The Glycemia Risk Index (GRI) as a Biomarker for Subclinical Endothelial Dysfunction in Type 1 Diabetes: A Cross-Sectional Study
Abstract
1. Introduction
2. Results
2.1. Demographic Analysis
2.2. Descriptive Analysis of Circulating Endothelial Progenitor Cells
2.3. Regression Analyses Results
3. Discussion
4. Materials and Methods
4.1. Study Population
4.2. Clinical Variables
- VLow (very low glucose hypoglycemia): Time spent at glucose levels <54 mg/dL;
- Low (low glucose hypoglycemia): Time spent at glucose levels 54 to <70 mg/dL;
- High (high glucose hyperglycemia): Time spent at glucose levels 180 to 250 mg/dL;
- VHigh (very high glucose hyperglycemia): Time spent at glucose levels >250 mg/dL.
4.3. Assessment of Circulating Levels of EPCs
4.4. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
EPCs | Endothelial Progenitor Cells |
GRI | Glycemia Risk Index |
T1D | Type 1 Diabetes |
CGM | Continuous Glucose Monitoring |
References
- Katsarou, A.; Gudbjörnsdottir, S.; Rawshani, A.; Dabelea, D.; Bonifacio, E.; Anderson, B.J.; Jacobsen, L.M.; Schatz, D.A.; Lernmark, Å. Type 1 Diabetes Mellitus. Nat. Rev. Dis. Primers 2017, 3, 17016. [Google Scholar] [CrossRef]
- Due-Christensen, M.; Zoffmann, V.; Willaing, I.; Hopkins, D.; Forbes, A. The Process of Adaptation Following a New Diagnosis of Type 1 Diabetes in Adulthood: A Meta-Synthesis. Qual. Health Res. 2018, 28, 245–258. [Google Scholar] [CrossRef]
- Evans-Molina, C.; Oram, R.A. Type 1 Diabetes Presenting in Adults: Trends, Diagnostic Challenges and Unique Features. Diabetes Obes. Metab. 2025, 27, 57–68. [Google Scholar] [CrossRef]
- Harding, J.L.; Wander, P.L.; Zhang, X.; Li, X.; Karuranga, S.; Chen, H.; Sun, H.; Xie, Y.; Oram, R.A.; Magliano, D.J.; et al. The Incidence of Adult-Onset Type 1 Diabetes: A Systematic Review From 32 Countries and Regions. Diabetes Care 2022, 45, 994–1006. [Google Scholar] [CrossRef] [PubMed]
- Holt, R.I.G.; DeVries, J.H.; Hess-Fischl, A.; Hirsch, I.B.; Kirkman, M.S.; Klupa, T.; Ludwig, B.; Nørgaard, K.; Pettus, J.; Renard, E.; et al. The Management of Type 1 Diabetes in Adults. A Consensus Report by the American Diabetes Association (ADA) and the European Association for the Study of Diabetes (EASD). Diabetes Care 2021, 44, 2589–2625. [Google Scholar] [CrossRef] [PubMed]
- Lind, M.; Svensson, A.-M.; Kosiborod, M.; Gudbjörnsdottir, S.; Pivodic, A.; Wedel, H.; Dahlqvist, S.; Clements, M.; Rosengren, A. Glycemic Control and Excess Mortality in Type 1 Diabetes. N. Engl. J. Med. 2014, 371, 1972–1982. [Google Scholar] [CrossRef] [PubMed]
- Vergès, B. Cardiovascular Disease in Type 1 Diabetes, an Underestimated Danger: Epidemiological and Pathophysiological Data. Atherosclerosis 2024, 394, 117158. [Google Scholar] [CrossRef]
