Changes in Phytochemical, Physiological, and Morphological Traits in Pelargonium graveolens as Affected by Drought Stress and Ascophyllum nodosum Extract
Abstract
1. Introduction
2. Results
2.1. Variance Analysis of Morphological Traits
2.2. Measurement of Secondary Metabolites
2.3. Principal Component Analysis and Cluster Heat Map of Major Essential Oil Compounds
3. Discussion
4. Materials and Methods
4.1. Plant Material and Culture Conditions
Treatments and Stress Conditions
4.2. Measurement of Morphological and Physiological Parameters
4.2.1. Chlorophyll Content Estimation
4.2.2. Relative Water Content
4.2.3. Protein Content
4.2.4. Antioxidant Enzymes Assay
4.2.5. 2,2-Diphenyl-1-Picrylhydrazyl (DPPH) Assay
4.3. GC-Ms Analysis
4.4. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Amel, H.A.; Kamel, H.; Meriem, F.; Abdelkader, K. Traditional Uses, Botany, Phytochemistry, and Pharmacology of Pelargonium graveolens: A Comprehensive Review. Trop. J. Nat. Prod. Res. 2022, 6, 1547–1569. [Google Scholar]
- Medjdoub, H.; Bouali, W.; Semaoui, M.; Benaissa, A.; Chaib, F.; Azzi, A. Chemical composition, antioxidant and antibacterial activities of the essential oil of Pelargonium graveolens L’Hér. Chem. Pap. 2025, 79, 1367–1374. [Google Scholar] [CrossRef]
- Al-Mijalli, S.H.; Mrabti, H.N.; Assaggaf, H.; Attar, A.A.; Hamed, M.; Baaboua, A.E.; El Omari, N.; El Menyiy, N.; Hazzoumi, Z.; Sheikh, R.A.; et al. Chemical profiling and biological activities of Pelargonium graveolens essential oils at three different phenological stages. Plants 2022, 11, 2226. [Google Scholar] [CrossRef]
- Anwar, M.; Saleem, M.A.; Dan, M.; Malik, W.; Ul-Allah, S.; Ahmad, M.Q.; Qayyum, A.; Amjid, M.W.; Zia, Z.U.; Afzal, H.; et al. Morphological, physiological and molecular assessment of cotton for drought tolerance under field conditions. Saudi J. Biol. Sci. 2022, 29, 444–452. [Google Scholar] [CrossRef]
- Praba, M.L.; Cairns, J.E.; Babu, R.C.; Laftte, H.R. Identification of physiological traits underlying cultivar differences in drought tolerance in rice and wheat. J. Agron. Crop Sci. 2009, 195, 30–46. [Google Scholar] [CrossRef]
- Kumar, M.; Kumar Patel, M.; Kumar, N.; Bajpai, A.B.; Siddique, K.H. Metabolomics and molecular approaches reveal drought stress tolerance in plants. Int. J. Mol. Sci. 2021, 22, 9108. [Google Scholar] [CrossRef]
- Oguz, M.C.; Aycan, M.; Oguz, E.; Poyraz, I.; Yildiz, M. Drought stress tolerance in plants: Interplay of molecular, biochemical and physiological responses in important development stages. Physiologia 2022, 2, 180–197. [Google Scholar] [CrossRef]
- Gonçalves, S.; Romano, A. Production of plant secondary metabolites by using biotechnological tools. Second. Metab.-Sources Appl. 2018, 5, 81–99. [Google Scholar]
- Thakur, M.; Bhatt, V.; Kumar, R. Effect of shade level and mulch type on growth, yield and essential oil composition of damask rose (Rosa damascena Mill.) under mid hill conditions of Western Himalayas. PLoS ONE 2019, 14, e0214672. [Google Scholar] [CrossRef]
- Yang, X.; Lu, M.; Wang, Y.; Wang, Y.; Liu, Z.; Chen, S. Response mechanism of plants to drought stress. Horticulturae 2021, 7, 50. [Google Scholar] [CrossRef]
- Celikkol Akcay, U.; Ercan, O.; Kavas, M.; Yildiz, L.; Yilmaz, C.; Oktem, H.A.; Yucel, M. Drought-induced oxidative damage and antioxidant responses in peanut (Arachis hypogaea L.) seedlings. Plant Growth Regul. 2010, 61, 21–28. [Google Scholar] [CrossRef]
- Zargar, T.B.; Basal, O.; Veres, S. Exogenous Application of Plant Metabolites to Enhance Abiotic Stress Tolerance in Plants. Plant Second. Metab. Abiotic Stress 2024, 27, 525–558. [Google Scholar]
- Moolphuerk, N.; Pattanagul, W. Pretreatment with different molecular weight chitosans encourages drought tolerance in rice (Oryza sativa L.) seedling. Not. Bot. Horti Agrobot. Cluj-Napoca 2020, 48, 2072–2084. [Google Scholar] [CrossRef]
- Ozbay, N.; Demirkiran, A.R. Enhancement of growth in ornamental pepper (Capsicum Annuum L.) plants with application of a commercial seaweed product, stimplex®. Appl. Ecol. Environ. Res. 2019, 17, 4361–4375. [Google Scholar] [CrossRef]
- Santaniello, A.; Scartazza, A.; Gresta, F.; Loreti, E.; Biasone, A.; Di Tommaso, D.; Piaggesi, A.; Perata, P. Ascophyllum nodosum seaweed extract alleviates drought stress in Arabidopsis by affecting photosynthetic performance and related gene expression. Front. Plant Sci. 2017, 8, 1362. [Google Scholar] [CrossRef]
