 23, 512–522. [Google Scholar] [CrossRef] [PubMed]
- Cummings, J.; Rabinovici, G.D.; Atri, A.; Aisen, P.; Apostolova, L.G.; Hendrix, S.; Sabbagh, M.; Selkoe, D.; Weiner, M.; Salloway, S. Aducanumab: Appropriate Use Recommendations Update. J. Prev. Alzheimer’s Dis. 2022, 9, 221–230. [Google Scholar] [CrossRef]
- Mullane, K.; Williams, M. Alzheimer’s Disease beyond Amyloid: Can the Repetitive Failures of Amyloid-Targeted Therapeutics Inform Future Approaches to Dementia Drug Discovery? Biochem. Pharmacol. 2020, 177, 113945. [Google Scholar] [CrossRef] [PubMed]
- McDade, E.; Cummings, J.L.; Dhadda, S.; Swanson, C.J.; Reyderman, L.; Kanekiyo, M.; Koyama, A.; Irizarry, M.; Kramer, L.D.; Bateman, R.J. Lecanemab in Patients with Early Alzheimer’s Disease: Detailed Results on Biomarker, Cognitive, and Clinical Effects from the Randomized and Open-Label Extension of the Phase 2 Proof-of-Concept Study. Alzheimer’s Res. Ther. 2022, 14, 191. [Google Scholar] [CrossRef] [PubMed]
- Yi, L.X.; Tan, E.K.; Zhou, Z.D. Passive Immunotherapy for Alzheimer’s Disease: Challenges & Future Directions. J. Transl. Med. 2024, 22, 430. [Google Scholar] [CrossRef] [PubMed]
- Avgerinos, K.I.; Ferrucci, L.; Kapogiannis, D. Effects of Monoclonal Antibodies against Amyloid-β on Clinical and Biomarker Outcomes and Adverse Event Risks: A Systematic Review and Meta-Analysis of Phase III RCTs in Alzheimer’s Disease. Ageing Res. Rev. 2021, 68, 101339. [Google Scholar] [CrossRef] [PubMed]
- Imbimbo, B.P.; Ottonello, S.; Frisardi, V.; Solfrizzi, V.; Greco, A.; Seripa, D.; Pilotto, A.; Panza, F. Solanezumab for the Treatment of Mild-to-Moderate Alzheimers Disease. Expert Rev. Clin. Immunol. 2012, 8, 135–149. [Google Scholar] [CrossRef] [PubMed]
- Sperling, R.A.; Donohue, M.C.; Raman, R.; Rafii, M.S.; Johnson, K.; Masters, C.L.; van Dyck, C.H.; Iwatsubo, T.; Marshall, G.A.; Yaari, R.; et al. Trial of Solanezumab in Preclinical Alzheimer’s Disease. N. Engl. J. Med. 2023, 389, 1096–1107. [Google Scholar] [CrossRef]
- DeMattos, R.B.; Bales, K.R.; Cummins, D.J.; Paul, S.M.; Holtzman, D.M. Brain to Plasma Amyloid-Beta Efflux: A Measure of Brain Amyloid Burden in a Mouse Model of Alzheimer’s Disease. Science 2002, 295, 2264–2267. [Google Scholar] [CrossRef]
- Siemers, E.R.; Sundell, K.L.; Carlson, C.; Case, M.; Sethuraman, G.; Liu-Seifert, H.; Dowsett, S.A.; Pontecorvo, M.J.; Dean, R.A.; DeMattos, R. Phase 3 Solanezumab Trials: Secondary Outcomes in Mild Alzheimer’s Disease Patients. Alzheimer’s Dement. 2016, 12, 110–120. [Google Scholar] [CrossRef] [PubMed]
- Ostrowitzki, S.; Bittner, T.; Sink, K.M.; Mackey, H.; Rabe, C.; Honig, L.S.; Cassetta, E.; Woodward, M.; Boada, M.; Van Dyck, C.H.; et al. Evaluating the Safety and Efficacy of Crenezumab vs. Placebo in Adults with Early Alzheimer Disease: Two Phase 3 Randomized Placebo-Controlled Trials. JAMA Neurol. 2022, 79, 1113–1121. [Google Scholar] [CrossRef] [PubMed]
- Salloway, S.; Sperling, R.; Fox, N.C.; Blennow, K.; Klunk, W.; Raskind, M.; Sabbagh, M.; Honig, L.S.; Porsteinsson, A.P.; Ferris, S.; et al. Two Phase 3 Trials of Bapineuzumab in Mild-to-Moderate Alzheimer’s Disease. N. Engl. J. Med. 2014, 370, 322–333. [Google Scholar] [CrossRef] [PubMed]
- Schenk, D.; Basi, G.S.; Pangalos, M.N. Treatment Strategies Targeting Amyloid β-Protein. Cold Spring Harb. Perspect. Med. 2012, 2, a006387. [Google Scholar] [CrossRef]
