Plant Antimicrobial Oligopeptides with Anticancer Properties as a Source of Biologically Active Peptides—An In Silico Study
Abstract
1. Introduction
2. Results
2.1. Peptide Sequences After In Silico Hydrolysis with Gastrointestinal Track Enzymes
2.2. Peptide Sequences After Hydrolysis with Microbial Enzymes
2.3. Characterization of the Peptides
3. Discussion
4. Materials and Methods
4.1. In Silico Enzymatic Hydrolysis
4.1.1. Hydrolysis with Gastrointestinal Track Enzymes
4.1.2. Hydrolysis with Microbial Enzymes
4.2. Analysis of the Physicochemical Characteristics of Bioactive Peptides
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
TPP II | Tripeptidyl peptidase II |
DPP III | Dipeptidyl peptidase-III |
LPS | Lipopolysaccharides |
LOX | Lipoxygenase |
iNOS | Nitric oxide synthase |
COX-2 | Cyclooxygenase |
RAAS | Renin–angiotensin–aldosterone system |
NO | Nitric oxide |
PTPN18 | Protein tyrosine phosphatase non-receptor type 18 |
NF-κB | Nuclear factor kappa-light-chain-enhancer of activated B cells |
RAS | Renin-angiotensin system |
NLS | Nuclear localization sequences |
ACE2 | Angiotensin-converting enzyme 2 |
ACE | Angiotensin-converting enzyme |
FAK | Focal adhesion kinase |
NSCLC | Non-small-cell lung cancer |
RB | Retinoblastoma |
p27Kip1 | Cyclin-dependent kinase inhibitor 1B |
MCoTI-II | A native cyclotide |
AMPD | Antimicrobial peptide database |
AMPs | Antibacterial plant-derived peptides |
ROS | Reactive oxygen species |
VEGF-A | Vascular endothelial growth factor A |
References
- Salas, C.E.; Badillo-Corona, J.A.; Ramírez-Sotelo, G.; Oliver-Salvador, C. Biologically Active and Antimicrobial Peptides from Plants. BioMed Res. Int. 2015, 2015, 102129. [Google Scholar] [CrossRef]
- Sharma, V.; Gupta, P.; Sharma, P. Recent Advancements in Novel Bioactive Peptides and Protein Hydrolysates Isolated from Different Medicinal Plants Along with Their Applications in Food and Pharmaceutical Industries; Springer: Dordrecht, The Netherlands, 2023; Volume 29, ISBN 0123456789. [Google Scholar]
- Zhu, F.; Cao, J.; Song, Y.; Yu, P.; Su, E. Plant Protein-Derived Active Peptides: A Comprehensive Review. J. Agric. Food Chem. 2023, 71, 20479–20499. [Google Scholar] [CrossRef]
- Mani, S.; Bhatt, S.B.; Vasudevan, V.; Prabhu, D.; Rajamanikandan, S.; Velusamy, P.; Ramasamy, P.; Raman, P. The Updated Review on Plant Peptides and Their Applications in Human Health; Springer: Dordrecht, The Netherlands, 2022; Volume 28, ISBN 0123456789. [Google Scholar]
- Liu, M.; Huang, X.; Wu, H.; Wen, L.; Cheng, Y.; Chen, M. Screening of Antimicrobial Peptides from Plants and Their Application in Food. Food Mach. 2024, 40, 200–207+215. [Google Scholar] [CrossRef]
- Wu, H.; Yu, B.; Cong, H. Preparation and Applications of Antimicrobial Peptides. In Peptide Nano-Chemistry and Nanotechnology: From Molecular Design, Self-Assembly, Biomimetic Synthesis to Applications; Springer: Singapore, 2025; pp. 205–225. [Google Scholar]
- Ghanbarzadeh, Z.; Mohagheghzadeh, A.; Hemmati, S. The Roadmap of Plant Antimicrobial Peptides Under Environmental Stress: From Farm to Bedside. Probiotics Antimicrob. Proteins 2024, 16, 2269–2304. [Google Scholar] [CrossRef]
- Lu, Y.; Tian, H.; Chen, R.; Liu, Q.; Jia, K.; Hu, D.-L.; Chen, H.; Ye, C.; Peng, L.; Fang, R. Synergistic Antimicrobial Effect of Antimicrobial Peptides CATH-1, CATH-3, and PMAP-36 with Erythromycin Against Bacterial Pathogens. Front. Microbiol. 2022, 13, 953720. [Google Scholar] [CrossRef] [PubMed]
- Bucataru, C.; Ciobanasu, C. Antimicrobial Peptides: Opportunities and Challenges in Overcoming Resistance. Microbiol. Res. 2024, 286, 127822. [Google Scholar] [CrossRef]
- Chai, K.F.; Voo, A.Y.H.; Chen, W.N. Bioactive Peptides from Food Fermentation: A Comprehensive Review of Their Sources, Bioactivities, Applications, and Future Development. Compr. Rev. Food Sci. Food Saf. 2020, 19, 3825–3855. [Google Scholar] [CrossRef]
- Luo, X.; Wu, W.; Feng, L.; Treves, H.; Ren, M. Short Peptides Make a Big Difference: The Role of Botany-Derived Amps in Disease Control and Protection of Human Health. Int. J. Mol. Sci. 2021, 22, 11363. [Google Scholar] [CrossRef]
- Lima, A.M.; Azevedo, M.I.G.; Sousa, L.M.; Oliveira, N.S.; Andrade, C.R.; Freitas, C.D.T.; Souza, P.F.N. Plant Antimicrobial Peptides: An Overview about Classification, Toxicity and Clinical Applications. Int. J. Biol. Macromol. 2022, 214, 10–21. [Google Scholar] [CrossRef] [PubMed]
