Nucleotide Substitution Biases in Related Cancer Driver Genes
Abstract
1. Introduction
2. Results and Discussion
2.1. Pan-Cancer Nucleotide Substitution Patterns in 25 Most Frequently Mutated Genes
2.2. Cancer-Specific Biased Substitutions
2.3. Statistically Significant Mutations Yielding Biased Substitutions
2.4. Genetic Correlations Between Cancers
3. Materials and Methods
3.1. Data Accession and Processing
3.2. Nucleotide Substitution Parsing
3.3. Gene Frequency Rank
3.4. Normalization
3.5. Heatmaps
3.6. Chi-Square Calculations of Nucleotide Bias
3.7. STRING Database
3.8. Gene Driver Potential
3.9. Principal Component Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hanahan, D.; Weinberg, R.A. The hallmarks of cancer. Cell 2000, 100, 57–70. [Google Scholar] [CrossRef] [PubMed]
- Lynch, M. Evolution of the mutation rate. Trends Genet. 2010, 26, 345–352. [Google Scholar] [CrossRef] [PubMed]
- Sherman, M.A.; Yaari, A.U.; Priebe, O.; Dietlein, F.; Loh, P.; Berger, B. Genome-wide mapping of somatic mutation rates uncovers drivers of cancer. Nat. Biotechnol. 2022, 40, 1634–1643. [Google Scholar] [CrossRef] [PubMed]
- Akdemir, K.C.; Le, V.T.; Kim, J.M.; Killcoyne, S.; King, D.A.; Lin, Y.P.; Tian, Y.; Inoue, A.; Amin, S.G.; Robinson, F.S.; et al. Somatic mutation distributions in cancer genomes vary with three-dimensional chromatin structure. Nat. Genet. 2020, 52, 1178–1188. [Google Scholar] [CrossRef]
- Li, Y.; Roberts, N.D.; Wala, J.A.; Shapira, O.; Schumacher, S.E.; Kumar, K.; Khurana, E.; Waszak, S.; Korbel, J.O.; Haber, J.E.; et al. Patterns of somatic structural variation in human cancer genomes. Nature 2020, 578, 112–121, Erratum in Nature 2023, 614, E38. [Google Scholar] [CrossRef]
- Tarabichi, M.; Demeulemeester, J.; Verfaillie, A.; Flanagan, A.M.; Loo, P.V.; Konopka, T. A pan-cancer landscape of somatic mutations in non-unique regions of the human genome. Nat. Biotechnol. 2021, 39, 1589–1596. [Google Scholar] [CrossRef]
- The ICGC/TCGA Pan-Cancer Analysis of Whole Genomes Consortium. Pan-cancer analysis of whole genomes. Nature 2020, 578, 82–93. [Google Scholar] [CrossRef]
- Koh, G.; Degasperi, A.; Zou, X.; Momen, S.; Nik-Zainal, S. Mutational signatures: Emerging concepts, caveats and clinical applications. Nat. Rev. Cancer 2021, 21, 619–637. [Google Scholar] [CrossRef]
- Alexandrov, L.B.; Kim, J.; Haradhvala, N.J.; Huang, M.M.; Ng, A.W.T.; Wu, Y.; Boot, A.; Covington, K.R.; Gordenin, D.A.; Bergstrom, E.N.; et al. The repertoire of mutational signatures in human cancer. Nature 2020, 578, 94–101, Erratum in Nature 2023, 614, E41. [Google Scholar] [CrossRef]
- Rheinbay, E.; Nielsen, M.M.; Abascal, F.; Wala, J.A.; Shapira, O.; Tiao, G.; Hornshoj, H.; Hess, J.M.; Juul, R.I.; Lin, Z.; et al. Analyses of non-coding somatic drivers in 2,658 cancer whole genomes. Nature 2020, 578, 102–111, Erratum in Nature 2023, 614, E40. [Google Scholar] [CrossRef]
