GSTP1 and GSTO1 Variant Alleles Affect Susceptibility to Helicobacter pylori Infection and Severity of Helicobacter pylori-Associated Clinical Manifestations †
Abstract
:1. Introduction
2. Results
2.1. Demographic and Clinical Characteristics
2.2. Distribution of GSTO1 rs4925, GSTO2 rs156697, GSTP1 rs1695 and GSTP1 rs1138272 Genotypes Among HP-Negative and HP-Positive Patients
2.3. Association Between GST Polymorphisms and Histological Findings in HP-Negative Patients
2.4. Association Between GST Polymorphisms and Endoscopic and Histological Findings in HP-Positive Patients
3. Discussion
Clinical Relevance and Future Directions
4. Materials and Methods
4.1. Study Population
4.2. Patient Selection
4.3. Clinical Characteristics and Questionnaire
4.4. Endoscopy and Pathophysiology
4.5. Glutathione Transferase Genotyping
4.6. Statistical Analysis
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hooi, J.K.Y.; Lai, W.Y.; Ng, W.K.; Suen, M.M.Y.; Underwood, F.E.; Tanyingoh, D.; Malfertheiner, P.; Graham, D.Y.; Wong, V.W.S.; Wu, J.C.Y.; et al. Global Prevalence of Helicobacter pylori Infection: Systematic Review and Meta-Analysis. Gastroenterology 2017, 153, 420–429. [Google Scholar] [CrossRef] [PubMed]
- Malfertheiner, P.; Camargo, M.; El-Omar, E.M.; Liou, J.-M.; Peek, R.M.; Schulz, C.; Smith, S.; Suerbaum, S. Helicobacter pylori infection. Nat. Rev. Dis. Prim. 2023, 9, 19. [Google Scholar] [CrossRef] [PubMed]
- Malfertheiner, P.; Megraud, F.; O’Morain, C.; Gisbert, J.P.; Kuipers, E.J.; Axon, A.; Bazzoli, F.; Gasbarrini, A.; Atherton, J.; Graham, D.Y.; et al. Management of Helicobacter pylori infection-the Maastricht V/Florence consensus report. Gut 2017, 66, 6–30. [Google Scholar] [CrossRef]
- Săsăran, M.O.; Meliț, L.E.; Dobru, E.D. Microrna modulation of host immune response and inflammation triggered by Helicobacter pylori. Int. J. Mol. Sci. 2021, 22, 1406. [Google Scholar] [CrossRef] [PubMed]
- Wen, S.H.; Hong, Z.W.; Chen, C.C.; Chang, H.W.; Fu, H.W. Helicobacter pylori neutrophil-activating protein directly interacts with and activates toll-like receptor 2 to induce the secretion of interleukin-8 from neutrophils and atra-induced differentiated hl-60 cells. Int. J. Mol. Sci. 2021, 22, 11560. [Google Scholar] [CrossRef] [PubMed]
- Codolo, G.; Facchinello, N.; Papa, N.; Bertocco, A.; Coletta, S.; Benna, C.; Dall’olmo, L.; Mocellin, S.; Tiso, N.; de Bernard, M. Macrophage-Mediated Melanoma Reduction after HP-NAP Treatment in a Zebrafish Xenograft Model. Int. J. Mol. Sci. 2022, 23, 1644. [Google Scholar] [CrossRef] [PubMed]
- Butcher, L.D.; den Hartog, G.; Ernst, P.B.; Crowe, S.E. Oxidative Stress Resulting from Helicobacter pylori Infection Contributes to Gastric Carcinogenesis. Cell. Mol. Gastroenterol. Hepatol. 2017, 3, 316–322. [Google Scholar] [CrossRef] [PubMed]
- McKee, C.M.; Coll, R.C. NLRP3 inflammasome priming: A riddle wrapped in a mystery inside an enigma. J. Leukoc. Biol. 2020, 108, 937–952. [Google Scholar] [CrossRef] [PubMed]
- Pachathundikandi, S.K.; Blaser, N.; Bruns, H.; Backert, S. Helicobacter pylori Avoids the Critical Activation of NLRP3 Inflammasome-Mediated Production of Oncogenic Mature IL-1β in Human Immune Cells. Cancers 2020, 12, 803. [Google Scholar] [CrossRef]