- Gelinski, J.M.L.N.; de Melo Franco, B.D.G.; Fonseca, G.G. Plant-Derived Antimicrobial Peptides. In Antimicrobial Peptides: Challenges and Future Perspectives; Academic Press: Cambridge, MA, USA, 2022; pp. 157–169. [Google Scholar]
- Abbas, S.K.; Qadeer, S.; Khan, M.J.; Abbas, S.T.; Shah, N.A. Plant-Based Peptides: Antibiotics. In Recent Advances in Industrial Biochemistry; Springer: Cham, Switzerland, 2024; pp. 77–91. [Google Scholar]
- Zou, F.; Tan, C.; Shinali, T.S.; Zhang, B.; Zhang, L.; Han, Z.; Shang, N. Plant Antimicrobial Peptides: A Comprehensive Review of Their Classification, Production, Mode of Action, Functions, Applications, and Challenges. Food Funct. 2023, 14, 5492–5515. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Song, M.; Tian, L.; Shan, X.; Mao, C.; Chen, M.; Zhao, J.; Sami, A.; Yin, H.; Ali, U.; et al. A Plant Peptide with Dual Activity against Multidrug-Resistant Bacterial and Fungal Pathogens. Sci. Adv. 2025, 11, eadt8239. [Google Scholar] [CrossRef]
- Mishra, J.; Rajput, R.; Singh, K.; Puri, S.; Goyal, M.; Bansal, A.; Misra, K. Antibacterial Natural Peptide Fractions from Indian Ganoderma Lucidum. Int. J. Pept. Res. Ther. 2018, 24, 543–554. [Google Scholar] [CrossRef]
- Chai, T.-T.; Tan, Y.-N.; Ee, K.-Y.; Xiao, J.; Wong, F.-C. Seeds, Fermented Foods, and Agricultural by-Products as Sources of Plant-Derived Antibacterial Peptides. Crit. Rev. Food Sci. Nutr. 2019, 59, S162–S177. [Google Scholar] [CrossRef]
- Feyzyab, H.; Fathi, N.; Bolhassani, A. Antiviral Peptides Derived from Plants: Their Designs and Functions. Protein Pept. Lett. 2023, 30, 975–985. [Google Scholar] [CrossRef]
- Feijoo-Coronel, M.L.; Mendes, B.; Ramírez, D.; Peña-Varas, C.; de los Monteros-Silva, N.Q.E.; Proaño-Bolaños, C.; de Oliveira, L.C.; Lívio, D.F.; da Silva, J.A.; da Silva, J.M.S.F.; et al. Antibacterial and Antiviral Properties of Chenopodin-Derived Synthetic Peptides. Antibiotics 2024, 13, 78. [Google Scholar] [CrossRef] [PubMed]
- Singh, D.; Dhiman, V.K.; Pandey, M.; Dhiman, V.K.; Sharma, A.; Pandey, H.; Verma, S.K.; Pandey, R. Personalized Medicine: An Alternative for Cancer Treatment. Cancer Treat. Res. Commun. 2024, 42, 100860. [Google Scholar] [CrossRef]
- Rituraj; Pal, R.S.; Wahlang, J.; Pal, Y.; Chaitanya, M.V.N.L.; Saxena, S. Precision Oncology: Transforming Cancer Care through Personalized Medicine. Med. Oncol. 2025, 42, 246. [Google Scholar] [CrossRef]
- Mao, Y.; Shangguan, D.; Huang, Q.; Xiao, L.; Cao, D.; Zhou, H.; Wang, Y.K. Emerging Artificial Intelligence-Driven Precision Therapies in Tumor Drug Resistance: Recent Advances, Opportunities, and Challenges. Mol. Cancer 2025, 24, 123. [Google Scholar] [CrossRef]
- He, W.; McCoy, M.D.; Riggins, R.B.; Beckman, R.A.; Yeang, C.H. Personalized Cancer Treatment Strategies Incorporating Irreversible and Reversible Drug Resistance Mechanisms. npj Syst. Biol. Appl. 2025, 11, 70. [Google Scholar] [CrossRef] [PubMed]
- Dong, Z.; Zhang, X.; Zhang, Q.; Tangthianchaichana, J.; Guo, M.; Du, S.; Lu, Y. Anticancer Mechanisms and Potential Anticancer Applications of Antimicrobial Peptides and Their Nano Agents. Int. J. Nanomed. 2024, 19, 1017–1039. [Google Scholar] [CrossRef] [PubMed]
- Yang, M.; Liu, S.; Zhang, C. Antimicrobial Peptides with Antiviral and Anticancer Properties and Their Modification and Nanodelivery Systems. Curr. Res. Biotechnol. 2023, 5, 100121. [Google Scholar] [CrossRef]
- Zare-Zardini, H.; Saberian, E.; Jenča, A.; Ghanipour-Meybodi, R.; Petrášová, A.; Jenčová, J. From Defense to Offense: Antimicrobial Peptides as Promising Therapeutics for Cancer. Front. Oncol. 2024, 14, 1463088. [Google Scholar] [CrossRef]
- Guzmán-Rodríguez, J.J.; Ochoa-Zarzosa, A.; López-Gómez, R.; López-Meza, J.E. Plant Antimicrobial Peptides as Potential Anticancer Agents. BioMed Res. Int. 2015, 2015, 735087. [Google Scholar] [CrossRef]
- Flores-Alvarez, L.J.; Jiménez-Alcántar, P.; Ochoa-Zarzosa, A.; López-Meza, J.E. The Antimicrobial Peptide γ-Thionin from Habanero Chile (Capsicum chinense) Induces Caspase-Independent Apoptosis on Human K562 Chronic Myeloid Leukemia Cells and Regulates Epigenetic Marks. Molecules 2023, 28, 3661. [Google Scholar] [CrossRef]