- Teng, H.; Wei, W.; LI, Q.; Xue, M.; Shi, X.; Li, X.; Mao, F.; Sun, Z. Prevalence and architecture of posttranscriptionally impaired synonymous mutations in 8,320 genomes across 22 cancer types. Nucleic Acids Res. 2020, 48, 1192–1205. [Google Scholar] [CrossRef]
- Zeng, Z.; Bromberg, Y. Inferring Potential Cancer Driving Synonymous Variants. Genes 2022, 13, 778. [Google Scholar] [CrossRef] [PubMed]
- Cheng, N.; Li, M.; Zhao, L.; Zhang, B.; Yang, Y.; Zheng, C.H.; Xia, J. Comparison and integration of computational methods for deleterious synonymous mutation prediction. Brief Bioinform. 2020, 21, 970–981. [Google Scholar] [CrossRef] [PubMed]
- Sharma, Y.; Miladi, M.; Dukare, S.; Boulay, K.; Caudron-Herger, M.; Grob, M.; Backofen, R.; Diederichs, S. A pan-cancer analysis of synonymous mutations. Nat. Commun. 2019, 10, 2569. [Google Scholar] [CrossRef] [PubMed]
- Chevance, F.F.; Le Guyon, S.; Hughes, K.T. The effects of codon context on in vivo translation speed. PLoS Genet. 2014, 10, e1004392. [Google Scholar] [CrossRef]
- Martinez-Jimenez, F.; Muinos, F.; Sentis, I.; Deu-Pons, J.; Reyes-Salazar, I.; Arnedo-Pac, C.; Mularoni, L.; Pich, O.; Bonet, J.; Kranas, H.; et al. A compendium of mutational cancer driver genes. Nat. Rev. Cancer 2020, 20, 555–572. [Google Scholar] [CrossRef]
- Pon, J.R.; Marra, M.A. Driver and passenger mutations in cancer. Annu. Rev. Pathol. 2015, 10, 25–50. [Google Scholar] [CrossRef]
- Nesta, A.V.; Tafur, D.; Beck, C.R. Hotspots of Human Mutation. Trends Genet. 2021, 37, 717–729. [Google Scholar] [CrossRef]
- Prior, I.A.; Hood, F.E.; Hartley, J.L. The Frequency of Ras Mutations in Cancer. Cancer Res. 2020, 80, 2969–2974. [Google Scholar] [CrossRef]
- Pirozzi, C.J.; Yan, H. The implications of IDH mutations for cancer development and therapy. Nat. Rev. Clin. Oncol. 2021, 18, 645–661. [Google Scholar] [CrossRef]
- Alexandrov, L.B.; Nik-Zainal, S.; Wedge, D.C.; Campbell, P.I.; Stratton, M.R. Deciphering signatures of mutational processes operative in human cancer. Cell Rep. 2013, 3, 246–259. [Google Scholar] [CrossRef]
- Page, R.D.M.; Holmes, E.C. Molecular Evolution: A Phylogenetic Approach; John Wiley & Sons: Hoboken, NJ, USA, 2009. [Google Scholar]
- Charlesworth, B.; Morgan, M.T.; Charlesworth, D. The effect of deleterious mutations on neutral molecular variation. Genetics 1993, 134, 1289–1303. [Google Scholar] [CrossRef] [PubMed]
- Dukler, N.; Mughal, M.R.; Ramani, R.; Huahg, Y.F.; Siepel, A. Extreme purifying selection against point mutations in the human genome. Nat. Commun. 2022, 13, 4312. [Google Scholar] [CrossRef] [PubMed]
- Ohta, T.; Gillespie, J.H. Development of Neutral and Nearly Neutral Theories. Theor. Popul. Biol. 1996, 49, 128–142. [Google Scholar] [CrossRef]
- Bignell, G.R.; Greenman, C.D.; Davies, H.; Butler, A.P.; Edkins, S.; Andrews, J.M.; Buck, G.; Chen, L.; Beare, D.; Latimer, C.; et al. Signatures of mutation and selection in the cancer genome. Nature 2010, 463, 893–898. [Google Scholar] [CrossRef] [PubMed]
