The Significance of Serum Immunoglobulin Concentrations in Children with Autism Spectrum Disorders: In Search of Potential Blood Biomarkers
Abstract
1. Introduction
2. Results
3. Discussion
4. Material and Methods
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Gesundheit, B.; Rosenzweig, J.P.; Naor, D.; Lerer, B.; Zachor, D.A.; Procházka, V.; Melamed, M.; Kristt, D.A.; Steinberg, A.; Shulman, C.; et al. Immunological and autoimmune considerations of autism spectrum disorders. J. Autoimmun. 2013, 44, 1–7. [Google Scholar] [CrossRef]
- Gupta, S.; Ellis, S.E.; Ashar, F.N.; Moes, A.; Bader, J.S.; Zhan, J.; West, A.B.; Arking, D.E. Transcriptome analysis reveals dysregulation of innate immune response genes and neuronal activity-dependent genes in autism. Nat. Commun. 2014, 5, 5748. [Google Scholar] [CrossRef]
- Rose, S.; Melnyk, S.; Pavliv, O.; Bai, S.; Nick, T.G.; Frye, R.; James, S.J. Evidence of oxidative damage and inflammation associated with low glutathione redox status in the autism brain. Transl. Psychiatry 2012, 2, e134. [Google Scholar] [CrossRef]
- Yuen, R.K.C.; Merico, D.; Bookman, M.; Howe, J.L.; Thiruvahindrapuram, B.; Patel, R.V.; Whitney, J.; Deflaux, N.; Bingham, J.; Wang, Z.; et al. Whole genome sequencing resource identifies 18 new candidate genes for autism spectrum disorder. Nat. Neurosci. 2017, 20, 602–611. [Google Scholar] [CrossRef]
- Zaman, S.; Yazdani, U.; Deng, Y.; Li, W.; Gadad, B.S.; Hynan, L.; Karp, D.; Roatch, N.; Schutte, C.; Marti, C.N.; et al. A search for blood biomarkers for autism: Peptoids. Sci. Rep. 2016, 6, 19164. [Google Scholar] [CrossRef]
- Ashwood, P.; Krakowiak, P.; Hertz-Picciotto, I.; Hansen, R.; Pessah, I.N.; Van de Water, J. Altered T cell responses in children with autism. Brain Behav. Immun. 2011, 25, 840–849. [Google Scholar] [CrossRef]
- Enstrom, A.M.; Lit, L.; Onore, C.E.; Gregg, J.P.; Hansen, R.L.; Pessah, I.N.; Hertz-Picciotto, I.; Van de Water, J.A.; Sharp, F.R.; Ashwood, P. Altered gene expression and function of peripheral blood natural killer cells in children with autism. Brain Behav. Immun. 2009, 23, 124–133. [Google Scholar] [CrossRef] [PubMed]
- Bjørklund, G.; Saad, K.; Chirumbolo, S.; Kern, J.; Geier, D.; Geier, M.; Urbina, M. Immune dysfunction and neuroinflammation in autism spectrum disorder. Acta Neurobiol. Exp. 2016, 76, 257–268. [Google Scholar] [CrossRef] [PubMed]
- Filiano, A.J.; Gadani, S.P.; Kipnis, J. Interactions of innate and adaptive immunity in brain development and function. Brain Res. 2015, 1617, 18–27. [Google Scholar] [CrossRef] [PubMed]
- Filiano, A.J.; Xu, Y.; Tustison, N.J.; Marsh, R.L.; Baker, W.; Smirnov, I.; Overall, C.C.; Gadani, S.P.; Turner, S.D.; Weng, Z.; et al. Unexpected role of interferon-c in regulating neuronal connectivity and social behaviour. Nature 2016, 535, 425–429. [Google Scholar] [CrossRef]
- Meltzer, A.; Van de Water, J. The Role of the Immune System in Autism Spectrum Disorder. Neuropsychopharmacology 2017, 42, 284–298. [Google Scholar] [CrossRef]
- Gołąb, J.; Lasek, W.; Nowis, D.; Stokłosa, T. Immunologia. Wyd. 8; Wydawnictwo Naukowe PWN SA: Warszawa, Poland, 2023; pp. 35–41. ISBN 9788301230081. [Google Scholar]