- Qu, H.; Smithies, B.J.; Durek, T.; Craik, D.J. Synthesis and Protein Engineering Applications of Cyclotides. Aust. J. Chem. 2017, 70, 152–161. [Google Scholar] [CrossRef]
- Mehta, L.; Dhankhar, R.; Gulati, P.; Kapoor, R.K.; Mohanty, A.; Kumar, S. Natural and Grafted Cyclotides in Cancer Therapy: An Insight. J. Pept. Sci. 2020, 26, e3246. [Google Scholar] [CrossRef]
- Ghadiri, N.; Javidan, M.; Sheikhi, S.; Taştan, Ö.; Parodi, A.; Liao, Z.; Tayybi Azar, M.; Ganjalıkhani-Hakemi, M. Bioactive Peptides: An Alternative Therapeutic Approach for Cancer Management. Front. Immunol. 2024, 15, 1310443. [Google Scholar] [CrossRef] [PubMed]
- Gunasekera, S.; Foley, F.M.; Clark, R.J.; Sando, L.; Fabri, L.J.; Craik, D.J.; Daly, N.L. Engineering Stabilized Vascular Endothelial Growth Factor-A Antagonists: Synthesis, Structural Characterization, and Bioactivity of Grafted Analogues of Cyclotides. J. Med. Chem. 2008, 51, 7697–7704. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.H.; Henriques, S.T.; Wang, C.K.; Thorstholm, L.; Daly, N.L.; Kaas, Q.; Craik, D.J. Design of Substrate-Based BCR-ABL Kinase Inhibitors Using the Cyclotide Scaffold. Sci. Rep. 2015, 5, 12974. [Google Scholar] [CrossRef] [PubMed]
- Maaß, F.; Wüstehube-Lausch, J.; Dickgießer, S.; Valldorf, B.; Reinwarth, M.; Schmoldt, H.U.; Daneschdar, M.; Avrutina, O.; Sahin, U.; Kolmar, H. Cystine-Knot Peptides Targeting Cancer-Relevant Human Cytotoxic T Lymphocyte-Associated Antigen 4 (CTLA-4). J. Pept. Sci. 2015, 21, 651–660. [Google Scholar] [CrossRef]
- Henriques, S.T.; Huang, Y.H.; Chaousis, S.; Sani, M.A.; Poth, A.G.; Separovic, F.; Craik, D.J. The Prototypic Cyclotide Kalata B1 Has a Unique Mechanism of Entering Cells. Chem. Biol. 2015, 22, 1087–1097. [Google Scholar] [CrossRef]
- Inaba, J.; McConnell, E.J.; Davis, K.R. Lunasin Sensitivity in Non-Small Cell Lung Cancer Cells Is Linked to Suppression of Integrin Signaling and Changes in Histone Acetylation. Int. J. Mol. Sci. 2014, 15, 23705–23724. [Google Scholar] [CrossRef] [PubMed]
- McConnell, E.J.; Devapatla, B.; Yaddanapudi, K.; Davis, K.R. The Soybean-Derived Peptide Lunasin Inhibits Non-Small Cell Lung Cancer Cell Proliferation by Suppressing Phosphorylation of the Retinoblastoma Protein. Oncotarget 2015, 6, 4649–4662. [Google Scholar] [CrossRef] [PubMed]
- Shidal, C.; Inaba, J.I.; Yaddanapudi, K.; Davis, K.R. The Soy-Derived Peptide Lunasin Inhibits Invasive Potential of Melanoma Initiating Cells. Oncotarget 2017, 8, 25525–25541. [Google Scholar] [CrossRef] [PubMed]
- Kim, B.J.; Xu, B. Enzyme-Instructed Self-Assembly for Cancer Therapy and Imaging. Bioconjug. Chem. 2020, 31, 492–500. [Google Scholar] [CrossRef]
- Qin, H.; Ding, Y.; Mujeeb, A.; Zhao, Y.; Nie, G. Tumor Microenvironment Targeting and Responsive Peptide-Based Nanoformulations for Improved Tumor Therapy. Mol. Pharmacol. 2017, 92, 219–231. [Google Scholar] [CrossRef]
- Shi, J.; Xu, B. Nanoscale Assemblies of Small Molecules Control the Fate of Cells. Nano Today 2015, 10, 615–630. [Google Scholar] [CrossRef]
- Chen, C.H.; Bepler, T.; Pepper, K.; Fu, D.; Lu, T.K. Synthetic Molecular Evolution of Antimicrobial Peptides. Curr. Opin. Biotechnol. 2022, 75, 102718. [Google Scholar] [CrossRef]
- Guo, H.; Richel, A.; Hao, Y.; Fan, X.; Everaert, N.; Yang, X.; Ren, G. Novel Dipeptidyl Peptidase-IV and Angiotensin-I-Converting Enzyme Inhibitory Peptides Released from Quinoa Protein by in Silico Proteolysis. Food Sci. Nutr. 2020, 8, 1415–1422. [Google Scholar] [CrossRef]
- Hogarth, C.A.; Calanni, S.; Jans, D.A.; Loveland, K.L. Importin α MRNAs Have Distinct Expression Profiles during Spermatogenesis. Dev. Dyn. 2006, 235, 253–262. [Google Scholar] [CrossRef]
- Wang, T.; Ba, X.; Zhang, X.; Zhang, N.; Wang, G.; Bai, B.; Li, T.; Zhao, J.; Zhao, Y.; Yu, Y.; et al. Nuclear Import of PTPN18 Inhibits Breast Cancer Metastasis Mediated by MVP and Importin Β2. Cell Death Dis. 2022, 13, 720. [Google Scholar] [CrossRef]
- Mahipal, A.; Malafa, M. Importins and Exportins as Therapeutic Targets in Cancer. Pharmacol. Ther. 2016, 164, 135–143. [Google Scholar] [CrossRef]
- Kao, H.J.; Weng, T.H.; Chen, C.H.; Chen, Y.C.; Chi, Y.H.; Huang, K.Y.; Weng, S.L. Integrating In Silico and In Vitro Approaches to Identify Natural Peptides with Selective Cytotoxicity against Cancer Cells. Int. J. Mol. Sci. 2024, 25, 6848. [Google Scholar] [CrossRef]