- Levine, A.J. Spontaneous and inherited TP53 genetic alterations. Oncogene 2021, 40, 5975–5983. [Google Scholar] [CrossRef]
- Chakravarty, D.; Solit, D.B. Clinical cancer genomic profiling. Nat. Rev. Genet. 2021, 22, 483–501. [Google Scholar] [CrossRef]
- Mendiratta, G.; Ke, E.; Aziz, M.; Liarakos, D.; Tong, M.; Stites, E.C. Cancer gene mutation frequencies for the U.S. population. Nat. Commun. 2021, 12, 5961. [Google Scholar] [CrossRef]
- Schneider, G.; Schmidt-Supprian, M.; Rad, R.; Saur, D. Tissue-specific tumorigenesis: Context matters. Nat. Rev. Cancer 2017, 17, 239–253. [Google Scholar] [CrossRef]
- Montano-Samaniego, M.; Bravo-Estupinan, D.M.; Mendez-Guerrero, O.; Alarcon-Hernandez, E.; Ibanez-Hernandez, M. Strategies for Targeting Gene Therapy in Cancer Cells with Tumor-Specific Promoters. Front. Oncol. 2020, 10, 605380. [Google Scholar] [CrossRef]
- Kumar, A.; Das, S.K.; Emdad, L.; Fisher, P.B. Applications of tissue-specific and cancer-selective gene promoters for cancer diagnosis and therapy. Adv. Cancer Res. 2023, 160, 253–315. [Google Scholar]
- Behranvand, N.; Nasri, F.; Emameh, R.Z.; Khani, P.; Hosseini, A.; Garssen, J.; Falak, R. Chemotherapy: A double-edged sword in cancer treatment. Cancer Immunol. Immunother. 2022, 71, 507–526. [Google Scholar] [CrossRef]
- Min, H.Y.; Lee, H.Y. Molecular targeted therapy for anticancer treatment. Exp. Mol. Med. 2022, 54, 1670–1694. [Google Scholar] [CrossRef] [PubMed]
- Hamid, A.B.; Petreaca, R.C. Secondary Resistant Mutations to Small Molecule Inhibitors in Cancer Cells. Cancers 2020, 12, 927. [Google Scholar] [CrossRef] [PubMed]
- Meisner, N.C.; Hintersteiner, M.; Uhl, V.; Weidermann, T.; Schmied, M.; Gstach, H.; Auer, M. The chemical hunt for the identification of drugable targets. Curr. Opin. Chem. Biol. 2004, 8, 424–431. [Google Scholar] [CrossRef] [PubMed]
- Sioud, M.; Leirdal, M. Druggable signaling proteins. Methods Mol. Biol. 2007, 361, 1–24. [Google Scholar] [PubMed]
- Tate, J.G.; Samford, S.; Jubb, H.C.; Sondka, Z.; Beare, D.M.; Bindal, N.; Boutselakis, H.; Cole, C.G.; Creator, C.; Dawson, E.; et al. COSMIC: The Catalogue Of Somatic Mutations In Cancer. Nucleic Acids Res. 2019, 47, D941–D947. [Google Scholar] [CrossRef]
- Alexandrov, L.B.; Jones, P.H.; Wedge, D.C.; Sale, J.E.; Campbell, P.J.; Nik-Zainal, S.; Stratton, M.R. Clock-like mutational processes in human somatic cells. Nat. Genet. 2015, 47, 1402–1407. [Google Scholar] [CrossRef]
- Alexandrov, L.B.; Nik-Zainal, S.; Wedge, D.C.; Aparicio, S.A.J.R.; Behjati, S.; Biankin, A.V.; Bignell, G.R.; Bolli, N.; Borg, A.; Borresen-Dale, A.L.; et al. Signatures of mutational processes in human cancer. Nature 2013, 500, 415–421, Erratum in Nature 2013, 502, 258. [Google Scholar] [CrossRef]