- Sampson, E.L.; Jenagaratnam, L.; Mcshane, R. Metal Protein Attenuating Compounds for the Treatment of Alzheimer’s Dementia. Cochrane Database Syst. Rev. 2014, 2014, CD005380. [Google Scholar] [CrossRef] [PubMed]
- Malve, H.O. Management of Alzheimer’s Disease: Role of Existing Therapies, Traditional Medicines and New Treatment Targets. Indian J. Pharm. Sci. 2017, 79, 2–15. [Google Scholar] [CrossRef]
- Alexander, G.C.; Knopman, D.S.; Emerson, S.S.; Ovbiagele, B.; Kryscio, R.J.; Perlmutter, J.S.; Kesselheim, A.S. Revisiting FDA Approval of Aducanumab. N. Engl. J. Med. 2021, 385, 769–771. [Google Scholar] [CrossRef] [PubMed]
- Kang, C. Donanemab: First Approval. Drugs 2024, 84, 1313–1318. [Google Scholar] [CrossRef] [PubMed]
- Mullard, A. FDA Approves Third Anti-Amyloid Antibody for Alzheimer Disease. Nat. Rev. Drug Discov. 2024, 23, 571. [Google Scholar] [CrossRef] [PubMed]
- Wu, W.; Ji, Y.; Wang, Z.; Wu, X.; Li, J.; Gu, F.; Chen, Z.; Wang, Z. The FDA-Approved Anti-Amyloid-β Monoclonal Antibodies for the Treatment of Alzheimer’s Disease: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Eur. J. Med. Res. 2023, 28, 544. [Google Scholar] [CrossRef]
- Ferreira, J.P.S.; Albuquerque, H.M.T.; Cardoso, S.M.; Silva, A.M.S.; Silva, V.L.M. Dual-Target Compounds for Alzheimer’s Disease: Natural and Synthetic AChE and BACE-1 Dual-Inhibitors and Their Structure-Activity Relationship (SAR). Eur. J. Med. Chem. 2021, 221, 113492. [Google Scholar] [CrossRef] [PubMed]
- Sur, C.; Kost, J.; Scott, D.; Adamczuk, K.; Fox, N.C.; Cummings, J.L.; Tariot, P.N.; Aisen, P.S.; Vellas, B.; Voss, T.; et al. BACE Inhibition Causes Rapid, Regional, and Non-Progressive Volume Reduction in Alzheimer’s Disease Brain. Brain 2020, 143, 3816–3826. [Google Scholar] [CrossRef] [PubMed]
- Doody, R.S.; Raman, R.; Farlow, M.; Iwatsubo, T.; Vellas, B.; Joffe, S.; Kieburtz, K.; He, F.; Sun, X.; Thomas, R.G.; et al. A Phase 3 Trial of Semagacestat for Treatment of Alzheimer’s Disease. N. Engl. J. Med. 2013, 369, 341–350. [Google Scholar] [CrossRef]
- Coric, V.; Salloway, S.; Van Dyck, C.H.; Dubois, B.; Andreasen, N.; Brody, M.; Curtis, C.; Soininen, H.; Thein, S.; Shiovitz, T.; et al. Targeting Prodromal Alzheimer Disease with Avagacestat: A Randomized Clinical Trial. JAMA Neurol. 2015, 72, 1324–1333. [Google Scholar] [CrossRef] [PubMed]
- Vaz, M.; Silvestre, S. Alzheimer’s Disease: Recent Treatment Strategies. Eur. J. Pharmacol. 2020, 887, 173554. [Google Scholar] [CrossRef] [PubMed]
- Hashmi, M.U.; Ahmed, R.; Mahmoud, S.; Ahmed, K.; Bushra, N.M.; Ahmed, A.; Elwadie, B.; Madni, A.; Saad, A.B.; Abdelrahman, N. Exploring Methylene Blue and Its Derivatives in Alzheimer’s Treatment: A Comprehensive Review of Randomized Control Trials. Cureus 2023, 15, e46732. [Google Scholar] [CrossRef]
- Cox, K.H.M.; Pipingas, A.; Scholey, A.B. Investigation of the Effects of Solid Lipid Curcumin on Cognition and Mood in a Healthy Older Population. J. Psychopharmacol. 2015, 29, 642–651. [Google Scholar] [CrossRef]
- Axon Neuroscience. Axon Announces Positive Results from Phase II ADAMANT Trial for AADvac1 in Alzheimer’s Disease [WWW Document], 2019. Available online: https://www.prnewswire.com/news-releases/axon-announces-positive-results-from-phase-ii-Adamant-trial-for-aadvac1-in-alzheimers-disease-300914509.html (accessed on 5 December 2024).