- MacKinnon, S.L.; Hiltz, D.; Ugarte, R.; Craft, C.A. Improved methods of analysis for betaines in Ascophyllum nodosum and its commercial seaweed extracts. J. Appl. Phycol. 2010, 22, 489–494. [Google Scholar] [CrossRef]
- Spann, T.M.; Little, H.A. Applications of a commercial extract of the brown seaweed Ascophyllum nodosum increases drought tolerance in container-grown ‘Hamlin’sweet orange nursery trees. HortScience 2011, 46, 577–582. [Google Scholar] [CrossRef]
- Povero, G.; Mejia, J.F.; Di Tommaso, D.; Piaggesi, A.; Warrior, P. A systematic approach to discover and characterize natural plant bio-stimulants. Front. Plant Sci. 2016, 7, 435. [Google Scholar] [CrossRef]
- Ali, N.; Farrell, A.; Ramsubhag, A.; Jayaraman, J. The effect of Ascophyllum nodosum extract on the growth, yield and fruit quality of tomato grown under tropical conditions. J. Appl. Phycol. 2016, 28, 1353–1362. [Google Scholar] [CrossRef]
- Carmody, N.; Goñi, O.; Łangowski, Ł.; O’Connell, S. Ascophyllum nodosum extract biostimulant processing and its impact on enhancing heat stress tolerance during tomato fruit set. Front. Plant Sci. 2020, 11, 807. [Google Scholar] [CrossRef] [PubMed]
- Trivedi, K.; Anand, K.V.; Vaghela, P.; Ghosh, A. Differential growth, yield and biochemical responses of maize to the exogenous application of Kappaphycus alvarezii seaweed extract, at grain-filling stage under normal and drought conditions. Algal Res. 2018, 35, 236–244. [Google Scholar] [CrossRef]
- Martynenko, A.; Shotton, K.; Astatkie, T.; Petrash, G.; Fowler, C.; Neily, W.; Critchley, A.T. Thermal imaging of soybean response to drought stress: The effect of Ascophyllum nodosum seaweed extract. Springerplus 2016, 5, 1393. [Google Scholar] [CrossRef]
- Shukla, P.S.; Shotton, K.; Norman, E.; Neily, W.; Critchley, A.T.; Prithiviraj, B. Seaweed extract improve drought tolerance of soybean by regulating stress-response genes. AoB Plants 2018, 10, plx051. [Google Scholar] [CrossRef] [PubMed]
- Almaroai, Y.A.; Eissa, M.A. Role of marine algae extracts in water stress resistance of onion under semiarid conditions. J. Soil Sci. Plant Nutr. 2020, 20, 1092–1101. [Google Scholar] [CrossRef]
- Tursun, A.O. Effect of foliar application of seaweed (organic fertilizer) on yield, essential oil and chemical composition of coriander. PLoS ONE 2022, 17, e0269067. [Google Scholar] [CrossRef] [PubMed]
- Li, B.; Zhang, X.; Morita, S.; Sekiya, N.; Araki, H.; Gu, H.; Han, J.; Lu, Y.; Liu, X. Are crop deep roots always beneficial for combating drought: A review of root structure and function, regulation and phenotyping. Agric. Water Manag. 2022, 271, 107781. [Google Scholar] [CrossRef]
- Folkert, A.H.; Elena, A.G.; Buitink, J. Mechanisms of plant desiccation tolerance. Trends Plant Sci. 2001, 6, 431–438. [Google Scholar] [CrossRef]
- Rouphael, Y.; De Micco, V.; Arena, C.; Raimondi, G.; Colla, G.; De Pascale, S. Effect of Ecklonia maxima seaweed extract on yield, mineral composition, gas exchange, and leaf anatomy of zucchini squash grown under saline conditions. J. Appl. Phycol. 2017, 29, 459–470. [Google Scholar] [CrossRef]
- Kou, X.; Han, W.; Kang, J. Responses of root system architecture to water stress at multiple levels: A meta-analysis of trials under controlled conditions. Front. Plant Sci. 2022, 13, 1085409. [Google Scholar] [CrossRef]
- Asadullah, S.A.K.; Farhad, W.; Iqbal, A.; Sultan, A.W.; Rashid, M.; Shah, S.R.U. Exploring the variability of root system architecture under drought stress in heat-tolerant spring-wheat lines. Plant Soil 2024, 502, 103–119. [Google Scholar] [CrossRef]
- Ahmadpour, R.; Salimi, A.; Zeidi, H.; Armand, N.; Hosseinzadeh, S.R. Effect of seaweed extract (Ascophyllum nodosum) on the stimulation of germination indices of chickpea (Cicer arietinum L.) under drought stress. Nova Biol. Reperta. 2019, 6, 206–216. [Google Scholar]
- Alizadeh, M.; Armand, N.; Rahimi, M.; Hajihashemi, S.H. Effect of foliar application of seaweed Ascophyllum nodosum extract on morpho-physiological characteristics of bean (Phaseolus vulgaris) under water stress. Nova Biologica Reperta. 2022, 9, 61–69. [Google Scholar] [CrossRef]
- Battacharyya, D.; Babgohari, M.Z.; Rathor, P.; Prithiviraj, B. Seaweed extracts as biostimulants in horticulture. Sci. Hortic. 2015, 196, 39–48. [Google Scholar] [CrossRef]