- Radchenko, T.; Brink, A.; Siegrist, Y.; Kochansky, C.; Bateman, A.; Fontaine, F.; Morettoni, L.; Zamora, I. Software-Aided Approach to Investigate Peptide Structure and Metabolic Susceptibility of Amide Bonds in Peptide Drugs Based on High Resolution Mass Spectrometry. PLoS ONE 2017, 12, e0186461. [Google Scholar] [CrossRef]
- Iwaniak, A.; Darewicz, M.; Mogut, D.; Minkiewicz, P. Elucidation of the Role of in Silico Methodologies in Approaches to Studying Bioactive Peptides Derived from Foods. J. Funct. Foods 2019, 61, 103486. [Google Scholar] [CrossRef]
- Zhu, Z.; Li, R.; Yuan, Z.; Xue, Y. Mechanism, Preparation, Evaluation and Related Research Progress of Plant-Derived Antihypertensive Peptides. Sci. Technol. Food Ind. 2022, 43, 501–508. [Google Scholar] [CrossRef]
- Anón, M.C.; Quiroga, A.; Scilingo, A.; Tironi, V. Plant Bioactive Peptides: From Oilseed, Legume, Cereal, Fruit, and Vegetable. In Handbook of Food Bioactive Ingredients: Properties and Applications; Springer: Cham, Switzerland, 2023; pp. 907–940. [Google Scholar]
- Mackraj, I.; Govender, T.; Ramesar, S. The Antihypertensive Effects of Quercetin in a Salt-Sensitive Model of Hypertension. J. Cardiovasc. Pharmacol. 2008, 51, 239–245. [Google Scholar] [CrossRef] [PubMed]
- Sharma, D.; Kumar, K.; Bisht, G.S. A Mini-Review on Potential of Neuropeptides as Future Therapeutics. Int. J. Pept. Res. Ther. 2022, 28, 39. [Google Scholar] [CrossRef]
- Li, X.; Zuo, S.; Wang, B.; Zhang, K.; Wang, Y. Antimicrobial Mechanisms and Clinical Application Prospects of Antimicrobial Peptides. Molecules 2022, 27, 2675. [Google Scholar] [CrossRef]
- Rivera del Rio, A.; van der Wielen, N.; Gerrits, W.J.J.; Boom, R.M.; Janssen, A.E.M. In Silico Modelling of Protein Digestion: A Case Study on Solid/Liquid and Blended Meals. Food Res. Int. 2022, 157, 111271. [Google Scholar] [CrossRef]
- Huang, Y.; Chen, Y.; Lu, S.; Zhao, C. Recent Advance of in Vitro Models in Natural Phytochemicals Absorption and Metabolism. eFood 2021, 2, 307–318. [Google Scholar] [CrossRef] [PubMed]
- Xin, M.; Zhao, M.; Tian, J.; Li, B. Guidelines for in Vitro Simulated Digestion and Absorption of Food. Food Front. 2023, 4, 524–532. [Google Scholar] [CrossRef]
- McFarland, C.; Alkotaini, B.; Cowen, C.P.; Edwards, M.G.; Grein, E.; Hahn, A.D.; Jennings, J.C.; Patnaik, R.; Potter, S.M.; Rael, L.T.; et al. Discovery, Expression, and In Silico Safety Evaluation of Honey Truffle Sweetener, a Sweet Protein Derived from Mattirolomyces Terfezioides and Produced by Heterologous Expression in Komagataella Phaffii. J. Agric. Food Chem. 2024, 72, 19470–19479. [Google Scholar] [CrossRef]
- Freeman, E.L.; Ward, R.; Murphy, M.M.; Wang, T.; Ryder, J. Comprehensive Safety Assessment of Serendipity Berry Sweet Protein Produced from Komagataella Phaffii. Regul. Toxicol. Pharmacol. 2024, 147, 105562. [Google Scholar] [CrossRef]
- López-Ibarra, C.; Ruiz-López, F.d.J.; Bautista-Villarreal, M.; Báez-González, J.G.; Rodríguez Romero, B.A.; González-Martínez, B.E.; López-Cabanillas Lomelí, M.; Vázquez-Rodríguez, J.A. Protein Concentrates on Tepary Bean (Phaseolus acutifolius Gray) as a Functional Ingredient: In Silico Docking of Tepary Bean Lectin to Peroxisome Proliferator-Activated Receptor Gamma. Front. Nutr. 2021, 8, 661463. [Google Scholar] [CrossRef]
- Elisha, C.; Bhagwat, P.; Pillai, S. In Silico and in Vitro Analysis of Dipeptidyl Peptidase-IV and Angiotensin-Converting Enzyme Inhibitory Peptides Derived from Milk Lactoferrin. Int. Dairy J. 2025, 160, 106092. [Google Scholar] [CrossRef]
- Nirmal, N.; Khanashyam, A.C.; Shah, K.; Awasti, N.; Sajith Babu, K.; Ucak, İ.; Afreen, M.; Hassoun, A.; Tuanthong, A. Plant Protein-Derived Peptides: Frontiers in Sustainable Food System and Applications. Front. Sustain. Food Syst. 2024, 8, 1292297. [Google Scholar] [CrossRef]
- Wen, C.; Zhang, J.; Zhang, H.; Duan, Y.; Ma, H. Plant Protein-Derived Antioxidant Peptides: Isolation, Identification, Mechanism of Action and Application in Food Systems: A Review. Trends Food Sci. Technol. 2020, 105, 308. [Google Scholar] [CrossRef]
- Zhu, Z.; Xu, Z.; Li, Y.; Fan, Y.; Zhou, Y.; Song, K.; Meng, L. Antioxidant Function and Application of Plant-Derived Peptides. Antioxidants 2024, 13, 1203. [Google Scholar] [CrossRef]