- Tang, W.; Guan, M.; Li, Z.; Pan, W.; Wang, Z. A2BR facilitates the pathogenesis of H. pylori-associated GU by inducing oxidative stress through p38 MAPK phosphorylation. Heliyon 2023, 9, e21004. [Google Scholar] [CrossRef]
- Thai, T.D.; Chuenchom, C.; Donsa, W.; Faksri, K.; Sripa, B.; Edwards, S.W.; Salao, K. Helicobacter pylori extract induces purified neutrophils to produce reactive oxygen species only in the presence of plasma. Biomed. Rep. 2023, 19, 89. [Google Scholar] [CrossRef] [PubMed]
- Popovic, D.; Stojanovic, M.; Milosavljevic, T.; Stojkovic-Lalosevic, M.; Glisic, T.; Savic, P.; Filipovic, B. Oxidative Stress in Gastrointestinal Ulcer Disease: A Gastroenterologist‘s View. J. Gastrointest. Liver Dis. 2023, 32, 277–282. [Google Scholar] [CrossRef] [PubMed]
- Hayes, J.D.; Flanagan, J.U.; Jowsey, I.R. Glutathione transferases. Annu. Rev. Pharmacol. Toxicol. 2005, 45, 51–88. [Google Scholar] [CrossRef] [PubMed]
- Tatemichi, M.; Iwasaki, M.; Sasazuki, S.; Tsugane, S. Association between polymorphisms in glutathione S -transferase Mu3 and IgG titer levels in serum against Helicobacter pylori. J. Hum. Genet. 2009, 54, 557–563. [Google Scholar] [CrossRef] [PubMed]
- Shirin, H.; Pinto, J.T.; Liu, L.U.; Merzianu, M.; Mia, E.; Moss, S.F. Helicobacter pylori decreases gastric mucosal glutathione. Cancer Lett. 2001, 164, 127–133. [Google Scholar] [CrossRef] [PubMed]
- Hughes, M.M.; Hooftman, A.; Angiari, S.; Tummala, P.; Zaslona, Z.; Runtsch, M.C.; McGettrick, A.F.; Sutton, C.E.; Diskin, C.; Rooke, M.; et al. Glutathione Transferase Omega-1 Regulates NLRP3 Inflammasome Activation through NEK7 Deglutathionylation. Cell Rep. 2019, 29, 151–161.e5. [Google Scholar] [CrossRef] [PubMed]
- Djukic, T.; Stevanovic, G.; Coric, V.; Bukumiric, Z.; Pljesa-Ercegovac, M.; Matic, M.; Jerotic, D.; Todorovic, N.; Asanin, M.; Ercegovac, M.; et al. GSTO1, GSTO2 and ACE2 Polymorphisms Modify Susceptibility to Developing COVID-19. J. Pers. Med. 2022, 12, 458. [Google Scholar] [CrossRef]
- Petrovic, M.; Simic, T.; Djukic, T.; Radic, T.; Savic-Radojevic, A.; Zekovic, M.; Durutovic, O.; Janicic, A.; Milojevic, B.; Kajmakovic, B.; et al. The Polymorphisms in GSTO Genes (GSTO1 rs4925, GSTO2 rs156697, and GSTO2 rs2297235) Affect the Risk for Testicular Germ Cell Tumor Development: A Pilot Study. Life 2023, 13, 1269. [Google Scholar] [CrossRef] [PubMed]
- Pavlovic, D.; Ristic, S.; Djukanovic, L.; Matic, M.; Kovacevic, M.; Pljesa-Ercegovac, M.; Hadzi-Djokic, J.; Savic-Radojevic, A.; Djukic, T. The GSTO2 (rs156697) Polymorphism Modifies Diabetic Nephropathy Risk. Medicina 2023, 59, 164. [Google Scholar] [CrossRef]
- Miraghaee, S.S.; Sohrabi, M.; Jalili, C.; Bahrehmand, F. Assessment of GSTO1 (A140D) and GSTO2 (N142D) Gene Polymorphisms in Iranian Women with Polycystic Ovarian Syndrome. Rep. Biochem. Mol. Biol. 2020, 9, 8–13. [Google Scholar] [CrossRef]
- Sobot, V.; Stamenkovic, M.; Simic, T.; Jerotic, D.; Djokic, M.; Jaksic, V.; Bozic, M.; Milic, J.; Savic-Radojevic, A.; Djukic, T. Association of GSTO1, GSTO2, GSTP1, GPX1 and SOD2 polymorphism with primary open angle glaucoma. Exp. Eye Res. 2022, 214, 108863. [Google Scholar] [CrossRef]