- ISRCTN. A Study Comparing the Safety and Effects of a New Compound, ACI-35 with Placebo in Patients with Mild to Moderate Alzheimer’s Disease [WWW Document], 2015. Available online: https://www.Isrctn.Com/ISRCTN13033912 (accessed on 5 December 2024).
- ClinicalTrials.Gov. Phase 2 Study of BIIB092 in Participants with Early Alzheimer’s (TANGO) [WWW Document], 2019. Available online: https://Clinicaltrials.Gov/Ct2/Show/NCT03352557 (accessed on 5 December 2024).
- Wischik, C.M.; Staff, R.T.; Wischik, D.J.; Bentham, P.; Murray, A.D.; Storey, J.M.D.; Kook, K.A.; Harrington, C.R. Tau Aggregation Inhibitor Therapy: An Exploratory Phase 2 Study in Mild or Moderate Alzheimer’s Disease. J. Alzheimer’s Dis. 2015, 44, 705–720. [Google Scholar] [CrossRef]
- Bulic, B.; Pickhardt, M.; Mandelkow, E.M.; Mandelkow, E. Tau Protein and Tau Aggregation Inhibitors. Neuropharmacology 2010, 59, 276–289. [Google Scholar] [CrossRef] [PubMed]
- Novak, P.; Zilka, N.; Zilkova, M.; Kovacech, B.; Skrabana, R.; Ondrus, M.; Fialova, L.; Kontsekova, E.; Otto, M.; Novak, M. AADvac1, an Active Immunotherapy for Alzheimer’s Disease and Non Alzheimer Tauopathies: An Overview of Preclinical and Clinical Development. J. Prev. Alzheimer’s Dis. 2019, 6, 63–69. [Google Scholar] [CrossRef]
- Hume, D.A.; MacDonald, K.P.A. Therapeutic Applications of Macrophage Colony-Stimulating Factor-1 (CSF-1) and Antagonists of CSF-1 Receptor (CSF-1R) Signaling. Blood 2012, 119, 1810–1820. [Google Scholar] [CrossRef]
- Hu, B.; Duan, S.; Wang, Z.; Li, X.; Zhou, Y.; Zhang, X.; Zhang, Y.W.; Xu, H.; Zheng, H. Insights Into the Role of CSF1R in the Central Nervous System and Neurological Disorders. Front. Aging Neurosci. 2021, 13, 789834. [Google Scholar] [CrossRef] [PubMed]
- Millot, P.; San, C.; Bennana, E.; Porte, B.; Vignal, N.; Hugon, J.; Paquet, C.; Hosten, B.; Mouton-Liger, F. STAT3 Inhibition Protects against Neuroinflammation and BACE1 Upregulation Induced by Systemic Inflammation. Immunol. Lett. 2020, 228, 129–134. [Google Scholar] [CrossRef] [PubMed]
- Long, C.; Han, X.; Yang, Y.; Li, T.; Zhou, Q.; Chen, Q. Efficacy of Intranasal Insulin in Improving Cognition in Mild Cognitive Impairment or Dementia: A Systematic Review and Meta-Analysis. Front. Aging Neurosci. 2022, 14, 963933. [Google Scholar] [CrossRef] [PubMed]
- Hölscher, C. Glucagon-like Peptide-1 Class Drugs Show Clear Protective Effects in Parkinson’s and Alzheimer’s Disease Clinical Trials: A Revolution in the Making? Neuropharmacology 2024, 253, 109952. [Google Scholar] [CrossRef]
- Zhang, Z.Q.; Hölscher, C. GIP Has Neuroprotective Effects in Alzheimer and Parkinson’s Disease Models. Peptides 2020, 125, 170184. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Zhang, Y.; Shi, X.; Han, J.; Lin, B.; Peng, W.; Mei, Z.; Lin, Y. Metformin and the Risk of Neurodegenerative Diseases in Patients with Diabetes: A Meta-Analysis of Population-Based Cohort Studies. Diabet. Med. 2022, 39, e14821. [Google Scholar] [CrossRef]
- Finley, J. Cellular Stress and AMPK Activation as a Common Mechanism of Action Linking the Effects of Metformin and Diverse Compounds That Alleviate Accelerated Aging Defects in Hutchinson-Gilford Progeria Syndrome. Med. Hypotheses 2018, 118, 151–162. [Google Scholar] [CrossRef]