- Tran-Duy, A.; Knight, J.; Palmer, A.J.; Petrie, D.; Lung, T.W.C.; Herman, W.H.; Eliasson, B.; Svensson, A.-M.; Clarke, P.M. A Patient-Level Model to Estimate Lifetime Health Outcomes of Patients with Type 1 Diabetes. Diabetes Care 2020, 43, 1741–1749. [Google Scholar] [CrossRef]
- Rawshani, A.; Rawshani, A.; Franzén, S.; Eliasson, B.; Svensson, A.-M.; Miftaraj, M.; McGuire, D.K.; Sattar, N.; Rosengren, A.; Gudbjörnsdottir, S. Mortality and Cardiovascular Disease in Type 1 and Type 2 Diabetes. N. Engl. J. Med. 2017, 376, 1407–1418. [Google Scholar] [CrossRef]
- Rawshani, A.; Rawshani, A.; Sattar, N.; Franzén, S.; McGuire, D.K.; Eliasson, B.; Svensson, A.-M.; Zethelius, B.; Miftaraj, M.; Rosengren, A.; et al. Relative Prognostic Importance and Optimal Levels of Risk Factors for Mortality and Cardiovascular Outcomes in Type 1 Diabetes Mellitus. Circulation 2019, 139, 1900–1912. [Google Scholar] [CrossRef]
- Manrique-Acevedo, C.; Hirsch, I.B.; Eckel, R.H. Prevention of Cardiovascular Disease in Type 1 Diabetes. N. Engl. J. Med. 2024, 390, 1207–1217. [Google Scholar] [CrossRef]
- Rawshani, A.; Sattar, N.; Franzén, S.; Rawshani, A.; Hattersley, A.T.; Svensson, A.-M.; Eliasson, B.; Gudbjörnsdottir, S. Excess Mortality and Cardiovascular Disease in Young Adults with Type 1 Diabetes in Relation to Age at Onset: A Nationwide, Register-Based Cohort Study. Lancet 2018, 392, 477–486. [Google Scholar] [CrossRef] [PubMed]
- Sharma, H.; Lencioni, M.; Narendran, P. Cardiovascular Disease in Type 1 Diabetes. Cardiovasc. Endocrinol. Metab. 2019, 8, 28–34. [Google Scholar] [CrossRef]
- Htay, T.; Soe, K.; Lopez-Perez, A.; Doan, A.H.; Romagosa, M.A.; Aung, K. Mortality and Cardiovascular Disease in Type 1 and Type 2 Diabetes. Curr. Cardiol. Rep. 2019, 21, 45. [Google Scholar] [CrossRef] [PubMed]
- Eckel, R.H.; Bornfeldt, K.E.; Goldberg, I.J. Cardiovascular Disease in Diabetes, beyond Glucose. Cell Metab. 2021, 33, 1519–1545. [Google Scholar] [CrossRef] [PubMed]
- Sen, A.; Vincent, V.; Thakkar, H.; Abraham, R.; Ramakrishnan, L. Beneficial Role of Vitamin D on Endothelial Progenitor Cells (EPCs) in Cardiovascular Diseases. J. Lipid Atheroscler. 2022, 11, 229–249. [Google Scholar] [CrossRef]
- Yang, D.-R.; Wang, M.-Y.; Zhang, C.-L.; Wang, Y. Endothelial Dysfunction in Vascular Complications of Diabetes: A Comprehensive Review of Mechanisms and Implications. Front. Endocrinol 2024, 15, 1359255. [Google Scholar] [CrossRef]
- Saad, M.I.; Abdelkhalek, T.M.; Saleh, M.M.; Kamel, M.A.; Youssef, M.; Tawfik, S.H.; Dominguez, H. Insights into the Molecular Mechanisms of Diabetes-Induced Endothelial Dysfunction: Focus on Oxidative Stress and Endothelial Progenitor Cells. Endocrine 2015, 50, 537–567. [Google Scholar] [CrossRef]