- Whitbread, A.K.; Masoumi, A.; Tetlow, N.; Schmuck, E.; Coggan, M.; Board, P.G. Characterization of the omega class of glutathione transferases. Methods Enzymol. 2005, 401, 78–99. [Google Scholar] [CrossRef] [PubMed]
- Tanaka-Kagawa, T.; Jinno, H.; Hasegawa, T.; Makino, Y.; Seko, Y.; Hanioka, N.; Ando, M. Functional characterization of two variant human GSTO 1-1s (Ala140Asp and Thr217Asn). Biochem. Biophys. Res. Commun. 2003, 301, 516–520. [Google Scholar] [CrossRef] [PubMed]
- Whitbread, A.K.; Tetlow, N.; Eyre, H.J.; Sutherland, G.R.; Board, P.G. Characterization of the human Omega class glutathione transferase genes and associated polymorphisms. Pharmacogenetics 2003, 13, 131–144. [Google Scholar] [CrossRef]
- Jones, J.T.; Qian, X.; van der Velden, J.L.J.; Chia, S.B.; McMillan, D.H.; Flemer, S.; Hoffman, S.M.; Lahue, K.G.; Schneider, R.W.; Nolin, J.D.; et al. Glutathione S-transferase pi modulates NF-κB activation and pro-inflammatory responses in lung epithelial cells. Redox Biol. 2016, 8, 375–382. [Google Scholar] [CrossRef]
- Holley, S.I.; Fryer, A.A.; Haycock, J.W.; Grubb, S.E.W.; Strange, R.C.; Hoban, P.R. Differential effects of glutathione S-transferase pi (GSTP1) haplotypes on cell proliferation and apoptosis. Carcinogenesis 2007, 28, 2268–2273. [Google Scholar] [CrossRef]
- Wullaert, A.; Bonnet, M.C.; Pasparakis, M. NF-κB in the regulation of epithelial homeostasis and inflammation. Cell Res. 2010, 21, 146–158. [Google Scholar] [CrossRef]
- Karayiannis, I.; Martinez-Gonzalez, B.; Kontizas, E.; Kokkota, A.V.; Petraki, K.; Mentis, A.; Kollia, P.; Sgouras, D.N. Induction of MMP-3 and MMP-9 expression during Helicobacter pylori infection via MAPK signaling pathways. Helicobacter 2023, 28, e12987. [Google Scholar] [CrossRef]
- Manevich, Y.; Hutchens, S.; Tew, K.D.; Townsend, D.M. Allelic variants of glutathione S-transferase P1-1 differentially mediate the peroxidase function of peroxiredoxin VI and alter membrane lipid peroxidation. Free Radic. Biol. Med. 2013, 54, 62–70. [Google Scholar] [CrossRef] [PubMed]
- Thévenin, A.F.; Zony, C.L.; Bahnson, B.J.; Colman, R.F. GST pi modulates JNK activity through a direct interaction with JNK substrate, ATF2. Protein Sci. 2011, 20, 834–848. [Google Scholar] [CrossRef]
- Adler, V.; Yin, Z.; Fuchs, S.Y.; Benezra, M.; Rosario, L.; Tew, K.D.; Pincus, M.R.; Sardana, M.; Henderson, C.J.; Wolf, C.R.; et al. Regulation of JNK signaling by GSTp. EMBO J. 1999, 18, 1321–1334. [Google Scholar] [CrossRef] [PubMed]
- Eddin, T.M.J.; Nasr, S.M.; Gupta, I.; Zayed, H.; Al Moustafa, A.E. Helicobacter pylori and epithelial mesenchymal transition in human gastric cancers: An update of the literature. Heliyon 2023, 9, e18945. [Google Scholar] [CrossRef]
- Al-Kuraishy, H.M.; Al-Gareeb, A.I.; Almulaiky, Y.Q.; Cruz-Martins, N.; Batiha, G.E.S. Role of leukotriene pathway and montelukast in pulmonary and extrapulmonary manifestations of COVID-19: The enigmatic entity. Eur. J. Pharmacol. 2021, 904, 174196. [Google Scholar] [CrossRef] [PubMed]