- Burns, D.K.; Alexander, R.C.; Welsh-Bohmer, K.A.; Culp, M.; Chiang, C.; O’Neil, J.; Evans, R.M.; Harrigan, P.; Plassman, B.L.; Burke, J.R.; et al. Safety and Efficacy of Pioglitazone for the Delay of Cognitive Impairment in People at Risk of Alzheimer’s Disease (TOMMORROW): A Prognostic Biomarker Study and a Phase 3, Randomised, Double-Blind, Placebo-Controlled Trial. Lancet Neurol. 2021, 20, 537–547. [Google Scholar] [CrossRef]
- Smith, U. Pioglitazone: Mechanism of Action. Int. J. Clin. Pract. Suppl. 2001, 121, 13–18. [Google Scholar] [PubMed]
- Wang, X.; Sun, G.; Feng, T.; Zhang, J.; Huang, X.; Wang, T.; Xie, Z.; Chu, X.; Yang, J.; Wang, H.; et al. Sodium Oligomannate Therapeutically Remodels Gut Microbiota and Suppresses Gut Bacterial Amino Acids-Shaped Neuroinflammation to Inhibit Alzheimer’s Disease Progression. Cell Res. 2019, 29, 787–803. [Google Scholar] [CrossRef]
- Cascella, R.; Cecchi, C. Calcium Dyshomeostasis in Alzheimer’s Disease Pathogenesis. Int. J. Mol. Sci. 2021, 22, 4914. [Google Scholar] [CrossRef] [PubMed]
- Imamura, T.; Yanagihara, Y.T.; Ohyagi, Y.; Nakamura, N.; Iinuma, K.M.; Yamasaki, R.; Asai, H.; Maeda, M.; Murakami, K.; Irie, K.; et al. Insulin Deficiency Promotes Formation of Toxic Amyloid-Β42 Conformer Co-Aggregating with Hyper-Phosphorylated Tau Oligomer in an Alzheimer’s Disease Model. Neurobiol. Dis. 2020, 137, 104739. [Google Scholar] [CrossRef]
- Chen, Z.; Zhong, C. Decoding Alzheimer’s Disease from Perturbed Cerebral Glucose Metabolism: Implications for Diagnostic and Therapeutic Strategies. Prog. Neurobiol. 2013, 108, 21–43. [Google Scholar] [CrossRef] [PubMed]
- Fauzi, A.; Thoe, E.S.; Quan, T.Y.; Yin, A.C.Y. Insights from Insulin Resistance Pathways: Therapeutic Approaches against Alzheimer Associated Diabetes Mellitus. J. Diabetes Complicat. 2023, 37, 108629. [Google Scholar]
- Zhang, T.; Gao, G.; Kwok, L.Y.; Sun, Z. Gut Microbiome-Targeted Therapies for Alzheimer’s Disease. Gut Microbes 2023, 15, 2271613. [Google Scholar] [CrossRef] [PubMed]
- Syed, Y.Y. Sodium Oligomannate: First Approval. Drugs 2020, 80, 441–444. [Google Scholar] [CrossRef] [PubMed]
- Cheng, F.; Wang, F.; Tang, J.; Zhou, Y.; Fu, Z.; Zhang, P.; Haines, J.L.; Leverenz, J.B.; Gan, L.; Hu, J.; et al. Artificial Intelligence and Open Science in Discovery of Disease-Modifying Medicines for Alzheimer’s Disease. Cell Rep. Med. 2024, 5, 101379. [Google Scholar] [CrossRef] [PubMed]
- Soares Dias Portela, A.; Saxena, V.; Rosenn, E.; Wang, S.H.; Masieri, S.; Palmieri, J.; Pasinetti, G.M. Role of Artificial Intelligence in Multinomial Decisions and Preventative Nutrition in Alzheimer’s Disease. Mol. Nutr. Food Res. 2024, 68, e2300605. [Google Scholar] [CrossRef] [PubMed]
- Qiu, Y.; Cheng, F. Artificial Intelligence for Drug Discovery and Development in Alzheimer’s Disease. Curr. Opin. Struct. Biol. 2024, 85, 102776. [Google Scholar] [CrossRef]
- Farabi Maleki, S.; Yousefi, M.; Sobhi, N.; Jafarizadeh, A.; Alizadehsani, R.; Gorriz-Saez, J.M. Artificial Intelligence in Eye Movements Analysis for Alzheimer’s Disease Early Diagnosis. Curr. Alzheimer’s Res. 2024, 21, 155–165. [Google Scholar] [CrossRef] [PubMed]
- Etekochay, M.O.; Amaravadhi, A.R.; González, G.V.; Atanasov, A.G.; Matin, M.; Mofatteh, M.; Steinbusch, H.W.; Tesfaye, T.; Praticò, D. Unveiling New Strategies Facilitating the Implementation of Artificial Intelligence in Neuroimaging for the Early Detection of Alzheimer’s Disease. J. Alzheimer’s Dis. 2024, 99, 1–20. [Google Scholar] [CrossRef] [PubMed]