- Wong, F.-C.; Xiao, J.; Wang, S.; Ee, K.-Y.; Chai, T.-T. Advances on the Antioxidant Peptides from Edible Plant Sources. Trends Food Sci. Technol. 2020, 99, 44–57. [Google Scholar] [CrossRef]
- Nwachukwu, I.D.; Aluko, R.E. Structural and Functional Properties of Food Protein-derived Antioxidant Peptides. J. Food Biochem. 2019, 43, e12761. [Google Scholar] [CrossRef] [PubMed]
- Aguilar, J.G.S. Plant-Based Peptides with Biological Properties. In Phytopharmaceuticals: Potential Therapeutic Applications; Wiley-Scrivener: Austin, TX, USA, 2021; pp. 123–134. [Google Scholar]
- Ali, A.; Bukhsh, K.K.; Raza, M.M.; Afraz, M.T.; Diana, T.; Waseem, M.; Manzoor, M.F.; Abdi, G. Exploring the Structure–Activity Relationships and Molecular Mechanisms of Food-Derived Antioxidative Peptides in Mitigating Oxidative Stress: A Comprehensive Review. J. Funct. Foods 2025, 127, 106751. [Google Scholar] [CrossRef]
- Apone, F.; Barbulova, A.; Colucci, M.G. Plant and Microalgae Derived Peptides Are Advantageously Employed as Bioactive Compounds in Cosmetics. Front. Plant Sci. 2019, 10, 756. [Google Scholar] [CrossRef]
- Shukla, P.; Chopada, K.; Sakure, A.; Hati, S. Current Trends and Applications of Food-Derived Antihypertensive Peptides for the Management of Cardiovascular Disease. Protein Pept. Lett. 2022, 29, 408–428. [Google Scholar] [CrossRef]
- Fan, H.; Liu, H.; Zhang, Y.; Zhang, S.; Liu, T.; Wang, D. Review on Plant-Derived Bioactive Peptides: Biological Activities, Mechanism of Action and Utilizations in Food Development. J. Futur. Foods 2022, 2, 143. [Google Scholar] [CrossRef]
- Ding, Q.; Sheikh, A.R.; Chen, Q.; Hu, Y.; Sun, N.; Su, X.; Luo, L.; Ma, H.; He, R. Understanding the Mechanism for the Structure-Activity Relationship of Food-Derived ACEI Peptides. Food Rev. Int. 2023, 39, 1751–1769. [Google Scholar] [CrossRef]
- Rupachandra, S.; Porkodi, S.; Joann, M.D.; Jagadeeshwari, S. Evaluation of Anti-Inflammatory Efficacy of RA-V: A Natural Cyclopeptide. Appl. Biochem. Biotechnol. 2020, 190, 732–744. [Google Scholar] [CrossRef]
- Liu, W.; Chen, X.; Li, H.; Zhang, J.; An, J.; Liu, X. Anti-Inflammatory Function of Plant-Derived Bioactive Peptides: A Review. Foods 2022, 11, 2361. [Google Scholar] [CrossRef]
- Malhotra, R.; Rana, N.; Manwatkar, S.; Kumar, B. Application of Peptides for the Treatment of Diabetes: A Plant-Based Bioactive Material. In Biosystems, Biomedical & Drug Delivery Systems Characterization, Restoration and Optimization; Springer: Singapore, 2024; pp. 327–343. [Google Scholar]
- de Medeiros, A.F.; de Queiroz, J.L.C.; Maciel, B.L.L.; de Araújo Morais, A.H. Hydrolyzed Proteins and Vegetable Peptides: Anti-Inflammatory Mechanisms in Obesity and Potential Therapeutic Targets. Nutrients 2022, 14, 690. [Google Scholar] [CrossRef] [PubMed]
- Han, R.; Hernández Álvarez, A.J.; Maycock, J.; Murray, B.S.; Boesch, C. Differential Effects of Oilseed Protein Hydrolysates in Attenuating Inflammation in Murine Macrophages. Food Biosci. 2022, 49, 101860. [Google Scholar] [CrossRef]
- Barragan-Galvez, J.C.; Gonzalez-Rivera, M.L.; Jiménez-Cruz, J.C.; Hernandez-Flores, A.; de la Rosa, G.; Lopez-Moreno, M.L.; Yañez-Barrientos, E.; Romero-Hernández, M.; Deveze-Alvarez, M.A.; Navarro-Santos, P.; et al. A Patent-Pending Ointment Containing Extracts of Five Different Plants Showed Antinociceptive and Anti-Inflammatory Mechanisms in Preclinical Studies. Pharmaceutics 2024, 16, 1215. [Google Scholar] [CrossRef] [PubMed]
- Nworu, C.S.; Akah, P.A. Anti-Inflammatory Medicinal Plants and the Molecular Mechanisms Underlying Their Activities. Afr. J. Tradit. Complement. Altern. Med. 2015, 12, 52–61. [Google Scholar] [CrossRef][Green Version]
- Bröer, S. Intestinal Amino Acid Transport and Metabolic Health. Annu. Rev. Nutr. 2023, 43, 73–99. [Google Scholar] [CrossRef]
- Ewy, M.W.; Patel, A.; Abdelmagid, M.G.; Mohamed Elfadil, O.; Bonnes, S.L.; Salonen, B.R.; Hurt, R.T.; Mundi, M.S. Plant-Based Diet: Is It as Good as an Animal-Based Diet When It Comes to Protein? Curr. Nutr. Rep. 2022, 11, 337–346. [Google Scholar] [CrossRef] [PubMed]
- Phang, J.M.; Pandhare, J.; Liu, Y. The Metabolism of Proline as Microenvironmental Stress Substrate. J. Nutr. 2008, 138, 2008S–2015S. [Google Scholar] [CrossRef]