- Chen, D.; Li, Z.; Yang, J.; Zhou, W.; Wu, Q.; Shen, H.; Ao, J. Seaweed extract enhances drought resistance in sugarcane via modulating root configuration and soil physicochemical properties. Ind. Crop. Prod. 2023, 194, 116321. [Google Scholar] [CrossRef]
- Campobenedetto, C.; Agliassa, C.; Mannino, G.; Vigliante, I.; Contartese, V.; Secchi, F.; Bertea, C.M. A biostimulant based on seaweed (Ascophyllum nodosum and Laminaria digitata) and yeast extracts mitigates water stress effects on tomato (Solanum lycopersicum L.). Agriculture 2021, 11, 557. [Google Scholar] [CrossRef]
- Khalid, S.; Akram, A.; Younis, A.; Hussain, S.; Akbar, A.F. Impact of Drought Stress on Growth Dynamics of Pelargonium graveolens (Rose-Scented Geranium). Biol. Times 2024, 3, 45–46. [Google Scholar]
- Singh, P.; Pandey, S.S.; Dubey, B.K.; Raj, R.; Barnawal, D.; Chandran, A.; Rahman, L.U. Salt and drought stress tolerance with increased biomass in transgenic Pelargonium graveolens through heterologous expression of ACC deaminase gene from Achromobacter xylosoxidans. Plant Cell Tissue Organ Cult. 2021, 147, 297–311. [Google Scholar] [CrossRef]
- Fan, D.; Hodges, D.M.; Critchley, A.T.; Prithiviraj, B. A commercial extract of brown macroalga (Ascophyllum nodosum) affects yield and the nutritional quality of spinach in vitro. Commun. Soil Sci. Plant Anal. 2013, 44, 1873–1884. [Google Scholar] [CrossRef]
- Jacomassi, L.M.; Viveiros, J.D.O.; Oliveira, M.P.; Momesso, L.; de Siqueira, G.F.; Crusciol, C.A.C. A seaweed extract-based biostimulant mitigates drought stress in sugarcane. Front. Plant Sci. 2022, 13, 865291. [Google Scholar] [CrossRef]
- Gholamin, R.; Khayatnezhad, M. The effect of dry season stretch on Chlorophyll Content and RWC of Wheat Genotypes (Triticum Durum L.). Biosci. Biotechnol. Res. Commun. 2020, 13, 1829–1833. [Google Scholar] [CrossRef]
- Wichi, H.P. Enhanced tumour development by butylated hydroxytoluene (BHT) from the properties of effect on fure stomach and esophageal aquamoua epithelium. Food Chem. Toxicol. 1988, 26, 723–727. [Google Scholar]
- Malekian, A.; Valizadeh, E.; Dastoori, M.; Samadi, S.; Bayat, V. Soil water retention and maize (Zea mays L.) growth as affected by different amounts of pumice. Aust. J. Crop Sci. 2012, 6, 450–454. [Google Scholar]
- Zakaria, S.M.; Kamal, S.M.M. Subcritical water extraction of bioactive compounds from plants and algae: Applications in pharmaceutical and food ingredients. Food Eng. Rev. 2016, 8, 23–34. [Google Scholar] [CrossRef]
- MacDonald, J.E.; Hacking, J.; Weng, Y.; Norrie, J. Root growth of containerized lodgepole pine seedlings in response to Ascophyllum nodosum extract application during nursery culture. Can. J. Plant Sci. 2012, 92, 1207–1212. [Google Scholar] [CrossRef]
- Barnabas, B.; Jager, K.; Feher, A. The effect of drought and heat stress on reproductive processes in cereals. Plant Cell Environ. 2007, 31, 11–38. [Google Scholar] [CrossRef] [PubMed]
- Fecht-Christoffers, M.M.; Maier, P.; Horst, W.J. Apoplastic peroxidases and ascorbate are involved in manganese toxicity and tolerance of Vigna unguiculata. Physol. Plant 2003, 117, 237–244. [Google Scholar] [CrossRef]
- Ali, O.; Ramsubhag, A.; Jayaraman, J. Biostimulant properties of seaweed extracts in plants: Implications towards sustainable crop production. Plants 2021, 10, 531. [Google Scholar] [CrossRef]
- Jannin, L.; Arkoun, M.; Etienne, P.; Laîné, P.; Goux, D.; Garnica, M.; Fuentes, M.; San Francisco, S.; Baigorri, R.; Cruz, F.; et al. Brassica napus Growth is Promoted by Ascophyllum nodosum (L.) Le Jol. Seaweed Extract: Microarray Analysis and Physiological Characterization of N, C, and S Metabolisms. J. Plant Growth Regul. 2013, 32, 31–52. [Google Scholar] [CrossRef]
- Toroy, L.A.; Borlongan, I.A.; Roco, O. Efficacy of seaweed liquid extract from Ulva spp. in improving growth and chlorophyll-a content of Eucheuma denticulatum. Philipp. J. Fish. 2023, 31, 126–136. [Google Scholar] [CrossRef]
- Craigie, J.S. Seaweed extract stimuli in plant science and agriculture. J. Appl. Phycol. 2011, 23, 371–393. [Google Scholar] [CrossRef]
- Mafakheri, S.; Asghari, B. Effect of seaweed extract, humic acid and chemical fertilizers on physiological and biochemical traits of Trigonella foenum-graecum. J. Agric. Sci. Technol. 2018, 20, 1505–1516. [Google Scholar]