- Masi, A.; Glozier, N.; Dale, R.; Guastella, A.J. The Immune System. Cytokines. and Biomarkers in Autism Spectrum Disorder. Neurosci. Bull. 2017, 33, 194–204. [Google Scholar] [CrossRef]
- Pangrazzi, L.; Balasco, L.; Bozzi, Y. Oxidative Stress and Immune System Dysfunction in Autism Spectrum Disorders. Int. J. Mol. Sci. 2020, 21, 3293. [Google Scholar] [CrossRef]
- Patra, S.; Kar, S.K. Autism spectrum disorder in India: A scoping review. Int. Rev. Psychiatry 2021, 33, 81–112. [Google Scholar] [CrossRef]
- Raymond, L.J.; Deth, R.C.; Ralston, N.V. Potential role of selenoenzymes and antioxidant metabolism in relation to autism etiology and pathology. Autism Res. Treat. 2014, 2014, 164938. [Google Scholar] [CrossRef]
- Jones, K.L.; Van de Water, J. Maternal autoantibody related autism: Mechanisms and pathways. Mol. Psychiatry 2018, 24, 252–265. [Google Scholar] [CrossRef] [PubMed]
- Halepoto, D.M.; AL-Ayadhi, L.Y.; Alhowikan, A.M.; Elamin, N.E. Role of autoimmunity in Neuronal damage in children with Autism spectrum disorder. Pak. J. Med. Sci. 2023, 39, 1858–1864. [Google Scholar] [CrossRef]
- Jyonouchi, H. Immunological Abnormalities in Autism Spectrum Disorders. Adv. Neuroimmune Biol. 2013, 4, 141–159. [Google Scholar] [CrossRef]
- Mostafa, G.A.; El-Sayed, Z.A.; Abd El Aziz, M.M.; El-Sayed, M.F. Serum anti-myelinassociated glycoprotein antibodies in Egyptian autistic children. J. Child Neurol. 2008, 23, 1413–1418. [Google Scholar] [CrossRef] [PubMed]
- Heuer, L.; Ashwood, P.; Schauer, J.; Goines, P.; Krakowiak, P.; Hertz-Picciotto, I.; Hansen, R.; Croen, L.A.; Pessah, I.N.; Van de Water, J. Reduced levels of immunoglobulin in children with autism correlates with behavioral symptoms. Autism Res. 2008, 1, 275–283. [Google Scholar] [CrossRef] [PubMed]
- Money, J.; Bobrow, N.A.; Clarke, F.C. Autism and autoimmune disease: A family study. J. Autism Child. Schizophr. 1971, 1, 146–160. [Google Scholar] [CrossRef] [PubMed]
- Edmiston, E.; Ashwood, P.; Van de Water, J. Autoimmunity, autoantibodies, and autism spectrum disorders (ASD). Biol. Psychiatry 2017, 81, 383–390. [Google Scholar] [CrossRef]
- Atladottir, H.O.; Pedersen, M.G.; Thorsen, P.; Mortensen, P.B.; Deleuran, B.; Eaton, W.W.; Parner, E.T.; Sutton, R.M.; Niles, D.; Nysaether, J.; et al. Association of family history of autoimmune diseases and autism spectrum disorders. Pediatrics 2009, 124, 687–694. [Google Scholar] [CrossRef]
- Croen, L.A.; Grether, J.K.; Yoshida, C.K.; Odouli, R.; Van de Water, J. Maternal autoimmune diseases asthma and allergies. and childhood autism spectrum disorders: A case-control study. Arch. Pediatr. Adolesc. Med. 2005, 159, 151–157. [Google Scholar] [CrossRef]
- James, J.; Melnyk, S.; Jernigan, S.; Pavliv, O.; Trusty, T.; Lehman, S.; Seidel, L.; Gaylor, D.W.; Cleves, M.A. A functional polymorphism in the reduced folate carrier gene and DNA hypomethylation in mothers of children with autism. Am. J. Med. Genet. Part B Neuropsychiatr. Genet. 2010, 153B, 1209–1220. [Google Scholar] [CrossRef] [PubMed]
