Emerging Biomarkers in Urological Cancers: Angiogenesis and Damage-Associated Molecular Pattern Signaling
Abstract
1. Introduction
Limitations
2. Background on Renal and Bladder Cancers
2.1. Renal Cancer
2.2. Bladder Cancer
3. Cancer Microenvironment and Associated Molecular Factors
3.1. Tumor Microenvironment—Associated Factors with Pro-Angiogenic and Immunosuppressive Activity
3.2. Danger Signals: Molecular Patterns of Damage in Cancers
4. Molecular and Cellular Factors Shaping the Cancer Microenvironment in Kidney and Bladder Tumors
4.1. GDF15 in RCC
4.2. VEGF in RCC
4.3. TGF-β in RCC
4.4. HSP90 in RCC
4.5. HMGB1 in RCC
4.6. S100A9 in RCC
4.7. GDF15 in Bladder Cancer
4.8. VEGF in Bladder Cancer
4.9. TGF-β in Bladder Cancer
4.10. HSP90 in Bladder Cancer
4.11. HMGB1 in Bladder Cancer
4.12. S100A9 in Bladder Cancer
4.13. Barriers to Clinical Implementation
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- World Health Organization. Cancer. Available online: https://www.who.int/news-room/fact-sheets/detail/cancer (accessed on 29 June 2025).
- Ohe, R. Mechanisms of lymphoma-stromal interactions focusing on tumor-associated macrophages, fibroblastic reticular cells, and follicular dendritic cells. J. Clin. Exp. Hematop. 2024, 64, 166–176. [Google Scholar] [CrossRef]
- Fourie, C.; Shridas, P.; Davis, T.; de Villiers, W.J.S.; Engelbrecht, A.M. Serum amyloid A and inflammasome activation: A link to breast cancer progression? Cytokine Growth Factor. Rev. 2021, 59, 62–70. [Google Scholar] [CrossRef]
- Xiao, Y.; Yu, T.J.; Xu, Y.; Ding, R.; Wang, Y.P.; Jiang, Y.Z.; Shao, Z.M. Emerging therapies in cancer metabolism. Cell Metab. 2023, 35, 1283–1303. [Google Scholar] [CrossRef]
- Wang, D.; Day, E.A.; Townsend, L.K.; Djordjevic, D.; Jørgensen, S.B.; Steinberg, G.R. GDF15: Emerging biology and therapeutic applications for obesity and cardiometabolic disease. Nat. Rev. Endocrinol. 2021, 17, 592–607. [Google Scholar] [CrossRef] [PubMed]
- Hirsch, L.; Flippot, R.; Escudier, B.; Albiges, L. Immunomodulatory Roles of VEGF Pathway Inhibitors in Renal Cell Carcinoma. Drugs 2020, 80, 1169–1181. [Google Scholar] [CrossRef] [PubMed]
- Guillaume, Z.; Auvray, M.; Vano, Y.; Oudard, S.; Helley, D.; Mauge, L. Renal Carcinoma and Angiogenesis: Therapeutic Target and Biomarkers of Response in Current Therapies. Cancers 2022, 14, 6167. [Google Scholar] [CrossRef] [PubMed]
- Ping, Q.; Wang, C.; Cheng, X.; Zhong, Y.; Yan, R.; Yang, M.; Shi, Y.; Li, X.; Huang, W.; Wang, L.; et al. TGF-β1 dominates stromal fibroblast-mediated EMT via the FAP/VCAN axis in bladder cancer cells. J. Transl. Med. 2023, 21, 475. [Google Scholar] [CrossRef]
- Wang, S.; Zhang, Y. HMGB1 in inflammation and cancer. J. Hematol. Oncol. 2020, 13, 116. [Google Scholar] [CrossRef]
- Leclerc, E.; Vetter, S.W. The role of S100 proteins and their receptor RAGE in pancreatic cancer. Biochim. Biophys. Acta 2015, 1852, 2706–2711. [Google Scholar] [CrossRef]
- Bahadoram, S.; Davoodi, M.; Hassanzadeh, S.; Bahadoram, M.; Barahman, M.; Mafakher, L. Renal cell carcinoma: An overview of the epidemiology, diagnosis, and treatment. G. Ital. Nefrol. 2022, 39, 2022. [Google Scholar]
- Bray, F.; Laversanne, M.; Sung, H.; Ferlay, J.; Siegel, R.L.; Soerjomataram, I.; Jemal, A. Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2024, 74, 229–263. [Google Scholar] [CrossRef] [PubMed]
- Farley, J. Global Cancer Observatory: Cancer Today, Version 1.1; International Agency for Research on Cancer: Lyon, France, 2024.