- Cerami, E.; Gao, J.; Dogrusoz, U.; Gross, B.E.; Sumer, S.O.; Aksoy, B.A.; Jacobsen, A.; Byrne, C.J.; Heuer, M.L.; Larsson, E.; et al. The cBio cancer genomics portal: An open platform for exploring multidimensional cancer genomics data. Cancer Discov. 2012, 2, 401–404, Erratum in Cancer Discov. 2012, 2, 960. [Google Scholar] [CrossRef]
- Gao, J.; Aksoy, B.A.; Dogrusoz, U.; Dresdner, G.; Gross, B.; Sumer, S.O.; Sun, Y.; Jacobsen, A.; Sinha, R.; Larsson, E.; et al. Integrative analysis of complex cancer genomics and clinical profiles using the cBioPortal. Sci. Signal. 2013, 6, pl1. [Google Scholar] [CrossRef] [PubMed]
- The Cancer Genome Atlas Research Network; Weinstein, J.N.; Collisson, E.A.; Mills, G.B.; Shaw, K.R.M.; Ozenberger, B.A.; Ellrott, K.; Shmulevich, I.; Sander, C.; Stuart, J.M. The Cancer Genome Atlas Pan-Cancer analysis project. Nat. Genet. 2013, 45, 1113–1120. [Google Scholar] [CrossRef] [PubMed]
- Petljak, M.; Alexandrov, L.B. Understanding mutagenesis through delineation of mutational signatures in human cancer. Carcinogenesis 2016, 37, 531–540. [Google Scholar] [CrossRef] [PubMed]
- Loescher, C.M.; Hobbach, A.J.; Linke, W.A. Titin (TTN): From molecule to modifications, mechanics, and medical significance. Cardiovasc. Res. 2022, 118, 2903–2918. [Google Scholar] [CrossRef]
- Wi, D.H.; Cha, J.H.; Jung, Y.S. Mucin in cancer: A stealth cloak for cancer cells. BMB Rep. 2021, 54, 344–355. [Google Scholar] [CrossRef]
- Lawrence, M.S.; Stojanov, P.; Polak, P.; Kryukov, G.G.; Cibulskis, K.; Sivachenko, A.; Carter, S.L.; Stewart, C.; Mermel, C.H.; Roberts, S.A.; et al. Mutational heterogeneity in cancer and the search for new cancer-associated genes. Nature 2013, 499, 214–218. [Google Scholar] [CrossRef]
- Helleday, T.; Eshtad, S.; Nik-Zainal, S. Mechanisms underlying mutational signatures in human cancers. Nat. Rev. Genet. 2014, 15, 585–598. [Google Scholar] [CrossRef]
- Shen, J.C.; Rideout, W.M., 3rd; Jones, P.A. The rate of hydrolytic deamination of 5-methylcytosine in double-stranded DNA. Nucleic Acids Res. 1994, 22, 972–976. [Google Scholar] [CrossRef]
- Nick McElhinny, S.A.; Stith, C.M.; Burgers, P.M.J.; Kunkel, T.A. Inefficient proofreading and biased error rates during inaccurate DNA synthesis by a mutant derivative of Saccharomyces cerevisiae DNA polymerase delta. J. Biol. Chem. 2007, 282, 2324–2332. [Google Scholar] [CrossRef]
- Luo, J. KRAS mutation in pancreatic cancer. Semin. Oncol. 2021, 48, 10–18. [Google Scholar] [CrossRef]
- Bteich, F.; Mohammadi, M.; Li, T.; Bhat, M.A.; Sofianidi, A.; Wei, N.; Kuang, C. Targeting KRAS in Colorectal Cancer: A Bench to Bedside Review. Int. J. Mol. Sci. 2023, 24, 12030. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Gomez-Sanchez, C.E.; Jaquin, D.; Prada, E.T.A.; Meyer, L.S.; Knosel, T.; Schneider, H.; Beuschlein, F.; Reincke, M.; Williams, T.A. Primary Aldosteronism: KCNJ5 Mutations and Adrenocortical Cell Growth. Hypertension 2019, 74, 809–816. [Google Scholar] [CrossRef] [PubMed]