- Estes, M.L.; McAllister, A.K. Immune mediators in the brain and peripheral tissues in autism spectrum disorder. Nat. Rev. Neurosci. 2015, 16, 469–486. [Google Scholar] [CrossRef]
- Kim, Y.S.; Leventhal, B.L. Genetic epidemiology and insights into interactive genetic and environmental effects in autism spectrum disorders. Biol. Psychiatry 2015, 77, 66–74. [Google Scholar] [CrossRef]
- Taniya, M.A.; Chung, H.J.; Al Mamun, A.; Alam, S.; Aziz, M.A.; Emon, N.U.; Islam, M.M.; Hong, S.S.; Podder, B.R.; Ara Mimi, A.; et al. Role of Gut Microbiome in Autism Spectrum Disorder and Its Therapeutic Regulation. Front. Cell. Infect. Microbiol. 2022, 12, 915701. [Google Scholar] [CrossRef]
- Voineagu, I.; Wang, X.; Johnston, P.; Lowe, J.K.; Tian, Y.; Horvath, S.; Mill, J.; Cantor, R.M.; Blencowe, B.J.; Geschwind, D.H. Transcriptomic analysis of autistic brain reveals convergent molecular pathology. Nature 2011, 474, 380–384. [Google Scholar] [CrossRef] [PubMed]
- Bjørklund, G.; Pivina, L.; Dadar, M.; Meguid, N.A.; Semenova, Y.; Anwar, M.; Chirumbolo, S. Gastrointestinal alterations in autism spectrum disorder: What do we know? Neurosci. Biobehav. Rev. 2020, 118, 111–120. [Google Scholar] [CrossRef]
- Sanders, M.; Guarner, F.; Guerrant, R.; Holt, P.; Quigley, E.; Sartor, R.; Sherman, P.M.; Mayer, E.A. An Update on the Use and Investigation of Probiotics in Health and Disease. Gut 2013, 62, 787–796. [Google Scholar] [CrossRef]
- Dai, Y.X.; Tai, Y.H.; Chang, Y.T.; Chen, T.J.; Chen, M.H. Increased risk of atopic diseases in the siblings of patients with autism spectrum disorder: A nationwide population-based cohort study. J. Autism Dev. Disord. 2019, 49, 4626–4633. [Google Scholar] [CrossRef]
- Palomares, O.; Yaman, G.; Azkur, A.K.; Akkoc, T.; Akdis, M.; Akdis, C.A. Role of Treg in immune regulation of allergic diseases. Eur. J. Immunol. 2010, 40, 1232–1240. [Google Scholar] [CrossRef]
- Walker, J.A.; McKenzie, A.N.J. TH2 cell development and function. Nat. Rev. Immunol. 2018, 18, 121–133. [Google Scholar] [CrossRef]
- Lan, F.; Zhang, N.; Bachert, C.; Zhang, L. Stability of regulatory T cells in T helper 2–biased allergic airway diseases. Allergy 2020, 75, 1918–1926. [Google Scholar] [CrossRef] [PubMed]
- Bjørklund, G.; Meguid, N.A.; El-Bana, M.A.; Tinkov, A.A.; Saad, K.; Dadar, M.; Hemimi, M.; Skalny, A.V.; Hosnedlová, B.; Kizek, R.; et al. Oxidative Stress in Autism Spectrum Disorder. Mol. Neurobiol. 2020, 57, 2314–2332. [Google Scholar] [CrossRef]
- Padmakumar, M.; Van Raes, E.; Van Geet, C.; Freson, K. Blood platelet research in autism spectrum disorders: In search of biomarkers. Res. Pract. Thromb. Haemost. 2019, 3, 566–577. [Google Scholar] [CrossRef] [PubMed]
- Erickson, C.A.; Ray, B.; Wink, L.K.; Bayon, B.L.; Pedapati, E.V.; Shaffer, R.; Schaefer, T.L.; Lahiri, D.K. Initial analysis of peripheral lymphocytic extracellular signal related kinase activation in autism. J. Psychiatr. Res. 2017, 84, 153–160. [Google Scholar] [CrossRef] [PubMed]
- Semmes, E.C.; Chen, J.L.; Goswami, R.; Burt, T.D.; Permar, S.R.; Fouda, G.G. Understanding Early-Life Adaptive Immunity to Guide Interventions for Pediatric Health. Front. Immunol. 2021, 11, 595297. [Google Scholar] [CrossRef]