- Negovan, A.; Iancu, M.; Moldovan, V.; Mocan, S.; Banescu, C. The interaction between GSTT1, GSTM1 and GSTP1 Ile105Val Gene Polymorphisms and Environmental Risk Factors in Premalignant Gastric Lesions Risk. Biomed Res. Int. 2017, 2017, 7365080. [Google Scholar] [CrossRef]
- Kang, J.M.; Kim, N.; Cho, S.; Lee, D.H.; Park, Y.S.; Kim, Y.R. Effects of Genetic Polymorphisms of Glutathione S-transferase P1 on Helicobacter pylori-associated Gastric Cancer. Gut Liver 2008, 2, 23–29. [Google Scholar] [CrossRef] [PubMed]
- García-gonzález, M.A.; Quintero, E.; Bujanda, L.; Nicolás, D.; Benito, R.; Strunk, M.; Santolaria, S.; Sopeña, F.; Badía, M.; Hijona, E.; et al. Relevance of GSTM1, GSTT1, and GSTP1 gene polymorphisms to gastric cancer susceptibility and phenotype. Mutagenesis 2012, 27, 771–777. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.H.; Xian, J.F.; Luo, L.P. Association between GSTM1, GSTT1, and GSTP1 polymorphisms and gastric cancer risk, and their interactions with environmental factors. Genet. Mol. Res. 2017, 16, gmr16018877. [Google Scholar] [CrossRef] [PubMed]
- Board, P.G.; Menon, D. Glutathione transferases, regulators of cellular metabolism and physiology. Biochim. Biophys. Acta 2013, 1830, 3267–3288. [Google Scholar] [CrossRef] [PubMed]
- Levy, M.; Thaiss, C.A.; Zeevi, D.; Dohnalová, L.; Zilberman-Schapira, G.; Mahdi, J.A.; David, E.; Savidor, A.; Korem, T.; Herzig, Y.; et al. Microbiota-Modulated Metabolites Shape the Intestinal Microenvironment by Regulating NLRP6 Inflammasome Signaling. Cell 2015, 163, 1428–1443. [Google Scholar] [CrossRef]
- Allen, I.C.; Tekippe, E.M.; Woodford, R.T.; Uronis, J.M.; Holl, E.K.; Rogers, A.B.; Herfarth, H.H.; Jobin, C.; Ting, J.P. The NLRP3 inflammasome functions as a negative regulator of tumorigenesis during colitis-associated cancer. J. Exp. Med. 2010, 207, 1045–1056. [Google Scholar] [CrossRef]
- Anand, P.K.; Malireddi, R.S.; Lukens, J.R.; Vogel, P.; Bertin, J.; Lamkanfi, M.; Kanneganti, T.D. NLRP6 negatively regulates innate immunity and host defence against bacterial pathogens. Nature 2012, 488, 389–393. [Google Scholar] [CrossRef] [PubMed]
- Tran, L.S.; Ying, L.; D’Costa, K.; Wray-McCann, G.; Kerr, G.; Le, L.; Allison, C.C.; Ferrand, J.; Chaudhry, H.; Emery, J.; et al. NOD1 mediates interleukin-18 processing in epithelial cells responding to Helicobacter pylori infection in mice. Nat. Commun. 2023, 14, 3804. [Google Scholar] [CrossRef] [PubMed]
- Kim, D.; Park, J.; Franchi, L.; Backert, S. The Cag pathogenicity island and interaction between TLR2/NOD2 and NLRP3 regulate IL-1β production in Helicobacter pylori infected dendritic cells. Eur. J. Immunol. 2013, 43, 2650–2658. [Google Scholar] [CrossRef] [PubMed]
- Salvatori, S.; Marafini, I.; Laudisi, F.; Monteleone, G.; Stolfi, C. Helicobacter pylori and Gastric Cancer: Pathogenetic Mechanisms. Int. J. Mol. Sci. 2023, 24, 2895. [Google Scholar] [CrossRef] [PubMed]
- Strowitzki, M.J.; Cummins, E.P.; Taylor, C.T. Protein Hydroxylation by Hypoxia-Inducible Factor (HIF) Hydroxylases: Unique or Ubiquitous? Cells 2019, 8, 384. [Google Scholar] [CrossRef] [PubMed]