- Khan, W.; Rayirath, U.P.; Subramanian, S.; Jithesh, M.N.; Rayorath, P.; Hodges, D.M.; Critchley, A.T.; Craigie, J.S.; Norrie, J.; Prithiviraj, B. Seaweed extracts as biostimulants of plant growth and development. J. Plant Growth Regul. 2009, 28, 386–399. [Google Scholar] [CrossRef]
- Goyal, P.; Thind, S.K. Effect of Seaweed Extract on Morpho-Physiological Parameters of Rice. Indian J. Ecol. 2016, 43, 2130. [Google Scholar]
- Yamada, Y.; Fukutoku, Y. Effect of water stress on soybean stress. Soybean in tropical and sub-tropical cropping system. In Proceedings of the International Symposium on Soybean, Tsukuba, Japan, 26 September–1 October 1983; Asian Vegetable Research and Development Center (AVRDC): Shanhua, Taiwan, 1986; pp. 373–382. Available online: https://worldveg.tind.io/record/5217/usage (accessed on 1 August 2025).
- Kumari, R.; Kaur, I.; Bhatnagar, A.K. Effect of aqueous extract of Sargassum john-stonii Setchell & Gardner on growth, yield and quality of Lycopersicon esculentum Mill. J. Appl. Phycol. 2011, 23, 623–633. [Google Scholar]
- Latique, S.; Chernane, H.; Mansori, M.; El Kaoua, M. Seaweed liquid fertilizer effect on physiological and biochemical parameters of bean plant (Phaesolus vulgaris variety Paulista) under hydroponic system. Eur. Sci. J. 2013, 9, 174–191. [Google Scholar]
- Elansary, H.O.; Skalicka-Woźniak, K.; King, I.W. Enhancing stress growth traits as well as phytochemical and antioxidant contents of Spiraea and Pittosporum under seaweed extract treatments. Plant Physiol. Biochem. 2016, 105, 310–320. [Google Scholar] [CrossRef]
- Al-Juthery, H.W.A.; Ali, N.S.; Al-Taey, D.K.A.; Ali, E.A.H.M. The impact of foliar application of nanaofertilizer, seaweed and hypertonic on yield of potato. Plant Arch. 2018, 18, 2207–2212. [Google Scholar]
- Petropoulos, S.A.; Sami, R.; Benajiba, N.; Zewail, R.M.; Mohamed, M.H. The response of globe artichoke plants to potassium fertilization combined with the foliar spraying of seaweed extract. Agronomy 2022, 12, 490. [Google Scholar] [CrossRef]
- DaCosta, M.; Huang, B. Changes in antioxidant enzyme activities and lipid peroxidation for bentgrass species in responses to drought stress. J. Am. Soc. Hortic. Sci. 2007, 132, 319–326. [Google Scholar] [CrossRef]
- Ping, B.L.; Gong, S.F.; Da, G.T.; Hui, S.Z.; Yan, L.Y.; Sheng, Z.G. Effect of soil drought stress on leaf water status, membrane permeability and enzymatic antioxidant system of maize. Pedosphere 2006, 16, 326–332. [Google Scholar] [CrossRef]
- Tatari, M.; Fotouhi Ghazvini, R.; Mousavi, A.; Babaei, G. Comparison of some physiological aspects of drought stress resistance in two ground cover genus. J. Plant Nutr. 2018, 41, 1215–1226. [Google Scholar] [CrossRef]
- Guo, Y.Y.; Yu, H.Y.; Yang, M.M.; Kong, D.S.; Zhang, Y.J. Effect of drought stress on lipid peroxidation, osmotic adjustment and antioxidant enzyme activity of leaves and roots of Lycium ruthenicum Murr. Seedling. Russ. J. Plant Physiol. 2018, 65, 244–250. [Google Scholar] [CrossRef]
- Wang, Y.; Branicky, R.; Noë, A.; Hekimi, S. Superoxide dismutases: Dual roles in controlling ROS damage and regulating ROS signaling. J. Cell Biol. 2018, 217, 1915–1928. [Google Scholar] [CrossRef] [PubMed]
- Sabah, D. Protective Effect of Essential Oil of Pelargoni-um Graveolens against Paracetamol Induced Toxicity on Hematological and Hepatic Parameters in Wistar Rats. Ann. Clin. Med. Case. Rep. 2024, 13, 1–12. [Google Scholar]
- Amiri, R.; Nikbakht, A.; Rahimmalek, M.; Hosseini, H. Variation in the essential oil composition, antioxidant capacity, and physiological characteristics of Pelargonium graveolens L. inoculated with two species of mycorrhizal fungi under water deficit conditions. Plant Growth Regul. 2017, 36, 502–515. [Google Scholar] [CrossRef]
- Marchin, R.M.; Ossola, A.; Leishman, M.R.; Ellsworth, D.S. A simple method for simulating drought effects on plants. Front. Plant Sci. 2020, 10, 1715. [Google Scholar] [CrossRef] [PubMed]
- Chai, Q.; Gan, Y.; Zhao, C.; Xu, H.L.; Waskom, R.M.; Niu, Y.; Siddique, K.H. Regulated deficit irrigation for crop production under drought stress. A review. Agron. Sustain. Dev. 2016, 36, 3. [Google Scholar] [CrossRef]