- Demir, S.; Bulut, M.; Atli, A.; Kaplan, İ.; Kaya, M.C.; Bez, Y.; Özdemir, P.G.; Sır, A. Decreased Prolidase Activity in Patients with Posttraumatic Stress Disorder. Psychiatry Investig. 2016, 13, 420–426. [Google Scholar] [CrossRef]
- Cavaco, M.; Valle, J.; Flores, I.; Andreu, D.; Castanho, M.A.R.B. Estimating Peptide Half-Life in Serum from Tunable, Sequence-Related Physicochemical Properties. Clin. Transl. Sci. 2021, 14, 1349–1358. [Google Scholar] [CrossRef]
- Mathur, D.; Singh, S.; Mehta, A.; Agrawal, P.; Raghava, G.P.S. In Silico Approaches for Predicting the Half-Life of Natural and Modified Peptides in Blood. PLoS ONE 2018, 13, e0196829. [Google Scholar] [CrossRef]
- Klepach, A.; Tran, H.; Ahmad Mohammed, F.; ElSayed, M.E.H. Characterization and Impact of Peptide Physicochemical Properties on Oral and Subcutaneous Delivery. Adv. Drug Deliv. Rev. 2022, 186, 114322. [Google Scholar] [CrossRef]
- Ali, N.; Shamoon, A.; Yadav, N.; Sharma, T. Peptide Combination Generator: A Tool for Generating Peptide Combinations. ACS Omega 2020, 5, 5781–5783. [Google Scholar] [CrossRef]
- Alahyaribeik, S.; Mirdamadi, S.; Shim, H.; Cheung, P.C.K.; Wu, J.; Grootaert, C.; Van Camp, J.; Mirzaei, M. Potential Antidiabetic Activity and Permeability Assessment of the Modified Yeast-Derived Peptide, VLSTSFPPW (VW9). Food Chem. 2025, 490, 144968. [Google Scholar] [CrossRef]
- Boman, H.G. Antibacterial Peptides: Basic Facts and Emerging Concepts. J. Intern. Med. 2003, 254, 197–215. [Google Scholar] [CrossRef]
- Qutb, A.M.; Wei, F.; Dong, W. Prediction and Characterization of Cationic Arginine-Rich Plant Antimicrobial Peptide SM-985 From Teosinte (Zea Mays ssp. Mexicana). Front. Microbiol. 2020, 11, 1353. [Google Scholar] [CrossRef]
- Decker, A.P.; Mechesso, A.F.; Wang, G. Expanding the Landscape of Amino Acid-Rich Antimicrobial Peptides: Definition, Deployment in Nature, Implications for Peptide Design and Therapeutic Potential. Int. J. Mol. Sci. 2022, 23, 12874. [Google Scholar] [CrossRef]
- Li, Y.; Yang, G.; Gerstweiler, L.; Thang, S.H.; Zhao, C.X. Design of Stimuli-Responsive Peptides and Proteins. Adv. Funct. Mater. 2023, 33, 2210387. [Google Scholar] [CrossRef]
- Vishweshwaraiah, Y.L.; Acharya, A.; Hegde, V.; Prakash, B. Rational Design of Hyperstable Antibacterial Peptides for Food Preservation. npj Sci. Food 2021, 5, 26. [Google Scholar] [CrossRef]
- Fillería, S.G.; Nardo, A.E.; Paulino, M.; Tironi, V. Peptides Derived from the Gastrointestinal Digestion of Amaranth 11S Globulin: Structure and Antioxidant Functionality. Food Chem. Mol. Sci. 2021, 3, 100053. [Google Scholar] [CrossRef]
- Varela-Quitián, Y.F.; Mendez-Rivera, F.E.; Bernal-Estévez, D.A. Cationic Antimicrobial Peptides: Potential Templates for Anticancer Agents. Front. Med. 2025, 12, 1548603. [Google Scholar] [CrossRef] [PubMed]
- Lamb, H.O.; Benfield, A.H.; Henriques, S.T. Peptides as Innovative Strategies to Combat Drug Resistance in Cancer Therapy. Drug Discov. Today 2024, 29, 104206. [Google Scholar] [CrossRef] [PubMed]
- Minkiewicz, P.; Iwaniak, A.; Darewicz, M. BIOPEP-UWM Database of Bioactive Peptides: Current Opportunities. Int. J. Mol. Sci. 2019, 20, 5978. [Google Scholar] [CrossRef] [PubMed]
Activity | Sequence | Source (AP ID) |
---|---|---|
ACE inhibitor | AR | AP00236 |
PGL | AP00984 | |
CF | AP00984 | |
EK | AP00984, AP02329 | |
TF | AP00979 | |
IL | AP00979 | |
GL | AP01026, AP01124, AP01784, AP01785, AP01806, AP01807, AP02332, AP02657 | |
IY | AP01277, AP01278, AP01279, AP01280, AP01281, AP01282, AP01284, AP01328 | |
ER | AP01280, AP01282, AP01284, AP01328 | |
VF | AP01343 | |
AW | AP01805 | |
PL | AP02657 | |
GK | AP02328 | |
GF | AP05050 | |
Antioxidative | PK | AP00236 |
TW | AP00236 | |
IY | AP01277, AP01278, AP01279, AP01280, AP01281, AP01282, AP01284, AP01328 | |
AW | AP01805 | |
PW | AP01986, AP01988 | |
Dipeptidyl peptidase IV inhibitor | PK | AP00236, AP01278, AP01279, AP01280, AP01281, AP01282, AP01284, AP01328 |
TW | AP00236 | |
EK | AP00984, AP02329 | |
IL | AP00979 | |
TF | AP00979 | |
GL | AP01026, AP01124, AP01784, AP01785, AP01806, AP01807, AP02332, AP02657 | |
SK | AP01036, AP01123, AP01124, AP01774, AP01777, AP01808, AP01813, AP01983, AP02329, AP05050 | |
VF | AP01343 | |
AW | AP01805 | |
PF | AP01985 | |