- Noto, J.M.; Piazuelo, M.B.; Romero-gallo, J.; Delgado, A.G.; Suarez, G. Targeting hypoxia-inducible factor-1 alpha suppresses Helicobacter pylori-induced gastric injury via attenuation of both cag -mediated microbial virulence and proinflammatory host responses. Gut Microbes 2023, 15, 2263936. [Google Scholar] [CrossRef]
- Rugge, M.; Genta, R.M. Staging and grading of chronic gastritis. Hum. Pathol. 2005, 36, 228–233. [Google Scholar] [CrossRef] [PubMed]
- Rugge, M.; Meggio, A.; Pennelli, G.; Piscioli, F.; Giacomelli, L.; De Pretis, G.; Graham, D.Y. Gastritis staging in clinical practice: The OLGA staging system. Gut 2007, 56, 631–636. [Google Scholar] [CrossRef] [PubMed]
- Pantic, I.; Lugonja, S.; Jerotic, D.J.; Savic-Radojevic, A.; Milovanovic, T. GSTP1 polymorphisms modify susceptibility to Helicobacter pylori infection. In Proceedings of the United European Gastroenterology Week, Vienna, Austria, 12–15 October 2024. [Google Scholar]
HP-Negative, n = 107 | HP-Positive, n = 101 | p | |
---|---|---|---|
Age (years ± SD) | 55.08 ± 15.44 | 56.1 ± 14.48 | 0.626 |
Sex, n (%) | |||
Female | 64 (60) | 64 (63) | |
Male | 43 (40) | 37 (36) | 0.599 |
Obesity, n (%) | |||
No | 87 (81) | 81 (80) | |
Yes | 20 (19) | 20 (20) | 0.668 |
HTA, n (%) | |||
No | 56 (52) | 59 (58) | |
Yes | 51 (48) | 42 (42) | 0.378 |
T2D, n (%) | |||
No | 90 (84) | 81 (80) | |
Yes | 17 (16) | 20 (20) | 0.461 |
Smoking, n (%) | |||
No | 76 (71) | 63 (62) | |
Yes | 31 (29) | 38 (38) | 0.185 |
ASA, n (%) | |||
No | 79 (74) | 87 (86) | |
Yes | 28 (26) | 14 (14) | 0.020 |
NSAID, n (%) | |||
No | 61 (57) | 63 (62) | |
Yes | 46 (43) | 38 (38) | 0.259 |
Alcohol, n (%) | |||
No | 80 (75) | 77 (76) | |
Yes | 27 (25) | 24 (24) | 0.805 |
Endoscopic findings, n (%) | |||
Gastritis/gastroduodenitis | 98 (92) | 85 (84) | |
Erosive gastritis | 9 (8) | 8 (8) | |
Peptic ulcer | 0 (0) | 8 (8) | 0.012 |
Inflammatory infiltrate, n (%) | |||
Mild | 91 (85) | 27 (27) | |
Moderate/severe | 16 (15) | 74 (73) | <0.001 |
Inflammation activity, n (%) | |||
No | 98 (92) | 27 (27) | |
Yes | 9 (8) | 74 (73) | <0.001 |
Gastric atrophy, n (%) | |||
No | 78 (73) | 53 (52) | |
Yes | 29 (27) | 48 (48) | 0.002 |
Intestinal metaplasia, n (%) | |||
No | 98 (92) | 81 (80) | |
Yes | 9 (8) | 20 (20) | 0.018 |
Gastritis stage, n (%) | |||
Stage I/II | 99 (93) | 53 (53) | |
Stage III/IV | 8 (7) | 48 (47) | <0.001 |
OLGA stage, n (%) | |||
No atrophy | 78 (73) | 54 (53) | |
Low risk (stage I/II) | 29 (27) | 40 (40) | |
High risk (stage III) | 0 (0) | 7 (7) | 0.002 |
Histology, n (%) | |||
Normal findings/mild inflammation | 61 (57) | 11 (11) | |
Inflammation | 13 (12) | 38 (38) | |
Atrophy and intestinal metaplasia | 33 (31) | 52 (51) | <0.001 |
Peptic ulcer, n (%) | |||
No | 107 (100) | 93 (92) | |
Yes | 0 (0) | 8 (8) | 0.003 |
NMR ± SD | 10.10 ± 5.08 | 10.22 ± 7.87 | 0.897 |
Leu (×109/L) ± SD | 7.81 ± 2.79 | 7.94 ± 2.2 | 0.723 |
Neu (×109/L) ± SD | 4.95 ± 2.38 | 4.83 ± 1.99 | 0.702 |
Mon (×109/L) ± SD | 0.53 ± 0.2 | 0.58 ± 0.33 | 0.187 |
Lym (×109/L) ± SD | 2.07 ± 0.82 | 2.28 ± 1 | 0.104 |
Genotype | HP-Negative, n (%) | HP-Positive, n (%) | OR (95%CI) | p |