- Black, L. Mental Capacity and Contracts. Virtual Mentor. 2008, 10, 161–164. [Google Scholar]
Pathological Hallmark | Comment | Ref |
---|---|---|
Tau proteins | In AD, tau undergoes abnormal hyperphosphorylation, leading to the formation of neurofibrillary tangles (NFTs) inside neurons. Tau pathology is closely associated with neuronal dysfunction and cell death in AD, and is a hallmark of the disease. | [8,9] |
APOE gene | The APOE gene is a risk factor for AD. The APOE ε4 allele is the strongest genetic risk factor for late-onset AD, and individuals carrying this allele have an increased risk of developing the disease. | [6,8,9] |
Indicators of synaptic dysfunction | Synaptic dysfunction is an early event in the pathogenesis of AD. Various synaptic proteins, including synaptophysin and PSD-95, neurogranin, are altered in AD brains and may serve as biomarkers of synaptic integrity and dysfunction. Measurements of those proteins in cerebrospinal fluid (CSF) or blood may provide insights into synaptic pathology in AD. | [10,11] |
Inflammatory molecules | Proteins involved in the inflammatory response, such as cytokines (e.g., interleukin-1β, tumor necrosis factor-α), chemokines and complement proteins, are upregulated in AD brains and contribute to disease progression. | [6,12,13] |
Neurotrophic factors | Neurotrophic factors, such as brain-derived neurotrophic factor (BDNF) and nerve growth factor (NGF), play crucial roles in neuronal survival and function. Dysregulation of neurotrophic signaling pathways has been implicated in AD pathogenesis, and alterations in these factors may serve as markers of neurodegeneration in the disease. | [14,15] |
Condition | Main Pathological Features | Clinical Utility of Aβ Peptide | Ref. |
---|---|---|---|
CAA | It is characterized by the accumulation of amyloid beta plaques in the walls of small blood vessels in the brain. It can lead to cognitive impairment, strokes, and other neurological symptoms. | Diagnosis of amyloid beta deposition in the brain is crucial for confirming CAA and guiding treatment decisions. | [27] |
DLB | Typical neuropathological changes in the brain are Lewy bodies and abnormal protein deposits. Amyloid pathology often coexists with alpha-synuclein pathology in DLB patients. | Detecting amyloid beta deposition can aid in distinguishing DLB from other types of dementia and form appropriate management strategies. | [28] |
FTD | Characterized by progressive degeneration of the frontal and temporal lobes of the brain. While FTD is primarily associated with tau protein pathology, amyloid beta deposition can also occur in some subtypes, such as FTD with motor neuron disease. | Identifying amyloid beta pathology can help in accurately diagnosing and subclassifying FTD. | [29] |
DS | Individuals with Down Syndrome have a higher risk of developing Alzheimer’s disease due to the triplication of chromosome 21, which contains the gene encoding amyloid precursor protein (APP). | Amyloid beta pathology often manifests early in individuals with DS, making early diagnosis and intervention critical for managing cognitive decline and other associated symptoms. | [30] |