- Young, M.; Jackson-Spence, F.; Beltran, L.; Day, E.; Suarez, C.; Bex, A.; Powles, T.; Szabados, B. Renal cell carcinoma. Lancet 2024, 404, 476–491. [Google Scholar] [CrossRef]
- Turner, R.M., 2nd; Morgan, T.M.; Jacobs, B.L. Epidemiology of the Small Renal Mass and the Treatment Disconnect Phenomenon. Urol. Clin. N. Am. 2017, 44, 147–154. [Google Scholar] [CrossRef]
- Purdue, M.P.; Rhee, J.; Moore, L.; Gao, X.; Sun, X.; Kirk, E.; Bencko, V.; Janout, V.; Mates, D.; Zaridze, D.; et al. Differences in risk factors for molecular subtypes of clear cell renal cell carcinoma. Int. J. Cancer 2021, 149, 1448–1454. [Google Scholar] [CrossRef]
- Hsieh, J.J.; Purdue, M.P.; Signoretti, S.; Swanton, C.; Albiges, L.; Schmidinger, M.; Heng, D.Y.; Larkin, J.; Ficarra, V. Renal cell carcinoma. Nat. Rev. Dis. Primers 2017, 3, 17009. [Google Scholar] [CrossRef]
- Wu, Q.; Huang, G.; Wei, W.; Liu, J. Molecular Imaging of Renal Cell Carcinoma in Precision Medicine. Mol. Pharm. 2022, 19, 3457–3470. [Google Scholar] [CrossRef]
- Usher-Smith, J.; Simmons, R.K.; Rossi, S.H.; Stewart, G.D. Current evidence on screening for renal cancer. Nat. Rev. Urol. 2020, 17, 637–642. [Google Scholar] [CrossRef] [PubMed]
- Gaffney, C.D.; Katims, A.; D’Souza, N.; Bjurlin, M.A.; Matulewicz, R.S. Bladder Cancer Carcinogens: Opportunities for Risk Reduction. Eur. Urol. Focus. 2023, 9, 575–578. [Google Scholar] [CrossRef]
- Lobo, N.; Afferi, L.; Moschini, M.; Mostafid, H.; Porten, S.; Psutka, S.P.; Gupta, S.; Smith, A.B.; Williams, S.B.; Lotan, Y. Epidemiology, Screening, and Prevention of Bladder Cancer. Eur. Urol. Oncol. 2022, 5, 628–639. [Google Scholar] [CrossRef] [PubMed]
- Ahmadi, H.; Duddalwar, V.; Daneshmand, S. Diagnosis and Staging of Bladder Cancer. Hematol. Oncol. Clin. N. Am. 2021, 35, 531–541. [Google Scholar] [CrossRef] [PubMed]
- Dyrskjøt, L.; Hansel, D.E.; Efstathiou, J.A.; Knowles, M.A.; Galsky, M.D.; Teoh, J.; Theodorescu, D. Bladder cancer. Nat. Rev. Dis. Primers 2023, 9, 58. [Google Scholar] [CrossRef]
- Caja, F.; Vannucci, L. TGFβ: A player on multiple fronts in the tumor microenvironment. J. Immunotoxicol. 2015, 12, 300–307. [Google Scholar] [CrossRef]
- Ghalehbandi, S.; Yuzugulen, J.; Pranjol, M.Z.I.; Pourgholami, M.H. The role of VEGF in cancer-induced angiogenesis and research progress of drugs targeting VEGF. Eur. J. Pharmacol. 2023, 949, 175586. [Google Scholar] [CrossRef]
- Melincovici, C.S.; Boşca, A.B.; Şuşman, S.; Mărginean, M.; Mihu, C.; Istrate, M.; Moldovan, I.M.; Roman, A.L.; Mihu, C.M. Vascular endothelial growth factor (VEGF)—Key factor in normal and pathological angiogenesis. Rom. J. Morphol. Embryol. 2018, 59, 455–467. [Google Scholar] [PubMed]
- Patel, S.A.; Nilsson, M.B.; Le, X.; Cascone, T.; Jain, R.K.; Heymach, J.V. Molecular Mechanisms and Future Implications of VEGF/VEGFR in Cancer Therapy. Clin. Cancer Res. 2023, 29, 30–39. [Google Scholar] [CrossRef]
- Liu, Z.L.; Chen, H.H.; Zheng, L.L.; Sun, L.P.; Shi, L. Angiogenic signaling pathways and anti-angiogenic therapy for cancer. Signal Transduct. Target Ther. 2023, 8, 198. [Google Scholar] [CrossRef]
- Elebiyo, T.C.; Rotimi, D.; Evbuomwan, I.O.; Maimako, R.F.; Iyobhebhe, M.; Ojo, O.A.; Oluba, O.M.; Adeyemi, O.S. Reassessing vascular endothelial growth factor (VEGF) in anti-angiogenic cancer therapy. Cancer Treat. Res. Commun. 2022, 32, 100620. [Google Scholar] [CrossRef] [PubMed]
- Peake, B.F.; Eze, S.M.; Yang, L.; Castellino, R.C.; Nahta, R. Growth differentiation factor 15 mediates epithelial mesenchymal transition and invasion of breast cancers through IGF-1R-FoxM1 signaling. Oncotarget 2017, 8, 94393–94406. [Google Scholar] [CrossRef] [PubMed]