- Nathan, D.M.; Cleary, P.A.; Backlund, J.-Y.C.; Genuth, S.M.; Lachin, J.M.; Orchard, T.J.; Raskin, P.; Zinman, B.; Diabetes Control and Complications Trial/Epidemiology of Diabetes Interventions and Complications (DCCT/EDIC) Study Research Group. Intensive Diabetes Treatment and Cardiovascular Disease in Patients with Type 1 Diabetes. N. Engl. J. Med. 2005, 353, 2643–2653. [Google Scholar] [CrossRef]
- Maiorino, M.I.; Casciano, O.; Della Volpe, E.; Bellastella, G.; Giugliano, D.; Esposito, K. Reducing Glucose Variability with Continuous Subcutaneous Insulin Infusion Increases Endothelial Progenitor Cells in Type 1 Diabetes: An Observational Study. Endocrine 2016, 52, 244–252. [Google Scholar] [CrossRef]
- Avogaro, A.; Albiero, M.; Menegazzo, L.; de Kreutzenberg, S.; Fadini, G.P. Endothelial Dysfunction in Diabetes: The Role of Reparatory Mechanisms. Diabetes Care 2011, 34, S285–S290. [Google Scholar] [CrossRef]
- Arcangeli, A.; Lastraioli, E.; Piccini, B.; D’Amico, M.; Lenzi, L.; Pillozzi, S.; Calabrese, M.; Toni, S.; Arcangeli, A. Circulating Endothelial Progenitor Cells in Type 1 Diabetic Patients: Relation with Patients’ Age and Disease Duration. Front. Endocrinol 2017, 8, 278. [Google Scholar] [CrossRef]
- Maiorino, M.I.; Della Volpe, E.; Olita, L.; Bellastella, G.; Giugliano, D.; Esposito, K. Glucose Variability Inversely Associates with Endothelial Progenitor Cells in Type 1 Diabetes. Endocrine 2015, 48, 342–345. [Google Scholar] [CrossRef]
- Bonora, B.M.; Cappellari, R.; Grasso, M.; Mazzucato, M.; D’Anna, M.; Avogaro, A.; Fadini, G.P. Glycaemic Control Achieves Sustained Increases of Circulating Endothelial Progenitor Cells in Patients Hospitalized for Decompensated Diabetes: An Observational Study. Diabetes Ther. 2022, 13, 1327–1337. [Google Scholar] [CrossRef]
- Longo, M.; Scappaticcio, L.; Bellastella, G.; Pernice, V.; Cirillo, P.; Maio, A.; Castaldo, F.; Giugliano, D.; Esposito, K.; Maiorino, M.I.; et al. Alterations in the Levels of Circulating and Endothelial Progenitor Cells Levels in Young Adults with Type 1 Diabetes: A 2-Year Follow-Up from the Observational METRO Study. Diabetes Metab. Syndr. Obes. 2020, 13, 777–784. [Google Scholar] [CrossRef]
- Klonoff, D.C.; Wang, J.; Rodbard, D.; Kohn, M.A.; Li, C.; Liepmann, D.; Kerr, D.; Ahn, D.; Peters, A.L.; Umpierrez, G.E.; et al. A Glycemia Risk Index (GRI) of Hypoglycemia and Hyperglycemia for Continuous Glucose Monitoring Validated by Clinician Ratings. J. Diabetes Sci. Technol. 2023, 17, 1226–1242. [Google Scholar] [CrossRef] [PubMed]
- Rigato, M.; Avogaro, A.; Fadini, G.P. Levels of Circulating Progenitor Cells, Cardiovascular Outcomes and Death: A Meta-Analysis of Prospective Observational Studies. Circ. Res. 2016, 118, 1930–1939. [Google Scholar] [CrossRef] [PubMed]