- Lu, C.C.; Yen, R.F.; Peng, K.Y.; Huang, J.Y.; Wu, K.D.; Chueh, J.S.; Lin, W.Y. NP-59 Adrenal Scintigraphy as an Imaging Biomarker to Predict KCNJ5 Mutation in Primary Aldosteronism Patients. Front. Endocrinol. 2021, 12, 644927. [Google Scholar] [CrossRef] [PubMed]
- Staerk, J.; Constantinescu, S.N. The JAK-STAT pathway and hematopoietic stem cells from the JAK2 V617F perspective. JAKSTAT 2012, 1, 184–190. [Google Scholar] [CrossRef]
- McDaniel, A.S.; Hovelson, D.H.; Cani, A.K.; Liu, C.J.; Zhai, Y.; Zhang, Y.; Weizer, A.Z.; Mehra, R.; Feng, F.Y.; Alva, A.S.; et al. Genomic Profiling of Penile Squamous Cell Carcinoma Reveals New Opportunities for Targeted Therapy. Cancer Res. 2015, 75, 5219–5227. [Google Scholar] [CrossRef]
- Zhou, Q.H.; Deng, C.Z.; Li, Z.S.; Chen, J.P.; Yao, K.; Huang, K.B.; Liu, T.Y.; Liu, Z.W.; Qin, Z.K.; Zhou, F.J.; et al. Molecular characterization and integrative genomic analysis of a panel of newly established penile cancer cell lines. Cell Death Dis. 2018, 9, 684. [Google Scholar] [CrossRef]
- Soufir, N.; Queille, S.; Liboutet, M.; Thibaudeau, O.; Bachelier, F.; Delastaing, G.; Balloy, B.C.; Breuer, J.; Janin, A.; Dubertret, L.; et al. Inactivation of the CDKN2A and the p53 tumour suppressor genes in external genital carcinomas and their precursors. Br. J. Dermatol. 2007, 156, 448–453. [Google Scholar] [CrossRef]
- Huang, K.B.; Liu, R.Y.; Peng, Q.H.; Li, Z.S.; Jiang, L.J.; Guo, S.J.; Zhou, Q.H.; Liu, T.Y.; Deng, C.Z.; Yao, K.; et al. EGFR mono-antibody salvage therapy for locally advanced and distant metastatic penile cancer: Clinical outcomes and genetic analysis. Urol. Oncol. 2019, 37, 71–77. [Google Scholar] [CrossRef]
- Ali, S.M.; Pal, S.K.; Wang, K.; Palma, N.A.; Sanford, E.; Bailey, M.; He, J.; Elvin, J.A.; Chmielecky, J.; Squillace, R.; et al. Comprehensive Genomic Profiling of Advanced Penile Carcinoma Suggests a High Frequency of Clinically Relevant Genomic Alterations. Oncologist 2016, 21, 33–39. [Google Scholar] [CrossRef]
- Zehir, A.; Benayed, R.; Shah, R.H.; Syed, A.; Middha, S.; Kim, H.R.; Srinivasan, P.; Gao, J.; Chakravarty, D.; Devlin, S.M.; et al. Mutational landscape of metastatic cancer revealed from prospective clinical sequencing of 10,000 patients. Nat. Med. 2017, 23, 703–713, Erratum in Nat. Med. 2017, 23, 1004. [Google Scholar] [CrossRef]
- Trafalis, D.T.; Alifieris, C.E.; Kalantzis, A.; Verigos, K.E.; Vergadis, C.; Sauvage, S. Evidence for Efficacy of Treatment With the Anti-PD-1 Mab Nivolumab in Radiation and Multichemorefractory Advanced Penile Squamous Cell Carcinoma. J. Immunother. 2018, 41, 300–305. [Google Scholar] [CrossRef] [PubMed]
- Castellnou, S.; Vasijevic, A.; Lapras, V.; RAverot, V.; Alix, E.; Borson-Chazot, F.; Jouanneau, E.; Raverot, G.; Lasolle, H. SST5 expression and USP8 mutation in functioning and silent corticotroph pituitary tumors. Endocr. Connect. 2020, 9, 243–253. [Google Scholar] [CrossRef] [PubMed]