- Kaur, S.; Chakraborty, S.; Baine, M.J.; Mallya, K.; Smith, L.M.; Sasson, A.; Brand, R.; Guha, S.; Jain, M.; Wittel, U.; et al. Potentials of plasma NGAL and MIC-1 as biomarker(s) in the diagnosis of lethal pancreatic cancer. PLoS ONE 2013, 8, e55171. [Google Scholar] [CrossRef]
- Kim, K.K.; Lee, J.J.; Yang, Y.; You, K.H.; Lee, J.H. Macrophage inhibitory cytokine-1 activates AKT and ERK-1/2 via the transactivation of ErbB2 in human breast and gastric cancer cells. Carcinogenesis 2008, 29, 704–712. [Google Scholar] [CrossRef]
- Brown, D.A.; Ward, R.L.; Buckhaults, P.; Liu, T.; Romans, K.E.; Hawkins, N.J.; Bauskin, A.R.; Kinzler, K.W.; Vogelstein, B.; Breit, S.N. MIC-1 serum level and genotype: Associations with progress and prognosis of colorectal carcinoma. Clin. Cancer Res. 2003, 9, 2642–2650. [Google Scholar]
- Wang, X.; Yang, Z.; Tian, H.; Li, Y.; Li, M.; Zhao, W.; Zhang, C.; Wang, T.; Liu, J.; Zhang, A.; et al. Circulating MIC-1/GDF15 is a complementary screening biomarker with CEA and correlates with liver metastasis and poor survival in colorectal cancer. Oncotarget 2017, 8, 24892–24901. [Google Scholar] [CrossRef]
- Pérez-Gutiérrez, L.; Ferrara, N. Biology and therapeutic targeting of vascular endothelial growth factor A. Nat. Rev. Mol. Cell Biol. 2023, 24, 816–834. [Google Scholar] [CrossRef]
- Shi, S.; Ou, X.; Liu, C.; Wen, H.; Ke, J. Research progress of HIF-1a on immunotherapy outcomes in immune vascular microenvironment. Front. Immunol. 2025, 16, 1549276. [Google Scholar] [CrossRef] [PubMed]
- Shahik, S.; Salauddin, A.; Hossain, M.S.; Noyon, S.; Moin, A.T.; Mizan, S.; Raza, M.T. Screening of novel alkaloid inhibitors for vascular endothelial growth factor in cancer cells: An integrated computational approach. Genom. Inform. 2021, 19, e6. [Google Scholar] [CrossRef] [PubMed]
- Elaimy, A.L.; Guru, S.; Chang, C.; Ou, J.; Amante, J.J.; Zhu, L.J.; Goel, H.L.; Mercurio, A.M. VEGF-neuropilin-2 signaling promotes stem-like traits in breast cancer cells by TAZ-mediated repression of the Rac GAP β2-chimaerin. Sci. Signal 2018, 11, eaao6897. [Google Scholar] [CrossRef]
- Barr, M.P.; Gray, S.G.; Gately, K.; Hams, E.; Fallon, P.G.; Davies, A.M.; Richard, D.J.; Pidgeon, G.P.; O’Byrne, K.J. Vascular endothelial growth factor is an autocrine growth factor, signaling through neuropilin-1 in non-small cell lung cancer. Mol. Cancer 2015, 14, 45. [Google Scholar] [CrossRef]
- Pawlak, J.B.; Blobe, G.C. TGF-β superfamily co-receptors in cancer. Dev. Dyn. 2022, 251, 137–163. [Google Scholar] [CrossRef]
- Mukherjee, P.; Winter, S.L.; Alexandrow, M.G. Cell cycle arrest by transforming growth factor beta1 near G1/S is mediated by acute abrogation of prereplication complex activation involving an Rb-MCM interaction. Mol. Cell Biol. 2010, 30, 845–856. [Google Scholar] [CrossRef]
- Katz, L.H.; Li, Y.; Chen, J.S.; Muñoz, N.M.; Majumdar, A.; Chen, J.; Mishra, L. Targeting TGF-β signaling in cancer. Expert. Opin. Ther. Targets 2013, 17, 743–760. [Google Scholar] [CrossRef] [PubMed]
- Sheen, Y.Y.; Kim, M.J.; Park, S.A.; Park, S.Y.; Nam, J.S. Targeting the Transforming Growth Factor-β Signaling in Cancer Therapy. Biomol. Ther. 2013, 21, 323–331. [Google Scholar] [CrossRef]
- Zhao, B.; Chen, Y.G. Regulation of TGF-β Signal Transduction. Scientifica 2014, 2014, 874065. [Google Scholar] [CrossRef]
- Villalba, M.; Evans, S.R.; Vidal-Vanaclocha, F.; Calvo, A. Role of TGF-β in metastatic colon cancer: It is finally time for targeted therapy. Cell Tissue Res. 2017, 370, 29–39. [Google Scholar] [CrossRef] [PubMed]
- Ullah, A.; Jiao, W.; Shen, B. The role of proinflammatory cytokines and CXC chemokines (CXCL1-CXCL16) in the progression of prostate cancer: Insights on their therapeutic management. Cell Mol. Biol. Lett. 2024, 29, 73. [Google Scholar] [CrossRef]