- Wilmot, E.G.; Choudhary, P.; Leelarathna, L.; Baxter, M. Glycaemic Variability: The under-Recognized Therapeutic Target in Type 1 Diabetes Care. Diabetes Obes. Metab. 2019, 21, 2599–2608. [Google Scholar] [CrossRef] [PubMed]
- Jun, J.E.; Lee, Y.-B.; Kim, J.H. Association of Continuous Glucose Monitoring-Derived Glycemia Risk Index with Cardiovascular Autonomic Neuropathy in Patients with Type 1 Diabetes Mellitus: A Cross-Sectional Study. J. Diabetes Sci. Technol. 2024, 19322968241288579. [Google Scholar] [CrossRef]
- Wang, Y.; Lu, J.; Ni, J.; Wang, M.; Shen, Y.; Lu, W.; Zhu, W.; Bao, Y.; Rodbard, D.; Vigersky, R.A.; et al. Association between Glycaemia Risk Index (GRI) and Diabetic Retinopathy in Type 2 Diabetes: A Cohort Study. Diabetes Obes. Metab. 2023, 25, 2457–2463. [Google Scholar] [CrossRef]
- Benítez-Camacho, J.; Ballesteros, A.; Beltrán-Camacho, L.; Rojas-Torres, M.; Rosal-Vela, A.; Jimenez-Palomares, M.; Sanchez-Gomar, I.; Durán-Ruiz, M.C. Endothelial Progenitor Cells as Biomarkers of Diabetes-Related Cardiovascular Complications. Stem Cell Res. Ther. 2023, 14, 324. [Google Scholar] [CrossRef]
- Ceriello, A.; Esposito, K.; Piconi, L.; Ihnat, M.A.; Thorpe, J.E.; Testa, R.; Boemi, M.; Giugliano, D. Oscillating Glucose Is More Deleterious to Endothelial Function and Oxidative Stress than Mean Glucose in Normal and Type 2 Diabetic Patients. Diabetes 2008, 57, 1349–1354. [Google Scholar] [CrossRef]
- Lazar, S.; Reurean-Pintilei, D.-V.; Ionita, I.; Avram, V.-F.; Herascu, A.; Timar, B. Glycemic Variability and Its Association with Traditional Glycemic Control Biomarkers in Patients with Type 1 Diabetes: A Cross-Sectional, Multicenter Study. J. Clin. Med. 2025, 14, 2434. [Google Scholar] [CrossRef]
- Hörtenhuber, T.; Rami-Mehar, B.; Satler, M.; Nagl, K.; Höbaus, C.; Höllerl, F.; Koppensteiner, R.; Schernthaner, G.; Schober, E.; Schernthaner, G.-H. Endothelial Progenitor Cells Are Related to Glycemic Control in Children with Type 1 Diabetes over Time. Diabetes Care 2013, 36, 1647–1653. [Google Scholar] [CrossRef]
- Maiorino, M.I.; Bellastella, G.; Casciano, O.; Petrizzo, M.; Gicchino, M.; Caputo, M.; Sarnataro, A.; Giugliano, D.; Esposito, K. Gender-Differences in Glycemic Control and Diabetes Related Factors in Young Adults with Type 1 Diabetes: Results from the METRO Study. Endocrine 2018, 61, 240–247. [Google Scholar] [CrossRef]
- The International Hypoglycaemia Study Group. Hypoglycaemia, Cardiovascular Disease, and Mortality in Diabetes: Epidemiology, Pathogenesis, and Management. Lancet Diabetes Endocrinol. 2019, 7, 385–396, Erratum in Lancet Diabetes Endocrionol. 2019, 7, e18. [Google Scholar] [CrossRef] [PubMed]