---|---|---|---|---|
GSTO1 rs4925 | ||||
*C/C | 73 (70) | 64 (65) | 1 a | |
*C/A | 21 (20) | 21 (21) | 1.04 (0.51–2.13) | 0.898 |
*A/A | 11 (10) | 14 (14) | 1.71 (0.69–4.18) | 0.241 |
*C/A + *A/A | 32 (30) | 35 (35) | 1.25 (0.69–2.28) | 0.452 |
GSTO2 rs156697 | ||||
*A/A | 38 (36) | 43 (43) | 1 a | |
*A/G | 56 (52) | 41 (41) | 0.65 (0.35–1.21) | 0.178 |
*G/G | 13 (12) | 17 (17) | 1.22 (0.52–2.88) | 0.649 |
*A/G + *G/G | 69 (64) | 58 (57) | 0.76 (0.43–1.36) | 0.359 |
GSTP1 rs1695 | ||||
*A/A | 47 (44) | 35 (35) | 1 a | |
*A/G | 53 (50) | 50 (49) | 1.23 (0.68–2.26) | 0.486 |
*G/G | 7 (6) | 16 (16) | 3.21 (1.15–8.91) | 0.025 |
*A/G + *G/G | 60 (56) | 66 (65) | 1.45 (0.82–2.59) | 0.203 |
GSTP1 rs1138272 | ||||
*C/C | 92 (87) | 74 (73) | 1 a | |
*C/T | 14 (13) | 22 (22) | 1.86 (0.87–3.95) | 0.107 |
*T/T | 0 (0) | 5 (5) | / | / |
*C/T + *T/T | 14 (13) | 27 (27) | 2.36 (1.14–4.89) | 0.021 |
Haplotype | Polymorphism | HP-Negative % | HP-Positive % | OR (95%CI) | p | |
---|---|---|---|---|---|---|
GSTO1 rs4925 | GSTO2 rs156697 | |||||
H1 | *C | *A | 55 | 55 | 1.00 a | |
H2 | *C | *G | 25 | 21 | 0.82 (0.49–1.39) | 0.46 |
H3 | *A | *G | 13 | 16 | 1.4 (0.69–1.90) | 0.61 |
H4 | *A | *A | 7 | 8 | 1.10(0.51–2.37) | 0.81 |
GSTP1 rs1695 | GSTP1rs1138272 | |||||
H1 | *A | *C | 68 | 56 | 1.00 a | |
H2 | *G | *C | 25 | 28 | 1.37 (0.79–2.38) | 0.26 |
H3 | *G | *T | 6 | 13 | 3.15 (1.29–7.67) | 0.012 |
H4 | *A | *T | 1 | 3 | 2.24 (0.27–18.30) | 0.45 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pantic, I.; Lugonja, S.; Jerotic, D.; Pljesa-Ercegovac, M.; Matic, M.; Bakovic, N.; Vojnovic, M.; Simic, T.; Milovanovic, T.; Savic-Radojevic, A. GSTP1 and GSTO1 Variant Alleles Affect Susceptibility to Helicobacter pylori Infection and Severity of Helicobacter pylori-Associated Clinical Manifestations. Int. J. Mol. Sci. 2025, 26, 488. https://doi.org/10.3390/ijms26020488
Pantic I, Lugonja S, Jerotic D, Pljesa-Ercegovac M, Matic M, Bakovic N, Vojnovic M, Simic T, Milovanovic T, Savic-Radojevic A. GSTP1 and GSTO1 Variant Alleles Affect Susceptibility to Helicobacter pylori Infection and Severity of Helicobacter pylori-Associated Clinical Manifestations. International Journal of Molecular Sciences. 2025; 26(2):488. https://doi.org/10.3390/ijms26020488
Chicago/Turabian StylePantic, Ivana, Sofija Lugonja, Djurdja Jerotic, Marija Pljesa-Ercegovac, Marija Matic, Nikola Bakovic, Marko Vojnovic, Tatjana Simic, Tamara Milovanovic, and Ana Savic-Radojevic. 2025. "GSTP1 and GSTO1 Variant Alleles Affect Susceptibility to Helicobacter pylori Infection and Severity of Helicobacter pylori-Associated Clinical Manifestations" International Journal of Molecular Sciences 26, no. 2: 488. https://doi.org/10.3390/ijms26020488
APA StylePantic, I., Lugonja, S., Jerotic, D., Pljesa-Ercegovac, M., Matic, M., Bakovic, N., Vojnovic, M., Simic, T., Milovanovic, T., & Savic-Radojevic, A. (2025). GSTP1 and GSTO1 Variant Alleles Affect Susceptibility to Helicobacter pylori Infection and Severity of Helicobacter pylori-Associated Clinical Manifestations. International Journal of Molecular Sciences, 26(2), 488. https://doi.org/10.3390/ijms26020488