- Martins, C.S.; Camargo, R.C.; Coeli-Lacchini, F.B.; Saggioro, F.P.; Moreira, A.C.; de Castro, M. USP8 Mutations and Cell Cycle Regulation in Corticotroph Adenomas. Horm. Metab. Res. 2020, 52, 117–123. [Google Scholar] [CrossRef] [PubMed]
- Abraham, A.P.; Pai, R.; Beno, D.L.; Chacko, G.; Asha, H.S.; Rajaratnam, S.; Kappor, N.; Thomas, N.; Chacko, A.G. USP8, USP48, and BRAF mutations differ in their genotype-phenotype correlation in Asian Indian patients with Cushing’s disease. Endocrine 2022, 75, 549–559. [Google Scholar] [CrossRef]
- Rebollar-Vega, R.G.; Zuarth-Vazquez, J.M.; Hernandez-Ramirez, L.C. Clinical Spectrum of USP8 Pathogenic Variants in Cushing’s Disease. Arch. Med. Res. 2023, 54, 102899. [Google Scholar] [CrossRef]
- Islam, M.T.; Chen, F.; Chen, H. The oncogenic role of ubiquitin specific peptidase (USP8) and its signaling pathways targeting for cancer therapeutics. Arch. Biochem. Biophys. 2021, 701, 108811. [Google Scholar] [CrossRef]
- Sack, G.H., Jr. Serum Amyloid A (SAA) Proteins. Subcell. Biochem. 2020, 94, 421–436. [Google Scholar]
- Sun, L.; Ye, R.D. Serum amyloid A1, Structure, function and gene polymorphism. Gene 2016, 583, 48–57. [Google Scholar] [CrossRef]
- Fagerberg, L.; Hallstrom, B.M.; Oksvold, P.; Kampf, C.; Djureinovic, D.; Odeberg, J.; Habuka, M.; Tahmasebpoor, S.; Danielsson, A.; Edlund, K.; et al. Analysis of the human tissue-specific expression by genome-wide integration of transcriptomics and antibody-based proteomics. Mol. Cell. Proteom. 2014, 13, 397–406. [Google Scholar] [CrossRef]




| Cancer | Gene | Mutation AA 1 | Mutation CDS 2 | Cancer | Gene | Mutation AA | Mutation CDS | Cancer | Gene | Mutation AA | Mutation CDS |
|---|---|---|---|---|---|---|---|---|---|---|---|
| Adrenal gland | KCNJ5 | G151R | c.451G>A | Large intestine | KRAS | G12A/D/V | c.35G>C/A/T | Penis | TP53 | P72R | c.215C>G |
| L168R | c.503T>G | G12C/R/S | c.34G>T/C/A | R175H | c.524G>A | ||||||
| E145Q | c.433G>C | G13A/D/V | c.38G>C/A/T | R248Q | c.743G>A | ||||||
| T158A | c.472A>G | G13C/R/S | c.37G>T/C/A | R273H | c.818G>A | ||||||
| PRKACA | L206R | c.617T>G | K117N | c.351A>T | HRAS | G12D | c.35G>A | ||||
| Biliary tract | KRAS | G12A/D/V | c.35G>C/A/T | K117R | c.350A>G | G12S | c.34G>A | ||||
| G12C/R/S | c.34G>T/C/A | L19F | c.57G>C | G13R/S | c.37G>C/A | ||||||
| G13C/R/S | c.37G>T/C/A | Q22K | c.64C>A | G13V | c.38G>T | ||||||
| G13D | c.38G>A | Q22R | c.65A>G | KRAS | G12D | c.35G>A | |||||
| Q61H | c.183A>C | Q61E/K | c.181C>G/A | G12C/S | c.34G>T/A | ||||||
| Bone | H3F3A | G35W | c.103G>T | Q61L/P/R | c.182A>T/C/G | CDKN2A | H83Y | c.247C>T | |||
| CNS 3 | IDH1 | R132H/L/S | c.395G>A/T | Q61H | c.183A>C | SAA1 | R58* | c.172C>T | |||
| R132C/G/S | c.394C>T/G/A | R68S | c.204G>C | R80* | c.238C>T | ||||||
| V178I | c.532G>A | V14I | c.40G>A | T77S | c.230C>G | ||||||