- Croonenberghs, J.; Wauters, A.; Devreese, K.; Verkerk, R.; Scharpe, S.; Bosmans, E.; Egyed, B.; Deboutte, D.; Maes, M. Increased serum albumin, gamma globulin, immunoglobulin IgG, and IgG2 and IgG4 in autism. Psychol. Med. 2002, 32, 1457–1463. [Google Scholar] [CrossRef]
- Heuer, L.S.; Rose, M.; Ashwood, P.; Van de Water, J. Decreased levels of total immunoglobulin in children with autism are not a result of B cell dysfunction. J. Neuroimmunol. 2012, 251, 94–102. [Google Scholar] [CrossRef] [PubMed]
- Elamin, N.E.; Al-Ayadhi, L.Y. Brain autoantibodies in autism spectrum disorder. Biomark. Med. 2014, 8, 345–352. [Google Scholar] [CrossRef] [PubMed]
- Enstrom, A.; Krakowiak, P.; Onore, C.; Pessah, I.N.; Hertz-Picciotto, I.; Hansen, R.L.; Van de Water, J.A.; Ashwood, P. Increased IgG4 levels in children with autism disorder. Brain Behav. Immun. 2009, 23, 389–395. [Google Scholar] [CrossRef]
- Mostafa, G.A.; El-Sherif, D.F.; Al-Ayadhi, L.Y. Systemic auto-antibodies in children with autism. J. Neuroimmunol. 2014, 272, 94–98. [Google Scholar] [CrossRef]
- Trajkovski, V.; Ajdinski, L.; Spiroski, M. Plasma concentration of immunoglobulin classes and subclasses in children with autism in the Republic of Macedonia: Retrospective study. Croat. Med. J. 2004, 45, 746–749. [Google Scholar]
- Mehjerdian, M.; Ebrahimi, M.; Rahafard, S.; Aghapour, S.A.; Parhiz, J.; Hosseini, S.A.; Safai, S. Evaluation of Serum Immunoglobulins (IgM. IgG. IgA) Levels in Children with Autism Spectrum Disorder in Gorgan. J. Pediatr. Perspect. 2021, 9, 14147–14156. [Google Scholar]
- Cavalcante Pinto Júnior, V.; Moura, L.F.W.G.; Cavalcante, R.C.; Lima, J.R.C.; Bezerra, A.S.; de Sousa Dantas, D.R.; Amaral, C.M.L.; Lima, D.F.; Júnior, A.B.V.; Florindo Guedes, M.I. Prevalence of COVID-19 in children, adolescents and adults in remote education situations in the city of Fortaleza, Brazil. Int. J. Infect. Dis. 2021, 108, 20–26. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
Extended diagnosis/comorbidities | ADHD, atopic dermatitis, allergy, childhood autism, pervasive developmental disorders, asthma, milk protein/lactose intolerance, diarrhea, family history (family member (sibling) affected), self-aggression, on gluten-free diet, without dysmorphic features |
Other deficits | protruding tongue, slurred speech, selective eating, family member (sibling) affected, low level of self-care (cannot dress), use toilet (diapers), cannot clean the nose, diarrhea, waking up at night |
Patients with ASD | Patients Without ASD | p | |
---|---|---|---|
WBC [×109/L] | 284.00 | 151.00 | 0.01 * |
RBC [×1012/L] | 239.00 | 196.00 | 0.54 |
HGB [g/dL] | 232.00 | 203.00 | 0.75 |
HCT [%] | 246.00 | 189.00 | 0.35 |
MCV [fL] | 203.00 | 232.00 | 0.336 |
MCH [pg] | 201.50 | 233.50 | 0.30 |
MCHC [g/dL] | 202.00 | 233.00 | 0.31 |
RDW RBC [%] | 266.50 | 168.50 | 0.07 |
HDW HGB [g/dL] | 182.50 | 93.50 | 0.87 |
PLT [×109/L] | 258.00 | 177.00 | 0.14 |
PCT [%] | 277.50 | 157.50 | 0.02 * |
PDW [%] | 267.00 | 168.00 | 0.06 |
MPV [fL] | 200.50 | 234.50 | 0.28 |
NEU [×109/L] | 257.00 | 178.00 | 0.16 |