TBI | Accumulation of amyloid beta plaques has been observed in the brains of individuals with a history of traumatic brain injury. Chronic Traumatic Encephalopathy (CTE), a neurodegenerative condition associated with repeated head trauma, is characterized by the deposition of amyloid beta and other abnormal proteins. | Detecting amyloid beta pathology can aid in understanding the long-term consequences of TBI and developing targeted interventions. | [31] |
Detection Method | Principle | Detected Aβ | Sensitivity & Specificity | Clinical Application | Advantages | Limitations | Ref. |
---|---|---|---|---|---|---|---|
SIMOA (Single Molecule Array) | Single-molecule detection | Aβ40, Aβ42 | Ultra-high sensitivity | Yes | Detects low Aβ levels in plasma | High cost of equipment and reagents | [36,40] |
IP-MS (Immunoprecipitation-Mass Spectrometry) | Immunoprecipitation of Aβ followed by mass analysis | Aβ40, Aβ42, fragments | High specificity and sensitivity | Yes (clinical studies) | Can analyze different isoforms | Expensive, requires specialized equipment | [42] |
SPR (Surface Plasmon Resonance) | Detection of refractive index changes upon Aβ binding | Aβ40, Aβ42 | High sensitivity | No (mainly research) | No need for labeling | Requires expensive equipment | [43,44] |
Nanoparticle-based sensors | Detection of conductivity or optical changes in nanoparticles | Aβ40, Aβ42 | High sensitivity | No (preclinical research) | Fast and potentially low-cost | Still in development | [45] |
PET (Positron Emission Tomography) | Radiolabeled ligand binding to amyloid plaques | Aβ deposits in the brain | High specificity, does not detect free Aβ | Yes | Non-invasive brain amyloid imaging | Expensive, radiation exposure | [35,48] |
Nanowire FET (Field-Effect Transistor Sensors) | Conductivity change in nanowires upon Aβ binding | Aβ40, Aβ42 | Ultra-high sensitivity, real-time detection | No (preclinical research) | Ultra-sensitive, label-free detection | Variability in fabrication | [46] |
Nanomechanical Resonators | Frequency shift upon Aβ interaction | Aβ40, Aβ42 | High sensitivity | No (experimental phase) | Detects extremely low concentrations | Limited customization of data analysis | [47] |
Agent | Administration | Mechanism of action | Indication | Clinical Status | Ref. |
---|---|---|---|---|---|
Lithium | Oral | Neurotransmitter receptors ion channel modulator—improves neuropsychiatric symptoms | Mild to moderate AD | Phase II | [60,74] |
Methylene Blue | Oral | MB inhibits the aggregation and misfolding of tau proteins | Mild to moderate AD | Phase II | [85] |
Curcumin | Oral | Has shown potential as a tau aggregation inhibitor | Mild to moderate AD | Phase II | [86] |
AADvac1 | Subcutaneous (SC) injection | Anti-tau active vaccine, stimulates the immune system to produce antibodies against phosphorylated tau (pTau) | Early-stage Alzheimer’s disease or mild cognitive impairment (MCI) | Phase II | [87] |
ACI-35 | Subcutaneous (SC) injection | Anti-tau active vaccine, stimulates the immune system to produce antibodies against phosphorylated tau (pTau) | Early-stage Alzheimer’s disease or mild cognitive impairment (MCI) | Phase Ib/IIa | [88] |
Gosuranemab | Intravenous (IV) infusion | Monoclonal antibody (mAb) targeting tau protein | Early-stage Alzheimer’s disease or mild cognitive impairment (MCI) | Phase II | [89] |
Agent | Administration | Mechanism of Action | Indication | Clinical Status | Ref. |
---|---|---|---|---|---|
CSF1R inhibitors | Oral | Blocking microglial proliferation | AD, Frontotemporal Dementia, Parkinson’s Disease | Phase I/II | [93,94] |