- Al Shareef, Z.; Kardooni, H.; Murillo-Garzón, V.; Domenici, G.; Stylianakis, E.; Steel, J.H.; Rabano, M.; Gorroño-Etxebarria, I.; Zabalza, I.; Vivanco, M.D.; et al. Protective effect of stromal Dickkopf-3 in prostate cancer: Opposing roles for TGFBI and ECM-1. Oncogene 2018, 37, 5305–5324. [Google Scholar] [CrossRef] [PubMed]
- Melzer, C.; Hass, R.; von der Ohe, J.; Lehnert, H.; Ungefroren, H. The role of TGF-β and its crosstalk with RAC1/RAC1b signaling in breast and pancreas carcinoma. Cell Commun. Signal 2017, 15, 19. [Google Scholar] [CrossRef] [PubMed]
- Safina, A.; Vandette, E.; Bakin, A.V. ALK5 promotes tumor angiogenesis by upregulating matrix metalloproteinase-9 in tumor cells. Oncogene 2007, 26, 2407–2422. [Google Scholar] [CrossRef]
- Roh, J.S.; Sohn, D.H. Damage-Associated Molecular Patterns in Inflammatory Diseases. Immune Netw. 2018, 18, e27. [Google Scholar] [CrossRef]
- Jiménez-Dalmaroni, M.J.; Gerswhin, M.E.; Adamopoulos, I.E. The critical role of toll-like receptors—From microbial recognition to autoimmunity: A comprehensive review. Autoimmun. Rev. 2016, 15, 1–8. [Google Scholar] [CrossRef]
- Schaefer, L. Complexity of danger: The diverse nature of damage-associated molecular patterns. J. Biol. Chem. 2014, 289, 35237–35245. [Google Scholar] [CrossRef]
- Murao, A.; Aziz, M.; Wang, H.; Brenner, M.; Wang, P. Release mechanisms of major DAMPs. Apoptosis 2021, 26, 152–162. [Google Scholar] [CrossRef]
- Chen, F.; Tang, H.; Cai, X.; Lin, J.; Kang, R.; Tang, D.; Liu, J. DAMPs in immunosenescence and cancer. Semin. Cancer Biol. 2024, 106–107, 123–142. [Google Scholar] [CrossRef]
- Abu, N.; Rus Bakarurraini, N.A.A.; Nasir, S.N. Extracellular Vesicles and DAMPs in Cancer: A Mini-Review. Front. Immunol. 2021, 12, 740548. [Google Scholar] [CrossRef]
- Garay-Sevilla, M.E.; Gomez-Ojeda, A.; González, I.; Luévano-Contreras, C.; Rojas, A. Contribution of RAGE axis activation to the association between metabolic syndrome and cancer. Mol. Cell Biochem. 2021, 476, 1555–1573. [Google Scholar] [CrossRef]
- Mahaling, B.; Low, S.W.Y.; Beck, M.; Kumar, D.; Ahmed, S.; Connor, T.B.; Ahmad, B.; Chaurasia, S.S. Damage-Associated Molecular Patterns (DAMPs) in Retinal Disorders. Int. J. Mol. Sci. 2022, 23, 2591. [Google Scholar] [CrossRef]
- Dong Xda, E.; Ito, N.; Lotze, M.T.; Demarco, R.A.; Popovic, P.; Shand, S.H.; Watkins, S.; Winikoff, S.; Brown, C.K.; Bartlett, D.L.; et al. High mobility group box I (HMGB1) release from tumor cells after treatment: Implications for development of targeted chemoimmunotherapy. J. Immunother. 2007, 30, 596–606. [Google Scholar] [CrossRef] [PubMed]
- Bussemakers, M.J.; van de Ven, W.J.; Debruyne, F.M.; Schalken, J.A. Identification of high mobility group protein I(Y) as potential progression marker for prostate cancer by differential hybridization analysis. Cancer Res. 1991, 51, 606–611. [Google Scholar] [PubMed]
- Fedele, M.; Bandiera, A.; Chiappetta, G.; Battista, S.; Viglietto, G.; Manfioletti, G.; Casamassimi, A.; Santoro, M.; Giancotti, V.; Fusco, A. Human colorectal carcinomas express high levels of high mobility group HMGI(Y) proteins. Cancer Res. 1996, 56, 1896–1901. [Google Scholar] [PubMed]
- Nestl, A.; Von Stein, O.D.; Zatloukal, K.; Thies, W.G.; Herrlich, P.; Hofmann, M.; Sleeman, J.P. Gene expression patterns associated with the metastatic phenotype in rodent and human tumors. Cancer Res. 2001, 61, 1569–1577. [Google Scholar]
- Dolde, C.E.; Mukherjee, M.; Cho, C.; Resar, L.M. HMG-I/Y in human breast cancer cell lines. Breast Cancer Res. Treat. 2002, 71, 181–191. [Google Scholar] [CrossRef]