- Morade, A.S.; Sharma, R.M.; Dubey, A.K.; Sathee, L.; Kumar, S.; Kadam, D.M.; Awasthi, O.P.; Kumar, A.; Yadav, D. Phenotyping drought stress tolerance in citrus rootstocks using high-throughput imaging and physio-biochemical techniques. BMC Plant Biol. 2025, 25, 753. [Google Scholar] [CrossRef]
- Zuo, H.; Chen, J.; Lv, Z.; Shao, C.; Chen, Z.; Zhou, Y.; Shen, C. Tea-derived polyphenols enhance drought resistance of tea plants (Camellia sinensis) by alleviating jasmonate–isoleucine pathway and flavonoid metabolism flow. Int. J. Mol. Sci. 2024, 25, 3817. [Google Scholar] [CrossRef]
- Haghpanah, M.; Hashemipetroudi, S.; Arzani, A.; Araniti, F. Drought tolerance in plants: Physiological and molecular responses. Plants 2024, 13, 2962. [Google Scholar] [CrossRef]
- Eiasu, B.K.; Soundy, P.; Steyn, J.M. High irrigation frequency and brief water stress before harvest enhances essential oil yield of rose-scented geranium (Pelargonium capitatum × P. radens). HortScience 2008, 43, 500–504. [Google Scholar] [CrossRef]
- Ali, M.H. Estimation of irrigation water requirement using soil moisture parameters. J. Irrig. Drain Eng. 2012, 138, 499–506. [Google Scholar]
- Lichtenthaler, H.K. Chlorophylls and carotenoids: Pigments of photosynthetic biomembranes. Methods Enzymol. 1987, 148, 350–382. [Google Scholar]
- Cherki, G.H.; Foursy, A.; Fares, K. Effects of salt stress on growth inorganic ions and proline accumulation in relation to osmotic adjustment in five sugar beet cultivars. Environ. Exp. Bot. 2002, 47, 39–50. [Google Scholar] [CrossRef]
- Phillips, J.M.; Hayman, D.S. Improved procedures for clearing roots and staining parasitic and vesicular-arbuscular mycorrhizal fungi for rapid assessment of infection. Trans Br. Mycol. Soc. 1970, 55, 58–160. [Google Scholar] [CrossRef]
- Agarwal, S.; Sairam, R.; Srivastava, G.; Meena, R. Changes in antioxidant enzymes activity and oxidative stress by abscisic acid and salicylic acid in wheat genotypes. Biol. Plant 2005, 49, 541–550. [Google Scholar] [CrossRef]
- Giannopolitis, C.N.; Ries, S.K. Superoxide dismutases: I. Occurrence in higher plants. Plant physiol. 1977, 59, 309–314. [Google Scholar] [CrossRef] [PubMed]
- Chance, B.; Maehly, A.C. Assay of catalases and peroxidases. Methods Biochem. Anal. 1955, 10, 9780470110171. [Google Scholar]
- Kloareg, B.; Quatrano, R.S. Structure of the cell walls of marine algae and ecophysiological functions of the matrix polysaccharides. Oceanogr. Mar. Biol. 1988, 26, 259–315. [Google Scholar]
- Zhang, D.Y.; Yao, X.H.; Duan, M.H.; Wei, F.Y.; Wu, G.H.; Li, L. Variation of essential oil content and antioxidant activity of Lonicera species in different sites of China. Ind. Crops Prod. 2015, 77, 772–779. [Google Scholar] [CrossRef]
- Adams, R.P. Identification of essential oil components by gas chromatography/quadrupole mass spectrometry. J. Am. Soc. Mass Spectrom. 2007, 16, 1902–1903. [Google Scholar]
Source of Variation | Mean Squares | ||||||||
---|---|---|---|---|---|---|---|---|---|
DF 1 | FRW 3 | DRW 4 | FSW 5 | DSW 6 | RWC 7 | PH 8 | LL 9 | LW 10 | |
SWE 2 | 3 | 22.17 * | 0.83 ns | 25.30 ns | 7.31 ns | 9.22 ns | 75.49 ns | 1166.21 ** | 169.81 ** |
Drought | 2 | 22.17 ns | 3.30 * | 118.27 ** | 43.90 ** | 58.47 ** | 41.87 ns | 22.32 ns | 2.13 ns |
Drought × SWE | 6 | 5.83 ns | 0.61 ns | 27.94 ns | 12.56 * | 33.76 * | 35.86 ns | 49.85 ns | 35.46 ns |
Error | 24 | 7.35 | 0.85 | 17.96 | 3.81 | 10.03 | 36.52 | 134.18 | 16.21 |
CV (%) | - | 12.57 | 15.99 | 9.57 | 14.46 | 4.53 | 13.28 | 9.76 | 6.10 |
Source of Variation | Mean Squares | ||||||||
DF 1 | LA 11 | Chl-t 12 | CAR 13 | PRO 14 | CAT 15 | SOD 16 | GPx 17 | AA 18 | |
SWE 2 | 3 | 921,334.60 ** | 29.54 ** | 5.74 ** | 97.4 ** | 665.65 ** | 0.27 ** | 0.0008 ** | 27.74 ** |
Drought | 2 | 34,287.13 ns | 6.15 ns | 1.57 * | 10.70 * | 35.45 ns | 0.009 ns | 0.00004 ns | 28.28 ** |
Drought × SWE | 6 | 205,586.22 ns | 8.53 ** | 0.49 ns | 9.12 * | 154.24 ** | 0.01 ** | 0.001 ** | 3.94 ** |
Error | 24 | 97,154.21 | 1.99 | 0.34 | 2.9 | 26.84 | 0.004 | 0.00002 | 0.92 |
CV (%) | - | 12.79 | 9.82 | 10.74 | 14.09 | 17.81 | 3.71 | 14.39 | 1.01 |
Drought | SWE Concentration 1 | DSW 2 (g pot−1) | Chl-t 3 (mg g−1 FW) | RWC 4 (%) | PRO 5 (mg g−1 FW) | CAT 6 (U g −1 FW min −1) | SOD 7 (U g −1 FW min −1) | GPx 8 (U g −1 FW min −1) | AA 9 (%) |
---|---|---|---|---|---|---|---|---|---|
W100 10 | A0 13 | 16.34 a | 13.50 cde | 73.28 ab | 11.21 cde | 27.50 def | 1.47 e | 0.05 b | 95.83 b |