PW | AP01986, AP01988 | |
IM | AP02329 | |
QH | AP02329 | |
QL | AP02329 | |
PL | AP02657 | |
GF | AP05050 | |
Stimulating | IL | AP00979 |
Renin inhibitor | TF | AP00979 |
Dipeptidyl peptidase III inhibitor | TF | AP00979 |
PF | AP01985 | |
GF | AP05050 | |
Neuropeptide | IL | AP00979 |
ACE2 inhibitor | PF | AP01985 |
Xaa-pro inhibitor | PL | AP02657 |
Lactocepin inhibitor | PL | AP02657 |
Acylaminoacyl peptidase inhibitor | GF | AP05050 |
Tripeptidyl peptidase II inhibitor | GF | AP05050 |
Neprilysin inhibitor | AR | AP00236 |
Peptide Sequence | Oligopeptidase F Action | Proteinase P1 Action |
---|---|---|
AR | AR | AR |
PGL | PGL | P |
G | ||
L | ||
CF | CF | CF |
EK | EK | EK |
TF | TF | TF |
IL | IL | I |
L | ||
GL | GL | G |
L | ||
IY | IY | IY |
ER | ER | ER |
VF | VF | V |
F | ||
AW | AW | AW |
PL | PL | P |
L | ||
GF | GF | GF |
GK | GK | GK |
PK | PK | P |
K | ||
TW | TW | TW |
PW | PW | P |
W | ||
SK | SK | SK |
PF | PF | P |
F | ||
IM | IM | IM |
QH | QH | Q |
H | ||
QL | QL | Q |
L |
Peptides Sequence | Index Boman (kcal/mol) | Net Charge | Theoretical pI | Instability Index | Aliphatic Index | GRAVY | Water Solubility |
---|---|---|---|---|---|---|---|
AR | 6.55 | 1 | 10.55 | 5.0 | 50 | −1.35 | good |
PGL | −1.95 | 0 | 6.10 | 6.67 | 130.00 | 0.60 | poor |
CF | −2.13 | −0.1 | 5.92 | 5.0 | 0 | 2.65 | poor |
EK | 6.18 | 0 | 6.41 | 5.0 | 0 | −3.70 | good |
TF | −0.2 | 0 | 6.10 | 66.70 | 0 | 1.05 | poor |
IL | −4.92 | 0 | 6.10 | 101.30 | 390.00 | 4.15 | poor |
GL | −2.93 | 0 | 6.10 | 5.0 | 195.00 | 1.70 | poor |
IY | −2.39 | 0 | 6.09 | 5.0 | 195.00 | 1.60 | poor |
ER | 10.86 | 0 | 6.41 | 5.0 | 0 | −4.00 | good |
VF | −3.51 | 0 | 6.10 | 5.0 | 145.00 | 3.50 | poor |
AW | −2.07 | 0 | 6.10 | 5.0 | 50 | 0.45 | poor |
PL | −2.46 | 0 | 6.10 | 5.0 | 195.00 | 1.10 | poor |
GF | −1.96 | 0 | 6.10 | 5.0 | 0 | 1.20 | poor |
GK | 2.30 | 0 | 6.70 | −3745 | 0 | −2.15 | good |
PK | 2.77 | 1 | 9.70 | 5.0 | 0 | −2.75 | good |
TW | 0.11 | 0 | 6.10 | −70.15 | 0 | −0.80 | poor |
PW | −1.16 | 0 | 6.10 | −9.40 | 0 | −1.25 | poor |
SK | 4.47 | 1 | 9.70 | 5.0 | 0 | −2.35 | good |
PF | −1.49 | 0 | 6.10 | 101.30 | 0 | 0.60 | poor |
IM | −3.63 | 0 | 6.10 | 5.0 | 195.00 | 3.20 | poor |
QH | 5.09 | 0.1 | 7.55 | 5.0 | 0 | −3.35 | good |
QL | 0.31 | 0 | 6.10 | 5.0 | 195.00 | 0.15 | poor |
No | APD ID | Name | Source | Sequence |
---|---|---|---|---|
1 | AP00236 | Pyrularia thionin | Nuts, Pyrularia pubera | KSCCRNTWARNCYNVCRLPGTISREICAKKCDCKIISGTTCPSDYPK |
2 | AP00532 | Lunatusin | Lima bean Phaseolus lunatus L. | KTCENLADTFRGPCFATSNC |
3 | AP00553 | Sesquin | Ground bean seeds, Vigna sesquipedalis | KTCENLADTY |
4 | AP00984 | TPP3 | Tomato, Lycopersicon esculentum | QICKAPSQTFPGLCFMDSSCRKYCIKEKFTGGHCSKLQRKCLCTKPC |
5 | AP00979 | NaD1 | ornamental tobacco flowers, Nicotiana alata | RECKTESNTFPGICITKPPCRKACISEKFTDGHCSKILRRCLCTKPC |
6 | AP01026 | Varv peptide A | Viola arvensis, Viola odorata, Viola tricolor, Viola baoshanensi, Viola yedoensis, and Viola biflora | GLPVCGETCVGGTCNTPGCSCSWPVCTRN |
7 | AP01031 | Varv peptide F | Viola arvensis | GVPICGETCTLGTCYTAGCSCSWPVCTRN |
8 | AP01036 | Cycloviolacin O2 | Viola odorata | GIPCGESCVWIPCISSAIGCSCKSKVCYRN |
9 | AP01121 | Vibi E | Alpine violet Viola biflora | GIPCAESCVWIPCTVTALIGCGCSNKVCYN |
10 | AP01123 | Vibi G | Alpine violet Viola biflora | GTFPCGESCVFIPCLTSAIGCSCKSKVCYKN |
11 | AP01124 | Vibi H | Alpine violet Viola biflora | GLLPCAESCVYIPCLTTVIGCSCKSKVCYKN |
12 | AP01277 | Viscotoxin A3 | The European mistletoe, Viscum album L. | KSCCPNTTGRNIYNACRLTGAPRPTCAKLSGCKIISGSTCPSDYPK |
13 | AP01278 | Viscotoxin 1-Ps | The European mistletoe, Viscum album L. | KSCCPNTTGRNIYNTCRFGGGSREVCARISGCKIISASTCPSDYPK |
14 | AP01279 | Viscotoxin A1 | Viscum album L. seeds | KSCCPNTTGRNIYNTCRLTGSSRETCAKLSGCKIISASTCPSNYPK |
15 | AP01280 | Viscotoxin C | The Asiatic Viscum album ssp. Coloratum ohwi | KSCCPNTTGRNIYNTCRFAGGSRERCAKLSGCKIISASTCPSDYPK |
16 | AP01281 | Viscotoxin A2 | Viscum album L. | KSCCPNTTGRNIYNTCRFGGGSRQVCASLSGCKIISASTCPSDYPK |
17 | AP01282 | Viscotoxin B | Viscum album L. | KSCCPNTTGRNIYNTCRLGGGSRERCASLSGCKIISASTCPSDYPK |
18 | AP01284 | Viscotoxin B2 | Viscum coloratum (Kom.) Nakai | KSCCKNTTGRNIYNTCRFAGGSRERCAKLSGCKIISASTCPSDYPK |
19 | AP01342 | Cn-AMP1 | Green coconut water, Cocos nucifera | SVAGRAQGM |