- Takaha, N.; Hawkins, A.L.; Griffin, C.A.; Isaacs, W.B.; Coffey, D.S. High mobility group protein I(Y): A candidate architectural protein for chromosomal rearrangements in prostate cancer cells. Cancer Res. 2002, 62, 647–651. [Google Scholar]
- Pusterla, T.; Nèmeth, J.; Stein, I.; Wiechert, L.; Knigin, D.; Marhenke, S.; Longerich, T.; Kumar, V.; Arnold, B.; Vogel, A.; et al. Receptor for advanced glycation endproducts (RAGE) is a key regulator of oval cell activation and inflammation-associated liver carcinogenesis in mice. Hepatology 2013, 58, 363–373. [Google Scholar] [CrossRef]
- Taguchi, A.; Blood, D.C.; del Toro, G.; Canet, A.; Lee, D.C.; Qu, W.; Tanji, N.; Lu, Y.; Lalla, E.; Fu, C.; et al. Blockade of RAGE-amphoterin signalling suppresses tumour growth and metastases. Nature 2000, 405, 354–360. [Google Scholar] [CrossRef] [PubMed]
- He, Y.; Zha, J.; Wang, Y.; Liu, W.; Yang, X.; Yu, P. Tissue damage-associated “danger signals” influence T-cell responses that promote the progression of preneoplasia to cancer. Cancer Res. 2013, 73, 629–639. [Google Scholar] [CrossRef] [PubMed]
- Hoter, A.; El-Sabban, M.E.; Naim, H.Y. The HSP90 Family: Structure, Regulation, Function, and Implications in Health and Disease. Int. J. Mol. Sci. 2018, 19, 2560. [Google Scholar] [CrossRef] [PubMed]
- Kampinga, H.H.; Hageman, J.; Vos, M.J.; Kubota, H.; Tanguay, R.M.; Bruford, E.A.; Cheetham, M.E.; Chen, B.; Hightower, L.E. Guidelines for the nomenclature of the human heat shock proteins. Cell Stress. Chaperones 2009, 14, 105–111. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Buchner, J. Structure, function and regulation of the hsp90 machinery. Biomed. J. 2013, 36, 106–117. [Google Scholar] [CrossRef]
- Vartholomaiou, E.; Echeverría, P.C.; Picard, D. Unusual Suspects in the Twilight Zone Between the Hsp90 Interactome and Carcinogenesis. Adv. Cancer Res. 2016, 129, 1–30. [Google Scholar] [CrossRef]
- Pick, E.; Kluger, Y.; Giltnane, J.M.; Moeder, C.; Camp, R.L.; Rimm, D.L.; Kluger, H.M. High HSP90 expression is associated with decreased survival in breast cancer. Cancer Res. 2007, 67, 2932–2937. [Google Scholar] [CrossRef]
- Barrott, J.J.; Haystead, T.A. Hsp90, an unlikely ally in the war on cancer. FEBS J. 2013, 280, 1381–1396. [Google Scholar] [CrossRef]
- Zhong, L.; Peng, X.; Hidalgo, G.E.; Doherty, D.E.; Stromberg, A.J.; Hirschowitz, E.A. Antibodies to HSP70 and HSP90 in serum in non-small cell lung cancer patients. Cancer Detect. Prev. 2003, 27, 285–290. [Google Scholar] [CrossRef]
- Jukic, A.; Bakiri, L.; Wagner, E.F.; Tilg, H.; Adolph, T.E. Calprotectin: From biomarker to biological function. Gut 2021, 70, 1978–1988. [Google Scholar] [CrossRef]
- Odink, K.; Cerletti, N.; Brüggen, J.; Clerc, R.G.; Tarcsay, L.; Zwadlo, G.; Gerhards, G.; Schlegel, R.; Sorg, C. Two calcium-binding proteins in infiltrate macrophages of rheumatoid arthritis. Nature 1987, 330, 80–82. [Google Scholar] [CrossRef]
- Vogl, T.; Tenbrock, K.; Ludwig, S.; Leukert, N.; Ehrhardt, C.; van Zoelen, M.A.D.; Nacken, W.; Foell, D.; van der Poll, T.; Sorg, C.; et al. Mrp8 and Mrp14 are endogenous activators of Toll-like receptor 4, promoting lethal, endotoxin-induced shock. Nat. Med. 2007, 13, 1042–1049. [Google Scholar] [CrossRef]
- Ghavami, S.; Rashedi, I.; Dattilo, B.M.; Eshraghi, M.; Chazin, W.J.; Hashemi, M.; Wesselborg, S.; Kerkhoff, C.; Los, M. S100A8/A9 at low concentration promotes tumor cell growth via RAGE ligation and MAP kinase-dependent pathway. J. Leukoc. Biol. 2008, 83, 1484–1492. [Google Scholar] [CrossRef]
- Wu, R.; Duan, L.; Cui, F.; Cao, J.; Xiang, Y.; Tang, Y.; Zhou, L. S100A9 promotes human hepatocellular carcinoma cell growth and invasion through RAGE-mediated ERK1/2 and p38 MAPK pathways. Exp. Cell Res. 2015, 334, 228–238. [Google Scholar] [CrossRef] [PubMed]