| Eye | GNAQ | Q209K | c.625C>A | Lung | KRAS | G12A/D/V | c.35G>C/A/T | Pituitary | CTNNB1 | D32H/V/Y | c.95A>G/T |
| Q209L/P/R | c.626A>T/C/G | G12C/R/S | c.34G>T/C/A | D32H/N/Y | c.94G>C/A/T | ||||||
| Q209H | c.627A>C | G13A/D/V | c.38G>C/A/T | G34R | c.100G>C | ||||||
| R183Q | c.548G>A | G13C/R/S | c.37G>T/C/A | G34V | c.101G>T | ||||||
| GNA11 | R209L/P/R | c.626A>T/C/G | L19F | c.57G>C | S33A/F/P | c.97T>G/C | |||||
| R209H | c.627G>T | Q61K | c.181C>A | S33C/F/Y | c.98C>G/T/A | ||||||
| R183C | c.547C>T | Q61L/P/R | c.182A>T/C/G | T41I | c.122C>T | ||||||
| BRAF | V600E | c.1799T>A | Q61H | c.183A>C | GNAS | Q870L/R | c.2609A>T/G | ||||
| Gastro-intestinal tract | KRAS | G12A/D/V | c.35G>C/A/T | Ovary | KRAS | G12A/D/V | c.35G>C/A/T | R844C/S | c.2530C>T/A | ||
| G12C/R/S | c.34G>T/C/A | G12C/R/S | c.34G>T/C/A | R844H | c.2531G>A | ||||||
| G13D | c.38G>A | G13A/D/V | c.38G>C/A/T | HRAS | G12V | c.35G>T | |||||
| Haem and lymph 4 | JAK2 | V617F/I | c.1849G>T/A | G13C/R/S | c.37G>T/C/A | G12R | c.34G>C | ||||
| R683G | c.2047A>G | Q61L | c.182A>T | BRAF | V600E | c.1799T>A | |||||
| R683K | c.2048G>A | Q61H | c.183A>C | USP8 | P720Q/R | c.2159C>A/G | |||||
| R683S | c.2049A>T | Pancreas | KRAS | G12A/D/V | c.35G>C/A/T | S718P | c.2152T>C | ||||
| R867Q | c.2600G>A | G12C/R/S | c.34G>T/C/A | S718Y | c.2153C>A | ||||||
| R867W | c.2599C>T | G13A/D/V | c.38G>C/A/T | Testis | KRAS | G12A/D/V | c.35G>C/A/T | ||||
| R938Q | c.2813G>A | G13C/R/S | c.37G>T/C/A | G12C/R/S | c.34G>T/C/A | ||||||
| T875N | c.2624C>A | Q61K | c.181C>A | Thyroid | BRAF | V600E | c.1799T>A | ||||
| G571S | c.1711G>A | Q61L/P/R | c.182A>T/C/G | E26A | c.77A>C | ||||||
| I682F | c.2044A>T | Q61H | c.183A>C | K601E | c.1801A>G | ||||||
| Small intestine | KRAS | G12A/D/V | c.35G>C/A/T | Peritoneum | KRAS | G12A/D/V | c.35G>C/A/T | S36A | c.106T>G | ||
| G12C/R/S | c.34G>T/C/A | G12C/R/S | c.34G>T/C/A | ||||||||
| G13D/V | c.38G>A/T | G13D | c.38G>A | ||||||||
| G13C | c.37G>T | G13C/R | c.37G>T/C | ||||||||
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khadre, A.; Dou, Y.; Mirzaei, G.C.; Petreaca, R.C. Nucleotide Substitution Biases in Related Cancer Driver Genes. Int. J. Mol. Sci. 2025, 26, 11903. https://doi.org/10.3390/ijms262411903
Khadre A, Dou Y, Mirzaei GC, Petreaca RC. Nucleotide Substitution Biases in Related Cancer Driver Genes. International Journal of Molecular Sciences. 2025; 26(24):11903. https://doi.org/10.3390/ijms262411903
Chicago/Turabian StyleKhadre, Adam, Yifan Dou, Golrokh C. Mirzaei, and Ruben C. Petreaca. 2025. "Nucleotide Substitution Biases in Related Cancer Driver Genes" International Journal of Molecular Sciences 26, no. 24: 11903. https://doi.org/10.3390/ijms262411903
APA StyleKhadre, A., Dou, Y., Mirzaei, G. C., & Petreaca, R. C. (2025). Nucleotide Substitution Biases in Related Cancer Driver Genes. International Journal of Molecular Sciences, 26(24), 11903. https://doi.org/10.3390/ijms262411903