- Ceriello, A.; Monnier, L.; Owens, D. Glycaemic Variability in Diabetes: Clinical and Therapeutic Implications. Lancet Diabetes Endocrinol. 2019, 7, 221–230. [Google Scholar] [CrossRef] [PubMed]
- Fadini, G.P.; Miorin, M.; Facco, M.; Bonamico, S.; Baesso, I.; Grego, F.; Menegolo, M.; de Kreutzenberg, S.V.; Tiengo, A.; Agostini, C.; et al. Circulating Endothelial Progenitor Cells Are Reduced in Peripheral Vascular Complications of Type 2 Diabetes Mellitus. J. Am. Coll. Cardiol. 2005, 45, 1449–1457. [Google Scholar] [CrossRef]
- Chen, J.; Jing, J.; Yu, S.; Song, M.; Tan, H.; Cui, B.; Huang, L. Advanced Glycation Endproducts Induce Apoptosis of Endothelial Progenitor Cells by Activating Receptor RAGE and NADPH Oxidase/JNK Signaling Axis. Am. J. Transl. Res. 2016, 8, 2169–2178. [Google Scholar]
- Dong, Y.; Zhou, X.; Zhang, S.; Lin, X.; Zhang, N. High-Glucose Induced HIF-1α down-Regulation Impairs the Function of the Endothelial Progenitor Cells via PI3K/AKT Signaling Pathway. J. Transl. Sci. 2020, 6, 2169–2178. [Google Scholar] [CrossRef]
- Wang, K.; Dai, X.; He, J.; Yan, X.; Yang, C.; Fan, X.; Sun, S.; Chen, J.; Xu, J.; Deng, Z.; et al. Endothelial Overexpression of Metallothionein Prevents Diabetes-Induced Impairment in Ischemia Angiogenesis Through Preservation of HIF-1α/SDF-1/VEGF Signaling in Endothelial Progenitor Cells. Diabetes 2020, 69, 1779–1792. [Google Scholar] [CrossRef]
- von Elm, E.; Altman, D.G.; Egger, M.; Pocock, S.J.; Gøtzsche, P.C.; Vandenbroucke, J.P.; STROBE Initiative the Strengthening the Reporting of Observational Studies in Epidemiology (STROBE). Statement: Guidelines for Reporting Observational Studies. J. Clin. Epidemiol. 2008, 61, 344–349. [Google Scholar] [CrossRef]
- Mishra, P.; Pandey, C.M.; Singh, U.; Gupta, A.; Sahu, C.; Keshri, A. Descriptive Statistics and Normality Tests for Statistical Data. Ann. Card. Anaesth. 2019, 22, 67–72. [Google Scholar] [CrossRef]
Variables | Study Cohort (n = 132) |
---|---|
Demographics | |
Age, years | 24.5 (23.0–29.0) |
Diabetes duration, years | 16.0 (12.0–22.0) |
Female, n (%) | 74 (56.1) |
Smokers, n (%) | 46 (34.8) |
Body weight, kg | 67.0 (60.7–76.0) |
BMI, kg/m2 | 23.7 (21.9–26.2) |
SBP, mmHg | 110.0 (105.0–120.0) |
DBP, mmHg | 70.0 (65.0–80.0) |
Glycemic markers | |
Fasting plasma glucose, mg/dL | 180.0 (108.0–212.0) |
HbA1c, % | 7.4 (6.8–8.2) |
GRI, % | 48.3 (36.8–66.2) |
TIR, % | 59.5 (46.0–69.0) |
CV, % | 37.2 (33.5–41.2) |
Mean Glucose, mg/dL | 168.5 (151.0–184.0) |
GMI, % | 7.3 (6.9–7.8) |
Lipid profile | |
Total Cholesterol, mg/dL | 167.5 (147.0–185.0) |
HDL Cholesterol, mg/dL | 59.5 (50.0–70.0) |
LDL Cholesterol, mg/dL | 91.0 (74.0–106.8) |
Triglycerides, mg/dL | 69.0 (52.0–85.0) |
Insulin therapy | |