- Zheng, H.; Jiang, W.H.; Tian, T.; Tan, H.S.; Chen, Y.; Qiao, G.L.; Han, J.; Huang, S.Y.; Yang, Y.; Li, S.; et al. CBX6 overexpression contributes to tumor progression and is predictive of a poor prognosis in hepatocellular carcinoma. Oncotarget 2017, 8, 18872–18884. [Google Scholar] [CrossRef] [PubMed]
- Nedjadi, T.; Evans, A.; Sheikh, A.; Barerra, L.; Al-Ghamdi, S.; Oldfield, L.; Greenhalf, W.; Neoptolemos, J.P.; Costello, E. S100A8 and S100A9 proteins form part of a paracrine feedback loop between pancreatic cancer cells and monocytes. BMC Cancer 2018, 18, 1255. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Sumardika, I.W.; Tomonobu, N.; Kinoshita, R.; Inoue, Y.; Iioka, H.; Mitsui, Y.; Saito, K.; Ruma, I.M.W.; Sato, H.; et al. Critical role of the MCAM-ETV4 axis triggered by extracellular S100A8/A9 in breast cancer aggressiveness. Neoplasia 2019, 21, 627–640. [Google Scholar] [CrossRef] [PubMed]
- Song, R.; Struhl, K. S100A8/S100A9 cytokine acts as a transcriptional coactivator during breast cellular transformation. Sci. Adv. 2021, 7, eabe5357. [Google Scholar] [CrossRef]
- Lv, Z.; Li, W.; Wei, X. S100A9 promotes prostate cancer cell invasion by activating TLR4/NF-κB/integrin β1/FAK signaling. Onco Targets Ther. 2020, 13, 6443–6452. [Google Scholar] [CrossRef]
- Jiang, W.; Ma, T.; Zhang, C.; Tang, X.; Xu, Q.; Meng, X. Identification of urinary candidate biomarkers of cisplatin-induced nephrotoxicity in patients with carcinoma. J. Proteomics 2020, 210, 103533. [Google Scholar] [CrossRef] [PubMed]
- Güner, G.; Erbaş, O. Candesartan protects from cisplatin-induced kidney damage via the GDF-15 pathway. Eur. Rev. Med. Pharmacol. Sci. 2024, 28, 1103–1110. [Google Scholar] [CrossRef]
- Yang, D.; He, Z.; Lu, J.; Yuan, X.; Liu, H.; Xue, Y.; Chen, T.; Gu, H. Downregulation of GDF15 suppresses ferroptosis and predicts unfavorable prognosis in clear cell renal cell carcinoma. Cell Div. 2023, 18, 21. [Google Scholar] [CrossRef]
- Bai, S.; Wu, Y.; Yan, Y.; Shao, S.; Zhang, J.; Liu, J.; Hui, B.; Liu, R.; Ma, H.; Zhang, X.; et al. Construct a circRNA/miRNA/mRNA regulatory network to explore potential pathogenesis and therapy options of clear cell renal cell carcinoma. Sci. Rep. 2020, 10, 13659. [Google Scholar] [CrossRef]
- Garciá, M.; Palma, M.B.; Verine, J.; Miriuka, S.; Inda, A.M.; Errecalde, A.L.; Desgrandchamps, F.; Carosella, E.D.; Tronik-Le Roux, D. The immune-checkpoint HLA-G/ILT4 is involved in the regulation of VEGF expression in clear cell renal cell carcinoma. BMC Cancer 2020, 20, 624. [Google Scholar] [CrossRef] [PubMed]
- Situ, Y.; Xu, Q.; Deng, L.; Zhu, Y.; Gao, R.; Lei, L.; Shao, Z. System analysis of VEGFA in renal cell carcinoma: The expression, prognosis, gene regulation network and regulation targets. Int. J. Biol. Markers 2022, 37, 90–101. [Google Scholar] [CrossRef]
- Hong, Y.; Gong, L.; Yu, B.; Dong, Y. PPM1A suppresses the proliferation and invasiveness of RCC cells via Smad2/3 signaling inhibition. J. Recept. Signal Transduct. Res. 2021, 41, 245–254. [Google Scholar] [CrossRef]
- Oladejo, M.; Nguyen, H.M.; Wood, L. CD105 in the progression and therapy of renal cell carcinoma. Cancer Lett. 2023, 570, 216327. [Google Scholar] [CrossRef]
- Gao, S.L.; Yin, R.; Zhang, L.F.; Wang, S.M.; Chen, J.S.; Wu, X.Y.; Yue, C.; Zuo, L.; Tang, M. The oncogenic role of MUC12 in RCC progression depends on c-Jun/TGF-β signalling. J. Cell Mol. Med. 2020, 24, 8789–8802. [Google Scholar] [CrossRef] [PubMed]
- Yin, L.; Li, W.; Chen, X.; Wang, R.; Zhang, T.; Meng, J.; Li, Z.; Xu, L.; Yin, R.; Cheng, B.; et al. HOOK1 Inhibits the Progression of Renal Cell Carcinoma via TGF-β and TNFSF13B/VEGF-A Axis. Adv. Sci. 2023, 10, 2206955. [Google Scholar] [CrossRef] [PubMed]