20 | AP01343 | Cn-AMP2 | Green coconut water, Cocos nucife | TESYFVFSVGM |
21 | AP01774 | Cliotide T1 | Clitoria ternatea | GIPCGESCVFIPCITGAIGCSCKSKVCYRN |
22 | AP01775 | Cliotide T2 | Clitoria ternatea | GEFLKCGESCVQGECYTPGCSCDWPICKKN |
23 | AP01776 | Cliotide T3 | Clitoria ternatea | GLPTCGETCTLGTCYVPDCSCSWPICMKN |
24 | AP01777 | Cliotide T4 | Clitoria ternatea | GIPCGESCVFIPCITAAIGCSCKSKVCYRN |
25 | AP01784 | Vaby A | Africa, the Ethiopian highlands, Viola abyssinica | GLPVCGETCAGGTCNTPGCSCSWPICTRN |
26 | AP01785 | Vaby D | Africa, the Ethiopian highlands, Viola abyssinica | GLPVCGETCFGGTCNTPGCTCDPWPVCTRN |
27 | AP01805 | Cr-ACP1 | Seeds, Cycas revoluta | AWKLFDDGV |
28 | AP01806 | Viba 15 | Viola philippica | GLPVCGETCVGGTCNTPGCACSWPVCTRN |
29 | AP01807 | Viba17 | Viola philippica | GLPVCGETCVGGTCNTPGCGCSWPVCTRN |
30 | AP01808 | Viphi A | Viola philippica | GSIPCGESCVFIPCISSVIGCACKSKVCYKN |
31 | AP01809 | Viphi D | Viola philippica | GIPCGESCVFIPCISSVIGCSCSSKVCYRN |
32 | AP01810 | Viphi E | Viola philippica | GSIPCGESCVFIPCISAVIGCSCSNKVCYKN |
33 | AP01811 | Viphi F | Viola philippica | GSIPCGESCVFIPCISAIIGCSCSSKVCYKN |
34 | AP01812 | Viphi G | Viola philippica | GSIPCEGSCVFIPCISAIIGCSCSNKVCYKN |
35 | AP01813 | Mram 8 | Viola philippica | GIPCGESCVFIPCLTSAIDCSCKSKVCYRN |
36 | AP01983 | Psyle A | Psychotria leptothyrsa | GIACGESCVFLGCFIPGCSCKSKVCYFN |
37 | AP01984 | Psyle E | Psychotria leptothyrsa | GVIPCGESCVFIPCISSVLGCSCKNKVCYRD |
38 | AP01985 | Psyle C | Psychotria leptothyrsa | KLCGETCFKFKCYTPGCSCSYPFCK |
39 | AP01986 | ChaC1 | Hybrid peptide of melittin and protamine | GDACGETCFTGICFTAGCSCNPWPTCTRN |
40 | AP01987 | ChaC2 | Chassalia chartacea | GIPCAESCVWIPPCTITALMGCSCKNNVCYNN |
41 | AP01988 | ChaC4 | Chassalia chartacea | GASCGETCFTGICFTAGCSCNPWPTCTRN |
42 | AP01989 | ChaC7 | Chassalia chartacea | IPCGESCVWIPCITAIAGCSCKNKVCYT |
43 | AP01990 | ChaC8 | Chassalia chartacea | AIPCGESCVWIPCISTVIGCSCSNKVCYR |
44 | AP01991 | ChaC10 | Chassalia chartacea | GEYCGESCYLIPCFTPGCYCVSRQCVNKN |
45 | AP01992 | ChaC11 | Chassalia chartacea | IPCGESCVWIPCISGMFGCSCKDKVCYS |
46 | AP02325 | Cliotide T7 | Clitoria ternatea | GIPCGESCVFIPCTVTALLGCSCKDKVCYKN |
47 | AP02326 | Cliotide T10 | Clitoria ternatea | GVPCAESCVWIPCTVTALLGCSCKDKVCYLN |
48 | AP02327 | Cliotide T12 | Clitoria ternatea | GIPCGESCVYIPCTVTALLGCSCKDKVCYKN |
49 | AP02328 | Cliotide T19 | Clitoria ternatea | GSVIKCGESCLLGKCYTPGCTCSRPICKKD |
50 | AP02329 | Lunasin | Glycine max | SKWQHQQDSCRKQLQGVNLTPCEKHIMEKIQGRGDDDDDDDDD |
51 | AP02332 | PaDef | Avocado fruit, Persea americana var. drymifolia | CETPSKHFNGLCIRSSNCASVCHGEHFTDGRCQGVRRRCMCLKPC |
52 | AP02340 | Cyclosaplin | Somatic seedlings, Santalum album L. | RLGDGCTR |
53 | AP02657 | Vigno 5 | Viola ignobilis | GLPLCGETCVGGTCNTPGCSCGWPVCVRN |
54 | AP02659 | DC1 | Hedyotis diffusa | GAFLKCGESCVYLPCLTTVVGCSCQNSVCYRD |
55 | AP02660 | DC2 | Hedyotis diffusa | GAVPCGETCVYLPCITPDIGCSCQNKVCYRD |
56 | AP02661 | DC3 | Hedyotis diffusa | GTSCGETCVLLPCLSSVLGCTCQNKRCYKD |
57 | AP05050 | Hyen D | Hybanthus enneaspermus | GFPCGESCVYIPCFTAAIGCSCKSKVCYKN |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jakubczyk, A.; Rybczyńska-Tkaczyk, K.; Grenda, A. Plant Antimicrobial Oligopeptides with Anticancer Properties as a Source of Biologically Active Peptides—An In Silico Study. Int. J. Mol. Sci. 2025, 26, 9189. https://doi.org/10.3390/ijms26189189
Jakubczyk A, Rybczyńska-Tkaczyk K, Grenda A. Plant Antimicrobial Oligopeptides with Anticancer Properties as a Source of Biologically Active Peptides—An In Silico Study. International Journal of Molecular Sciences. 2025; 26(18):9189. https://doi.org/10.3390/ijms26189189
Chicago/Turabian StyleJakubczyk, Anna, Kamila Rybczyńska-Tkaczyk, and Anna Grenda. 2025. "Plant Antimicrobial Oligopeptides with Anticancer Properties as a Source of Biologically Active Peptides—An In Silico Study" International Journal of Molecular Sciences 26, no. 18: 9189. https://doi.org/10.3390/ijms26189189
APA StyleJakubczyk, A., Rybczyńska-Tkaczyk, K., & Grenda, A. (2025). Plant Antimicrobial Oligopeptides with Anticancer Properties as a Source of Biologically Active Peptides—An In Silico Study. International Journal of Molecular Sciences, 26(18), 9189. https://doi.org/10.3390/ijms26189189