LYMPH [×109/L] | 289.00 | 146.00 | 0.00 * |
MON [×109/L] | 225.50 | 209.50 | 0.98 |
EOS [×109/L] | 222.00 | 213.00 | 0.89 |
BASO [×109/L] | 237.50 | 197.50 | 0.58 |
NEU [%] | 206.00 | 229.00 | 0.40 |
LYMPH [%] | 238.00 | 197.00 | 0.57 |
MON [%] | 213.00 | 222.00 | 0.60 |
EOS [%] | 202.00 | −1.00 | 0.31 |
BASO [%] | 205.00 | −0.87 | 0.38 |
LUC [%] | 175.00 | −0.32 | 0.74 |
LUC [×109/L] | 180.00 | 0.00 | 1.00 |
Total cholesterol | 211.00 | 0.88 | 0.37 |
HDL | 151.00 | −0.56 | 0.57 |
Triglycerides | 187.50 | −0.41 | 0.67 |
LDL (calculated) | 141.50 | 0.13 | 0.88 |
Not-HDL | 151.00 | −0.56 | 0.57 |
Gender | IgA [mg/dL] | IgE [IU/mL] | IgM [mg/dL] |
---|---|---|---|
F | 90.70 | 33.11 | 79.29 |
M | 97.80 | 41.26 | 75.88 |
Age [Years] | IgA [mg/dL] | IgM [mg/dL] | IgE [IU/mL] |
---|---|---|---|
2 | 69.40 | 52.20 | 36.51 |
3 | 83.66 | 97.75 | 20.86 |
4 | 83.00 | 83.38 | 34.72 |
5 | 91.75 | 77.58 | 40.73 |
6 | 97.66 | 98.33 | 35.91 |
7 | 110.00 | 90.50 | 38.34 |
8 | 118.57 | 72.71 | 38.13 |
9 | 114.16 | 67.66 | 63.87 |
10 | 112.50 | 78.00 | 40.77 |
11 | 110.20 | 24.20 | 61.02 |
12 | 98.00 | 51.85 | 45.41 |
13 | 84.80 | 94.40 | 22.83 |
14 | 124.83 | 118.50 * | 29.65 |
Sex | IgA [mg/dL] | IgM [mg/dL] | IgE [IU/mL] | ||||
---|---|---|---|---|---|---|---|
ASD Status | With ASD | Without ASD | With ASD | Without ASD | With ASD | Without ASD | |
F | 79.33 | 94.97 | 46.53 | 91.57 * | 17.30 | 39.04 | |
M | 87.62 | 101.06 | 41.06 | 86.98 * | 14.84 | 49.72 |
Variable | Blood Serum IgA [mg/dL] | Blood Serum IgE [IU/mL] | Blood Serum IgM [mg/dL] |
---|---|---|---|
Age [years] | 0.28 * | 0.06 | 0.05 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wawer, J.; Chojęta, A.; Wawer, G.A.; Gładki, M.; Klotzka, A.; Kociński, B.; Urbanowicz, T.; Kocki, J.; Grywalska, E. The Significance of Serum Immunoglobulin Concentrations in Children with Autism Spectrum Disorders: In Search of Potential Blood Biomarkers. Int. J. Mol. Sci. 2025, 26, 9242. https://doi.org/10.3390/ijms26189242
Wawer J, Chojęta A, Wawer GA, Gładki M, Klotzka A, Kociński B, Urbanowicz T, Kocki J, Grywalska E. The Significance of Serum Immunoglobulin Concentrations in Children with Autism Spectrum Disorders: In Search of Potential Blood Biomarkers. International Journal of Molecular Sciences. 2025; 26(18):9242. https://doi.org/10.3390/ijms26189242
Chicago/Turabian StyleWawer, Joanna, Agnieszka Chojęta, Genowefa Anna Wawer, Marcin Gładki, Aneta Klotzka, Bartłomiej Kociński, Tomasz Urbanowicz, Janusz Kocki, and Ewelina Grywalska. 2025. "The Significance of Serum Immunoglobulin Concentrations in Children with Autism Spectrum Disorders: In Search of Potential Blood Biomarkers" International Journal of Molecular Sciences 26, no. 18: 9242. https://doi.org/10.3390/ijms26189242
APA StyleWawer, J., Chojęta, A., Wawer, G. A., Gładki, M., Klotzka, A., Kociński, B., Urbanowicz, T., Kocki, J., & Grywalska, E. (2025). The Significance of Serum Immunoglobulin Concentrations in Children with Autism Spectrum Disorders: In Search of Potential Blood Biomarkers. International Journal of Molecular Sciences, 26(18), 9242. https://doi.org/10.3390/ijms26189242