A25 14 | 14.99 a | 17.05 a | 74.26 a | 8.46 ef | 24.06 efg | 1.84 bc | 0.03 cd | 96.60 ab | |
A50 15 | 14.86 a | 15.79 abc | 73.88 a | 16.47 a | 33.81 bcd | 1.87 ab | 0.03 cd | 97.49 a | |
A75 16 | 13.74 a | 12.89 de | 68.16 bcd | 14.60 ab | 30.94 cde | 1.98 a | 0.01 e | 96.80 ab | |
W75 11 | A0 | 10.51 bc | 12.04 ef | 73.37 ab | 11.89 bcd | 21.77 fgh | 1.49 e | 0.05 b | 92.63 cd |
A25 | 9.41 c | 15.76 abc | 68.38 bcd | 8.48 ef | 18.33 gh | 1.85 b | 0.03 cd | 93.87 c | |
A50 | 10.03 bc | 16.58 ab | 65.03 d | 13.94 abc | 36.67 bc | 1.89 abc | 0.01 e | 96.45 ab | |
A75 | 14.4 a | 14.86 abcd | 67.07 cd | 15.96 a | 46.41 a | 1.73 d | 0.03 c | 96.41 ab | |
W50 12 | A0 | 10.86 bc | 9.70 f | 66.17 cd | 8.40 ef | 13.75 h | 1.53 e | 0.01 e | 90.63 e |
A25 | 14.86 a | 13.93 cde | 67.53 cd | 8.13 f | 24.64 efg | 1.82 bc | 0.07 a | 91.91 de | |
A50 | 15.07 a | 14.23 bcde | 70.81 abc | 10.78 def | 41.83 ab | 1.88 ab | 0.02 d | 95.60 b | |
A75 | 15.88 a | 16.38 ab | 70.25 abcd | 16.66 a | 29.22 cdef | 1.74 cd | 0.03 cd | 96.37 ab |
Treatment | RIexp/RIlit 1 | W50A0 2 | W75A0 3 | W100A0 4 | W50A25 5 | W75A25 6 | W100A25 7 | W50A50 8 | W75A50 9 | W100A50 10 | W50A75 11 | W75A75 12 | W100A75 13 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Components (%) | ||||||||||||||
EO Content (%) | - | 0.05 | 0.15 | 0.13 | 0.15 | 0.16 | 0.15 | 0.24 | 0.57 | 0.20 | 0.23 | 0.25 | 0.74 | |
Acetic acid, pentyl ester | 910/911 | 0.04 | 0.04 | 0.04 | 0.05 | 0.03 | 0.01 | 0.02 | 0.02 | 0 | 0.02 | 0.01 | 0.02 | |
3-Heptanone, 5-methyl- | 942/944 | 0 | 0 | 0.01 | 0 | 0 | 0.01 | 0 | 0 | 0 | 0.01 | 0.01 | 0.01 | |
2-Heptanol, 6-methyl- | 955/958 | 0.01 | 0.01 | 0.02 | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 | 0.02 | 0.01 | |
2-Butenoic acid, 2-methyl-, | 960/962 | 0.09 | 0.09 | 0.09 | 0.11 | 0.09 | 0.04 | 0.06 | 0.05 | 0.02 | 0.08 | 0.07 | 0.04 | |
1-methylethyl ester | ||||||||||||||
5-Hepten-2-one, 6-methyl- | 984/986 | 0 | 0 | 0.01 | 0 | 0 | 0.01 | 0 | 0.01 | 0.01 | 0 | 0.01 | 0.01 | |
Myrcene | 990/991 | 0.02 | 0.16 | 0.02 | 0.13 | 0.22 | 0.59 | 0.28 | 0.04 | 0.69 | 0.43 | 0.53 | 0.08 | |
Decane | 1000/1000 | 0 | 0 | 0.14 | 0.01 | 0.01 | 0.01 | 0.01 | 0.04 | 0.02 | 0.03 | 0.01 | 0.02 | |
δ-3-Carene | 1010/1011 | 0 | 0 | 0.02 | 0 | 0 | 0 | 0 | 0 | 0.02 | 0 | 0.02 | 0 | |
p-Cymene | 1022/1024 | 0 | 0 | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 | 0.04 | 0.01 | 0.05 | 0.01 | |
Eucalyptol | 1024/1025 | 0.19 | 0.03 | 0.03 | 0.05 | 0.03 | 0.03 | 0.05 | 0 | 0.05 | 0.04 | 0.04 | 0.03 | |
β-cis-Ocimene | 1035/1038 | 0.02 | 0.06 | 0.01 | 0.06 | 0.08 | 0.26 | 0.01 | 0.02 | 0.41 | 0.25 | 0.34 | 0.04 | |
Benzeneacetaldehyde | 1042/1045 | 0 | 0 | 0.04 | 0.02 | 0.01 | 0.01 | 0.01 | 0.06 | 0.01 | 0 | 0.02 | 0.04 | |
β-trans-Ocimene | 1047/1049 | 0.05 | 0.09 | 0.01 | 0.07 | 0.18 | 0.42 | 0.20 | 0.02 | 0.57 | 0.23 | 0.34 | 0.04 | |
5-Heptenal, 2,6-dimethyl- | 1050/1053 | 0 | 0 | 0.01 | 0.02 | 0.02 | 0.02 | 0.01 | 0.02 | 0.02 | 0.01 | 0.03 | 0.01 | |
γ-Terpinene | 1057/1060 | 0 | 0 | 0.01 | 0 | 0.01 | 0.02 | 0.01 | 0.02 | 0.01 | 0.01 | 0 | 0.01 | |
cis-Linalool oxide (furanoid) | 1072/1075 | 0.02 | 0.03 | 0.02 | 0.01 | 0.01 | 0.01 | 0.02 | 0.04 | 0.04 | 0.01 | 0.02 | 0.02 | |
1-Octanol | 1068/1070 | 0 | 0 | 0.01 | 0 | 0 | 0 | 0.01 | 0.01 | 0.02 | 0.01 | 0 | 0 | |
trans-Linalool oxide (furanoid) | 1082/1086 | 0.03 | 0.04 | 0.03 | 0.04 | 0.05 | 0.06 | 0.05 | 0.05 | 0.16 | 0.04 | 0.09 | 0.03 | |
Linalool | 1098/1099 | 0.30 | 0.45 | 0.29 | 0.31 | 0.33 | 0.42 | 0.40 | 0.29 | 1.10 | 0.31 | 0.41 | 0.30 | |
cis-Rose oxide | 1108/1110 | 1.98 ± 0.05 | 2.86 ± 0.05 | 3.04 ± 0.02 | 1.94 ± 0.04 | 2.36 ± 0.05 | 1.40 ± 2.12 ± | 2.12 ± 0.06 | 3.72 ± 0.02 | 1.39 ± 0.07 | 2.28 ± 0.02 | 3.61 ± 0.10 | 2.93 ± 0.10 | |
trans-Rose oxide | 1125/1127 | 0.95 | 1.43 | 1.50 | 1.02 | 1.63 | 0.74 | 1.21 | 1.87 | 0.84 | 1.22 | 1.95 | 1.54 | |
Camphor | 1141/1144 | 0 | 0.09 | 0.51 | 0.05 | 0.09 | 0.06 | 0.05 | 0.01 | 0.12 | 0.06 | 0.30 | 0.11 | |
trans Verbenol | 1142/1145 | 0.01 | 0.01 | 0.02 | 0.01 | 0.01 | 0.03 | 0.01 | 0.01 | 0.03 | 0.01 | 0.02 | 0.02 | |
Citronellal | 1151/1154 | 0.32 | 0.47 | 0.27 | 0.46 | 0.46 | 0.06 | 0.49 | 0.55 | 0.33 | 0.39 | 0.62 | 0.66 | |
cis-dihydro-β-Terpineol | 1158/1160 | 0.06 | 0.10 | 0.19 | 0.13 | 0.16 | 0.21 | 0.23 | 0.31 | 0.34 | 0.07 | 0.17 | 0.15 | |