Stattic | Intraperitoneal (IP) injection or oral gavage | Selective STAT3 inhibitor | Mild cognitive impairment and AD | Preclinical | [95] |
Insulin therapy | Intranasal | Improving brain glucose metabolism, reducing neuroinflammation, and potentially modulating amyloid beta and tau pathologies | Mild cognitive impairment and AD | Phase II, III | [96] |
GLP-1 | Subcutaneous injection, oral (Rybelsus) | Neuroprotective effects by promoting neuronal survival, enhancing synaptic plasticity, and supporting neurogenesis, reducing neuroinflammation and oxidative stress, reducing tau hyperphosphorylation and amyloid beta accumulation | Mild to moderate AD | Phase II: Liraglutide and Exenatide, phase III: Semaglutide | [97] |
GIP | Subcutaneous injection | Activation of GIP receptors in the brain has been shown to exert neuroprotective effects, enhancing neurogenesis, synaptic plasticity, and cognitive function. Indirect effects on Aβ accumulation, a hallmark of Alzheimer’s disease | Mild-to-moderate AD, Parkinson’s Disease | Preclinical, moving into phase I and phase II trials | [98] |
Metformin | Oral | Improving brain glucose metabolism, metformin may help preserve cognitive function and slow the progression of AD. Also activates AMPK, a cellular enzyme that regulates energy balance and reduces neuroinflammation | Mild-to-moderate AD | Phase II trials for AD, with potential phase III trials depending on results | [99,100] |
Pioglitazone | Oral tablets | PPAR-γ activation reduces neuroinflammation, improves insulin sensitivity, enhances brain glucose metabolism, reduces amyloid and tau aggregation | Alzheimer’s disease (mild to moderate), mild cognitive impairment, type 2 diabetes with cognitive decline | Preclinical, phase II trials in AD, with potential phase III studies depending on results | [101,102] |
Sodium oligomannate | Oral tablets | Modulates gut microbiota, reduces neuroinflammation, enhances amyloid beta clearance, improves immune function | Alzheimer’s disease (mild to moderate), potential for other neurodegenerative diseases | Phase II (completed), phase III (completed in China), approved in China for AD | [103] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pokrzyk, J.; Kulczyńska-Przybik, A.; Guzik-Makaruk, E.; Winkel, I.; Mroczko, B. Clinical Importance of Amyloid Beta Implication in the Detection and Treatment of Alzheimer’s Disease. Int. J. Mol. Sci. 2025, 26, 1935. https://doi.org/10.3390/ijms26051935
Pokrzyk J, Kulczyńska-Przybik A, Guzik-Makaruk E, Winkel I, Mroczko B. Clinical Importance of Amyloid Beta Implication in the Detection and Treatment of Alzheimer’s Disease. International Journal of Molecular Sciences. 2025; 26(5):1935. https://doi.org/10.3390/ijms26051935
Chicago/Turabian StylePokrzyk, Justyna, Agnieszka Kulczyńska-Przybik, Ewa Guzik-Makaruk, Izabela Winkel, and Barbara Mroczko. 2025. "Clinical Importance of Amyloid Beta Implication in the Detection and Treatment of Alzheimer’s Disease" International Journal of Molecular Sciences 26, no. 5: 1935. https://doi.org/10.3390/ijms26051935
APA StylePokrzyk, J., Kulczyńska-Przybik, A., Guzik-Makaruk, E., Winkel, I., & Mroczko, B. (2025). Clinical Importance of Amyloid Beta Implication in the Detection and Treatment of Alzheimer’s Disease. International Journal of Molecular Sciences, 26(5), 1935. https://doi.org/10.3390/ijms26051935