- Che, X.; Li, J.; Xu, Y.; Wang, Q.; Wu, G. Analysis of genomes and transcriptomes of clear cell renal cell carcinomas identifies mutations and gene expression changes in the TGF-beta pathway. Front. Genet. 2022, 13, 953322. [Google Scholar] [CrossRef]
- Takahara, T.; Tsuyuki, T.; Satou, A.; Wada, E.; Sakurai, K.; Ueda, R.; Tsuzuki, T. TGFB1 mRNA expression is associated with poor prognosis and specific features of inflammation in ccRCC. Virchows Arch. 2022, 480, 635–643. [Google Scholar] [CrossRef]
- Liao, W.; Huang, M.; Du, X.; Tang, L.; Li, J.; Tang, Q. Comprehensive analysis of heat shock protein 110, 90, 70, 60 families and tumor immune microenvironment characterization in clear cell renal cell carcinoma. Sci. Rep. 2025, 15, 469. [Google Scholar] [CrossRef]
- Pahwa, R.; Dubhashi, J.; Singh, A.; Jailwala, P.; Lobanov, A.; Thomas, C.J.; Ceribelli, M.; Wilson, K.; Ricketts, C.J.; Vocke, C.D.; et al. Inhibition of HSP 90 is associated with potent anti-tumor activity in Papillary Renal Cell Carcinoma. J. Exp. Clin. Cancer Res. 2022, 41, 208. [Google Scholar] [CrossRef]
- Solakhan, M.; Benlier, N.; Barut, O.; Çiçek, H.; Sever, Ö.N.; Yıldırım, M. The Predictive Value of Urinary HMGB1 Level in the Diagnosis and Prognosis of Renal Cell Carcinoma. Eurasian J. Med. Adv. 2024, 4, 28–33. [Google Scholar] [CrossRef]
- Koh, H.M.; An, H.J.; Ko, G.H.; Lee, J.H.; Lee, J.S.; Kim, D.C.; Song, D.H. Prognostic role of S100A9 expression in patients with clear cell renal cell carcinoma. Medicine 2019, 98, e17188. [Google Scholar] [CrossRef]
- Zhang, L.; Jiang, H.; Xu, G.; Wen, H.; Gu, B.; Liu, J.; Mao, S.; Na, R.; Jing, Y.; Ding, Q.; et al. Proteins S100A8 and S100A9 are potential biomarkers for renal cell carcinoma in the early stages: Results from a proteomic study integrated with bioinformatics analysis. Mol. Med. Rep. 2015, 11, 4093–4100. [Google Scholar] [CrossRef]
- EAU-Guidelines-on-Non-Muscle-Invasive-Bladder-Cancer-2024. Available online: https://uroweb.org/guidelines/non-muscle-invasive-bladder-cancer (accessed on 17 May 2025).
- Chang, K.S.; Chen, S.T.; Lin, W.Y.; Hsu, S.Y.; Sung, H.C.; Lin, Y.H.; Feng, T.H.; Hou, C.P.; Juang, H.H. Growth differentiation factor 15 is a glucose-downregulated gene acting as the cross talk between stroma and cancer cells of the human bladder. Am. J. Physiol. Cell Physiol. 2025, 328, C557–C573. [Google Scholar] [CrossRef] [PubMed]
- Ayati, M.; Ghorani, H.; Amini, E.; Nowroozi, M.R.; Jamshidian, H.; Moghadam, S.O. Serum and urine levels of vascular endothelial growth factor as prognostic markers in patients with bladder cancer. Middle East J. Cancer 2020, 11, 198–202. [Google Scholar] [CrossRef]
- Ponukalin, A.N.; Zakharova, N.B.; Chekhonatskaya, M.L.; Zuev, V.V.; Korolev, A.Y.; Chekhonatskiy, I.A. VI-RADS system and levels of tumor microenvironment biomarkers in patients with muscle-invasive bladder cancer when choosing treatment tactics. Onkourologiya 2020, 16, 117–125. [Google Scholar] [CrossRef]
- Bardowska, K.; Krajewski, W.; Kołodziej, A.; Kościelska-Kasprzak, K.; Bartoszek, D.; Żabińska, M.; Chorbińska, J.; Kubacki, F.; Królicki, T.; Krajewska, M.; et al. Evaluation of six novel biomarkers for predicting recurrence of non-muscle invasive bladder cancer after endoscopic resection- a prospective observational study. World J. Urol. 2025, 43, 114. [Google Scholar] [CrossRef] [PubMed]
- Efiloğlu, Ö.; Başok, B.İ.; Turan, T.; Toprak, T.; Erol, B.; Çaşkurlu, T.; Yıldırım, A. Role of serum and urine TGF-β1, MMP-9, TIMP-2, and NGF-β levels and serum NLR in predicting recurrence and progression risks in patients with primary non-muscle invasive bladder cancer. Urol. Res. Pract. 2020, 46, 206. [Google Scholar] [CrossRef]