iso-Menthone | 1159/1162 | 1.65 | 1.87 | 2.60 | 1.93 | 2.02 | 2.15 | 2.80 | 4.50 | 1.35 | 1.12 | 2.20 | 3.44 | |
neoiso-Isopulegol | 1170/1172 | 0.32 | 0.31 | 0.07 | 0.04 | 0.04 | 0.02 | 0.04 | 0.04 | 0.03 | 0.03 | 0.02 | 0.04 | |
iso-Menthol | 1180/1182 | 0.04 | 0.05 | 0.08 | 0.04 | 0.05 | 0.07 | 0.05 | 0.05 | 0.07 | 0.07 | 0.11 | 0.06 | |
α-Terpineol | 1186/1190 | 0.30 | 0.47 | 0.10 | 0.05 | 0.04 | 0.01 | 0.01 | 0.05 | 0.14 | 0 | 0.13 | 0.04 | |
Dodecane | 1200/1200 | 0.25 | 0.42 | 0.23 | 0.24 | 0.12 | 0.01 | 0.15 | 0.13 | 0.45 | 0.46 | 0.44 | 0.11 | |
trans-Piperitol | 1205/1207 | 0.05 | 0.08 | 0.08 | 0.06 | 0.06 | 0.07 | 0.07 | 0.09 | 0.05 | 0 | 0.03 | 0.06 | |
trans Oct-2-enyl acetate | 1207/1209 | 0.04 | 0.04 | 0.04 | 0.04 | 0.05 | 0.04 | 0.05 | 0.07 | 0.08 | 0.03 | 0.06 | 0.04 | |
Citronellol | 1225/1228 | 41.33 ± 0.80 | 40.85 ± 2.76 | 26.78 ± 0.83 | 51.20 ± 2.84 | 42.50 ± 0.27 | 40.42 ± 2.30 | 56.20 ± 0.90 | 41.28 ± 1.88 | 34.03 ± 0.01 | 37.59 ± 0.02 | 38.31 ± 0.26 | 47.24 ± 1.49 | |
Geranial | 1265/1270 | 0.08 | 0.08 | 0.04 | 0.11 | 0.09 | 0.06 | 0.12 | 0.13 | 0.03 | 0.06 | 0.05 | 0.16 | |
Citronellyl formate | 1273/1275 | 9.01 ± 1.01 | 10.45 ± 0.26 | 8.47 ± 1.01 | 10.44 ± 0.80 | 12.05 ± 1.00 | 15.07 ± 2.76 | 14.89 ± 0.14 | 14.93 ± 0.21 | 15.61 ± 1.42 | 9.51 ± 0.32 | 13.74 ± 0.19 | 13.70 ± 2.30 | |
Bornyl acetate | 1283/1284 | 0.01 | 0.06 | 0.18 | 0 | 0.02 | 0.60 | 0.04 | 0.07 | 0.02 | 0.03 | 0.07 | 0.01 | |
Thymol | 1290/1292 | 0.12 | 0.56 | 0.05 | 0.08 | 0.10 | 0.10 | 0.65 | 0.80 | 1.26 | 0.18 | 0.21 | 0.02 | |
p-Menth-1-en-9-ol | 1294/1296 | 0.53 | 0.62 | 0.46 | 0.83 | 0.88 | 0.89 | 0.99 | 0.97 | 1.51 | 1.94 | 0.85 | 0.53 | |
Geranyl formate | 1298/1299 | 0.20 | 0.20 | 0.19 | 0.30 | 0.30 | 0.30 | 0.20 | 0.30 | 0.45 | 0.10 | 0.30 | 0.22 | |
trans-dihydro-α-Terpinyl acetate | 1302/1302 | 0.32 | 0.40 | 0.65 | 0.12 | 0.28 | 0.32 | 0.18 | 0.15 | 0.73 | 0.20 | 0.32 | 0.16 | |
α-Terpinyl acetate | 1348/1353 | 0.78 | 0.95 | 0.79 | 0.85 | 1.25 | 1.50 | 0.99 | 1.02 | 1.65 | 1.16 | 1.36 | 0.90 | |
Citronellyl acetate | 1352/1356 | 0.30 | 0.30 | 0.70 | 0.40 | 0.40 | 0.42 | 0.56 | 0.56 | 0.42 | 0.56 | 0.35 | 0.45 | |
α-Copaene | 1374/1376 | 0.20 | 0.27 | 0.20 | 0.19 | 0.19 | 0.15 | 0.16 | 0.32 | 0.15 | 0.34 | 0.15 | 0.27 | |
Geranyl acetate | 1382/1383 | 0.01 | 0.04 | 0.03 | 0.03 | 0.03 | 0.04 | 0.03 | 0.05 | 0.03 | 0.03 | 0.01 | 0.04 | |
Gurjunene <alpha-> | 1407/1409 | 4.31 ± 0.06 | 4.21 ± 0.86 | 6.56 ± 0.13 | 2.47 ± 0.12 | 2.49 ± 0.22 | 2.75 ± 0.13 | 2.91 ± 0.14 | 2.36 ± 0.10 | 4.31 ± 0.19 | 2.91 ± 0.10 | 2.91 ± 0.12 | 3.21 ± 0.12 | |
E-β-Caryophyllene | 1417/1419 | 0.04 | 0.04 | 0.13 | 0.02 | 0.02 | 0.02 | 0.02 | 0.03 | 0.03 | 0.01 | 0.01 | 0.03 | |
β-Copaene | 1432/1433 | 1.10 | 1.05 | 1.01 | 1.57 | 1.65 | 2.10 | 1.56 | 1.62 | 2.36 | 2.05 | 2.07 | 1.44 | |
Citronellyl propionate | 1444/1445 | 0 | 0.10 | 0.03 | 0.12 | 0.01 | 0.01 | 0.01 | 0.17 | 0 | 0.01 | 0.03 | 0 | |
trans-Muurola-3,5-diene | 1451/1452 | 0.43 | 0.59 | 4.93 | 0.69 | 0.68 | 1.13 | 0.98 | 0.84 | 1.31 | 0.99 | 1.14 | 0.77 | |
α-Humulene | 1453/1455 | 0.10 | 0.11 | 0.18 | 0.10 | 0.10 | 0.11 | 0.14 | 0.14 | 0.04 | 0.11 | 0.11 | 0.13 | |
9-epi-(E)-Caryophyllene | 1464/1465 | 0.01 | 0.01 | 0.15 | 0.01 | 0.15 | 0.13 | 0.01 | 0 | 0.02 | 0.01 | 0.02 | 0 | |
cis-Muurola-4(14),5-diene | 1466/1467 | 0.39 | 0.39 | 0.52 | 0.39 | 0.41 | 0.44 | 0.31 | 0.44 | 0.75 | 0.44 | 0.31 | 0.41 | |
Dauca-5,8-diene | 1472/1473 | 0.20 | 0.20 | 0.48 | 0.02 | 0.03 | 0.02 | 0.02 | 0.03 | 0.02 | 0.04 | 0.01 | 0.02 | |
γ-Muurolene | 1477/1480 | 1.48 | 1.76 | 1.58 | 1.96 | 1.98 | 1.80 | 2.02 | 2.44 | 1.94 | 1.80 | 1.44 | 2.38 | |
Germacrene D | 1480/1482 | 0.04 | 0.04 | 0.39 | 0.09 | 0.06 | 0.08 | 0.03 | 0.12 | 0.08 | 0.06 | 0 | 0.09 | |
α-Amorphene | 1483/1485 | 0.04 | 0.26 | 0.27 | 0.26 | 0.29 | 0.29 | 0.34 | 0.23 | 0.46 | 0.49 | 0.41 | 0.22 | |
γ-Amorphene | 1494/1495 | 0.34 | 0.46 | 0.63 | 0.42 | 0.46 | 0.43 | 0.60 | 0.64 | 0.60 | 0.60 | 0.70 | 0.71 | |
Viridiflorene | 1496/1498 | 0.09 | 0.11 | 0.09 | 0.16 | 0.18 | 0.20 | 0.16 | 0.15 | 0.16 | 0.24 | 0.27 | 0.13 | |
α-Muurolene | 1501/1500 | 0.25 | 0.13 | 2.58 | 0.19 | 0.25 | 0.18 | 0.31 | 0.25 | 0.34 | 0.32 | 0.29 | 0.18 | |
γ-Cadinene | 1513/1514 | 1.20 ± 0.20 | 1.29 ± 0.60 | 5.32 ± 0.10 | 1.42 ± 0.01 | 2.14 ± 0.32 | 2.46 ± 0.25 | 1.42 ± 0.02 | 1.47 ± 0.38 | 2.43 ± 0.45 | 2.76 ± 0.60 | 2.19 ± 0.20 | 1.20 ± 0.10 | |