Total daily insulin dose, UI/die | 46.5 (37.7–55.7) |
Basal daily insulin dose, UI/die | 24.0 (19.5–28.0) |
Bolus daily insulin dose, UI/die | 21.0 (18.0–26.8) |
Comorbidities | |
Other autoimmune diseases, n (%) | 40 (30.3) |
Other therapies, n (%) | 42 (31.8) |
CSII users, n (%) | 90 (68.2) |
Variables | Zone A (n = 10) | Zone B (n = 34) | Zone C (n = 48) | Zone D (n = 26) | Zone E (n = 14) | p |
---|---|---|---|---|---|---|
Age, years | 33.0 (23.0–33.0) | 24.0 (22.0–31.0) | 24.5 (23.0–29.0) | 25.0 (22.0–26.0) | 24.0 (23.0–27.0) | 0.349 |
Diabetes duration, years | 22.0 (10.0–35.0) | 13.0 (12.0–20.0) | 16.0 (12.0–22.0) | 16.0 (14.0–22.0) | 18.0 (7.0–19.0) | 0.714 |
Body weight, kg | 62.0 (56.4–63.0) ** | 71.0 (62.0–77.0) | 64.0 (59.6–73.0) ** | 76.0 (65.5–81.2) | 65.0 (60.7–67.0) ** | <0.01 |
BMI, kg/m2 | 21.0 (20.5–23.6) | 24.9 (22.9–27.8) | 23.3 (20.9–24.0) | 26.5 (21.3–29.1) * | 24.1 (22.5–25.5) | <0.01 |
SBP, mmHg | 110 (110–120) | 110 (105–120) | 117.5 (110–122.5) | 120 (100–120) | 105 (100–110) | 0.114 |
DBP, mmHg | 80 (75–80) | 70 (65–75) | 72.5 (70–80) | 70 (65–80) | 70 (60–75) | 0.021 |
Fasting plasma glucose, mg/dL | 93.6 ± 47.1 | 150.2 ± 62.3 | 188.7 ± 72.5 * | 170.3 ± 58.3 * | 225.6 ± 98.3 *§ | <0.01 |
HbA1c, % | 6.8 (6.4–6.8) | 7.2 (6.5–8.0) | 7.5 (7.2–8.2) * | 8.0 (7.2–8.2) * | 8.3 (6.8–11.8) * | <0.01 |
Total cholesterol, mg/dL | 165.0 (146.0 182.0) | 153.0 (142.0–176.0) | 179.0 (160.0–191.5) § | 169.0 (153.0–175.0) | 177.0 (147.0–192.0) | 0.040 |
LDL cholesterol, mg/dL | 84.0 (74.0–105.0) | 86.0 (62.2–98.4) | 95.2 (75.2–111.5) | 79.0 (74.4–104.4) | 101.0 (90.0–118.0) § | 0.039 |
HDL cholesterol, mg/dL | 65.0 (58.0–68.0) | 56.0 (48.0–71.0) | 59.0 (50.0–67.5) | 62.0 (59.0–67.0) | 70.0 (36.0–77.0) | 0.776 |
Triglycerides, mg/dL | 55.0 (50.0–58.0) | 66.0 (49.0–80.0) | 80.5 (62.0–86.0) * | 76.0 (51.0–88.0) | 61.0 (57.0–94.0) | 0.026 |
TIR, % | 86.0 (79.0–86.0) | 70.0 (68.0–76.0) | 58.0 (52.0–63.5) | 45.0 (37.0–47.0) | 32.0 (28.0–37.0) | <0.01 |
CV, % | 29.3 (28.8–30.0) | 33.5 (32.0–37.4) | 39.7 (35.3–42.7) *§ | 44.0 (35.8–45.1) *§ | 36.1 (35.0–41.2) * | <0.01 |
Mean glucose, mg/dL | 147.0 (124.0–183.0) | 152.0 (149.0–161.0) | 168.5 (153.0–179.5) | 179.0 (168.0–185.0) § | 210.0 (189.0–235.0) *§ | <0.01 |
GMI, % | 6.4 (6.3–6.8) | 6.9 (6.8–7.2) | 7.4 (7.0–7.8) *§ | 7.7 (7.6–8.1) *§ | 8.7 (8.1–9.6) *§ | <0.001 |
Phenotypes | Zone A (n = 10) | Zone B (n = 34) | Zone C (n = 48) | Zone D (n = 26) | Zone E (n = 14) | p |
---|---|---|---|---|---|---|
CD34+ | 268.0 (244.0–393.0) | 171.0 (148.0–226.0) * | 215.0 (155.0–274.5) | 158.0 (113.0–215.0) * | 203.0 (134.0–214.0) * | <0.001 |
CD133+ | 239.0 (226.0–266.0) | 159.0 (134.0–239.0) | 201.5 (162.5–245.5) | 159.0 (133.0–204.0) | 198.0 (164.0–358.0) | 0.049 |