δ-Cadinene | 1522/1524 | 3.26 ± 0.10 | 3.34 ± 0.20 | 2.40 ± 0.84 | 3.58 ± 0.30 | 3.78 ± 0.56 | 6.03 ± 0.45 | 3.58 ± 0.21 | 3.68 ± 0.38 | 5.80 ± 0.73 | 6.22 ± 0.83 | 5.58 ± 0.60 | 3.39 ± 0.51 | |
trans-Cadina-1,4-diene | 1532/1533 | 0.03 | 0.03 | 0.06 | 0.05 | 0.05 | 0.06 | 0.06 | 0.06 | 0.08 | 0.09 | 0.12 | 0.05 | |
α-Cadinene | 1537/1339 | 0.21 | 1.22 | 0.15 | 0.22 | 0.30 | 0.37 | 0.30 | 0.21 | 2.01 | 0.31 | 0.30 | 0.16 | |
α-Calacorene | 1544/1545 | 0.13 | 0.23 | 0.13 | 0.26 | 0.26 | 0.30 | 0.28 | 0.29 | 0.31 | 0.40 | 0.23 | 0.23 | |
epi-Longipinanol | 1564/1563 | 0.74 | 0.77 | 0.50 | 1.22 | 1.25 | 1.22 | 1.05 | 1.14 | 1.18 | 1.59 | 1.03 | 1.15 | |
Geranyl butanoate | 1566/1567 | 0.11 | 0.12 | 0.08 | 0.15 | 0.23 | 0.22 | 0.18 | 0.12 | 0.20 | 0.25 | 0.18 | 0.11 | |
(2E)-Tridec-en-1-ol | 1570/1571 | 1.02 | 1.29 | 0.58 | 1.32 | 1.54 | 1.97 | 1.31 | 1.01 | 1.88 | 2.52 | 1.48 | 1.12 | |
Spathulenol | 1575/1675 | 1.12 | 1.29 | 2.97 | 0.83 | 1.26 | 1.75 | 1.05 | 1.09 | 1.23 | 2.18 | 1.36 | 1.17 | |
Caryophyllene oxide | 1584/1583 | 0.15 | 0.16 | 0.39 | 0.22 | 0.25 | 0.22 | 0.21 | 0.21 | 0.03 | 0.29 | 0.20 | 0.17 | |
Viridiflorol | 1591/1593 | 0.46 | 0.50 | 0.52 | 0.53 | 0.62 | 0.65 | 0.54 | 0.50 | 0.27 | 0.73 | 0.61 | 0.49 | |
Humulene epoxide II | 1607/1608 | 0.30 | 0.30 | 0.30 | 0.46 | 0.49 | 0.52 | 0.40 | 0.32 | 0.39 | 0.60 | 0.40 | 0.30 | |
1-epi-Cubenol | 1617/1619 | 0.45 | 0.58 | 0.31 | 0.75 | 0.95 | 0.99 | 0.75 | 0.60 | 0.65 | 1.05 | 0.89 | 0.52 | |
Citronellyl pentanoate | 1625/1625 | 0.65 | 0.51 | 0.53 | 0.67 | 0.65 | 0.62 | 0.73 | 0.50 | 0.75 | 1.09 | 0.61 | 0.41 | |
Epicubenol | 1628/1629 | 0 | 0 | 0.02 | 0.02 | 0 | 0.03 | 0.02 | 0.03 | 0.01 | 0.08 | 0 | 0.02 | |
τ-Muurolol | 1640/1641 | 0.04 | 0.05 | 0.06 | 0.07 | 0.05 | 0.04 | 0.05 | 0.05 | 0.04 | 0.17 | 0.04 | 0.04 | |
Himachalol | 1652/1654 | 0.05 | 0.05 | 0.27 | 0.07 | 0.08 | 0.10 | 0.06 | 0.05 | 0.05 | 0.09 | 0.08 | 0.04 | |
Selin-11-en-4-α-ol | 1657/1657 | 1.76 | 1.28 | 2.18 | 0.43 | 0.15 | 0.12 | 0.23 | 0.38 | 0.02 | 0.21 | 0.05 | 0.34 | |
Citronellyl tiglate | 1665/1668 | 4.02 ± 0.82 | 3.35 ± 0.72 | 1.58 ± 0.62 | 4.62 ± 0.56 | 4.85 ± 0.31 | 5.32 ± 0.22 | 4.52 ± 0.31 | 3.35 ± 0.44 | 3.90 ± 0.21 | 6.62 ± 0.33 | 4.88 ± 0.24 | 3.28 ± 0.32 | |
Bulnesol | 1669/1672 | 0 | 0 | 0.55 | 0.02 | 0.02 | 0.02 | 0.01 | 0.01 | 0 | 0.01 | 0.02 | 0.01 | |
Shyobunol | 1687/1689 | 0.85 | 0.97 | 0.42 | 1.07 | 1.10 | 1.32 | 1.45 | 0.84 | 0.94 | 1.82 | 1.32 | 0.74 | |
Geranyl tiglate | 1695/1696 | 0.75 | 0.86 | 0.23 | 1.42 | 1.25 | 0.96 | 0.93 | 1.10 | 0.81 | 1.24 | 0.99 | 1.12 |
Soil Texture | Soil-Sand-Manure |
---|---|
Volumetric moisture at field capacity (%) | 28.2 |
Volumetric moisture at the wilting point (%) | 14.6 |
Soil acidity | 7.8 |
Electrical conductivity of soil saturated extract (ECe) | 2.55 |
Organic materials (%) | 1.5 |
Lime | 34.5 |
Nitrogen (%) | 0.247 |
Absorbable phosphorus (mg/kg soil) | 49.5 |
Absorbable potassium (mg/kg soil) | 166 |
Iron (mg/kg soil) | 23.4 |
Zinc (mg/kg soil) | 20 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gerami, N.; Rahimmalek, M.; Gholami, M.; Tohidi, B.; Szumny, A. Changes in Phytochemical, Physiological, and Morphological Traits in Pelargonium graveolens as Affected by Drought Stress and Ascophyllum nodosum Extract. Int. J. Mol. Sci. 2025, 26, 9210. https://doi.org/10.3390/ijms26189210
Gerami N, Rahimmalek M, Gholami M, Tohidi B, Szumny A. Changes in Phytochemical, Physiological, and Morphological Traits in Pelargonium graveolens as Affected by Drought Stress and Ascophyllum nodosum Extract. International Journal of Molecular Sciences. 2025; 26(18):9210. https://doi.org/10.3390/ijms26189210
Chicago/Turabian StyleGerami, Negar, Mehdi Rahimmalek, Mahdiyeh Gholami, Behnaz Tohidi, and Antoni Szumny. 2025. "Changes in Phytochemical, Physiological, and Morphological Traits in Pelargonium graveolens as Affected by Drought Stress and Ascophyllum nodosum Extract" International Journal of Molecular Sciences 26, no. 18: 9210. https://doi.org/10.3390/ijms26189210
APA StyleGerami, N., Rahimmalek, M., Gholami, M., Tohidi, B., & Szumny, A. (2025). Changes in Phytochemical, Physiological, and Morphological Traits in Pelargonium graveolens as Affected by Drought Stress and Ascophyllum nodosum Extract. International Journal of Molecular Sciences, 26(18), 9210. https://doi.org/10.3390/ijms26189210