KDR+ | 94.0 (76.0–113.0) | 88.0 (63.0–99.0) | 103.0 (78.0–166.0) | 65.0 (45.0–71.0) ¶ | 84.0 (72.0–100.0) | <0.001 |
CD34+CD133+ | 88.0 (66.0–166.0) | 80.0 (54.0–116.0) | 80.5 (58.0–101.5) | 80.0 (65.0–106.0) | 70.0 (17.0–110.0) | 0.654 |
CD34+KDR+ | 25.0 (13.0–35.0) | 11.0 (6.0–19.0) | 15.5 (6.5–21.5) | 10.0 (5.0–15.0) * | 12 (7.0–20.0) | 0.034 |
CD133+KDR+ | 3.0 (3.0–5.0) | 4.0 (2.0–6.0) | 5.5 (2.0–8.0) | 4.0 (3.0–6.0) | 6.0 (2.0–10.0) | 0.511 |
CD34+CD133+ KDR+ | 2.0 (1.0–2.0) | 2.0 (1.0–3.0) | 2.0 (1.0–4.0) | 2.0 (1.0–4.0) | 3.0 (1.0–5.0) | 0.651 |
β | p | R2 | |
---|---|---|---|
CD34+ | −1.079 | 0.006 | 0.06 |
CD133+ | −0.426 | 0.233 | 0.01 |
KDR+ | −0.481 | 0.089 | 0.02 |
CD34+CD133+ | −0.581 | 0.008 | 0.06 |
CD34+KDR+ | −0.147 | 0.010 | 0.05 |
CD133+KDR+ | 0.020 | 0.209 | 0.01 |
CD34+CD133+KDR+ | 0.007 | 0.437 | 0.01 |
β | p | R2 | |
---|---|---|---|
CD34+ | −10.096 | 0.123 | 0.02 |
CD133+ | 6.572 | 0.268 | 0.01 |
KDR+ | −5.326 | 0.259 | 0.01 |
CD34+CD133+ | −0.889 | 0.809 | 0.0 |
CD34+KDR+ | −1.315 | 0.170 | 0.01 |
CD133+KDR+ | −0.185 | 0.482 | 0.004 |
CD34+CD133+KDR+ | −0.151 | 0.304 | 0.01 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Di Martino, N.; Angelino, S.; Maio, A.; Cirillo, P.; Pontillo, A.; Caputo, M.; Scappaticcio, L.; Caruso, P.; Longo, M.; Bellastella, G.; et al. The Glycemia Risk Index (GRI) as a Biomarker for Subclinical Endothelial Dysfunction in Type 1 Diabetes: A Cross-Sectional Study. Int. J. Mol. Sci. 2025, 26, 9196. https://doi.org/10.3390/ijms26189196
Di Martino N, Angelino S, Maio A, Cirillo P, Pontillo A, Caputo M, Scappaticcio L, Caruso P, Longo M, Bellastella G, et al. The Glycemia Risk Index (GRI) as a Biomarker for Subclinical Endothelial Dysfunction in Type 1 Diabetes: A Cross-Sectional Study. International Journal of Molecular Sciences. 2025; 26(18):9196. https://doi.org/10.3390/ijms26189196
Chicago/Turabian StyleDi Martino, Nicole, Silvia Angelino, Antonietta Maio, Paolo Cirillo, Alessandro Pontillo, Mariangela Caputo, Lorenzo Scappaticcio, Paola Caruso, Miriam Longo, Giuseppe Bellastella, and et al. 2025. "The Glycemia Risk Index (GRI) as a Biomarker for Subclinical Endothelial Dysfunction in Type 1 Diabetes: A Cross-Sectional Study" International Journal of Molecular Sciences 26, no. 18: 9196. https://doi.org/10.3390/ijms26189196
APA StyleDi Martino, N., Angelino, S., Maio, A., Cirillo, P., Pontillo, A., Caputo, M., Scappaticcio, L., Caruso, P., Longo, M., Bellastella, G., Maiorino, M. I., & Esposito, K. (2025). The Glycemia Risk Index (GRI) as a Biomarker for Subclinical Endothelial Dysfunction in Type 1 Diabetes: A Cross-Sectional Study. International Journal of Molecular Sciences, 26(18), 9196. https://doi.org/10.3390/ijms26189196