- Stojnev, S.; Krstić, M.; Čukuranović Kokoris, J.; Conić, I.; Petković, I.; Ilić, S.; Milosević-Stevanović, J.; Janković Veličković, L. Prognostic impact of canonical TGF-β signaling in urothelial bladder cancer. Medicina 2019, 55, 302. [Google Scholar] [CrossRef]
- Song, Q.; Zhou, Z.; Bai, J.; Liu, N. A comprehensive analysis of immunogenic cell death and its key gene HSP90AA1 in bladder cancer. Clin. Transl. Oncol. 2023, 25, 2587–2606. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, X. A Pan-Cancer Analysis of Heat-Shock Protein 90 Beta1(HSP90B1) in Human Tumours. Biomolecules 2022, 12, 1377. [Google Scholar] [CrossRef]
- Singh, A.; Gupta, N.; Khandakar, H.; Kaushal, S.; Seth, A.; Pandey, R.M.; Sharma, A. Autophagy-associated HMGB-1 as a novel potential circulating non-invasive diagnostic marker for detection of Urothelial Carcinoma of Bladder. Mol. Cell Biochem. 2022, 477, 493–505. [Google Scholar] [CrossRef]
- Benlier, N.; Solakhan, M.; Yıldırım, Z.; Kaya, V.; Yıldırım, Ö.A.; Orhan, N.; Çiçek, H.; Yıldırım, M. A novel diagnostic tool for the detection of bladder cancer: Measurement of urinary high mobility group box-1. Urol. Oncol. 2020, 38, e611–e685. [Google Scholar] [CrossRef] [PubMed]
- Guan, H.; Zhong, M.; Ma, K.; Tang, C.; Wang, X.; Ouyang, M.; Qin, R.; Chen, J.; Zhu, E.; Zhu, T.; et al. The Comprehensive Role of High Mobility Group Box 1 (HMGB1) Protein in Different Tumors: A Pan-Cancer Analysis. J. Inflamm. Res. 2023, 16, 617–637. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Zhang, X.; Jiang, S.; Xu, P.; Chen, K.; Li, K.; Wang, F.; Le, X.; Zhang, K. A novel signature constructed by differential genes of muscle-invasive and non-muscle-invasive bladder cancer for the prediction of prognosis in bladder cancer. Front. Immunol. 2023, 14, 1187286. [Google Scholar] [CrossRef]
- Verma, S.; Shankar, E.; Lin, S.; Singh, V.; Chan, E.R.; Cao, S.; Fu, P.; MacLennan, G.T.; Ponsky, L.E.; Gupta, S. Identification of Key Genes Associated with Progression and Prognosis of Bladder Cancer Through Integrated Bioinformatics Analysis. Cancers 2021, 13, 5931. [Google Scholar] [CrossRef] [PubMed]
Cancer Type | Proposed Biomarker/Panel | Potential Clinical Application & Key Findings |
---|---|---|
RCC | GDF15 + HSP90 | Prognosis and therapeutic stratification: correlation with ferroptosis susceptibility in RCC, suggesting a potential role in predicting response to therapies that modulate this cell death pathway. |
urinary HMGB1 | Diagnosis and prognosis: functions as a non-invasive biomarker. Levels are markedly elevated in RCC patients and correlate strongly with tumor size and high-grade, aggressive disease, offering both diagnostic and prognostic value. | |
S100A9 | Early detection and prognosis: overexpressed in the serum and tissues of early-stage RCC, indicating potential as an early diagnostic marker. High tissue expression is an independent predictor of poor disease-free and disease-specific survival. | |
integrated panel of VEGF, TGF-β1, DAMPs | Early detection and therapy monitoring: a proposed combination of pro-angiogenic (VEGF), immunomodulatory (TGF-β1), and damage-associated (e.g., HMGB1, S100A9) markers with advanced imaging could refine early detection and enable dynamic monitoring of therapeutic response. | |
bladder cancer | urinary VEGF + urinary HMGB1 | Non-invasive detection: the combination of these urinary biomarkers is suggested to enhance the non-invasive detection of bladder cancer. Urinary VEGF is significantly elevated in patients, and urinary HMGB1 levels correlate with tumor aggressiveness. |
serum TGF-β1 + serum VEGF | Staging and diagnosis: The combined measurement of serum TGF-β1 and VEGF showed superior diagnostic performance in distinguishing MIBC from non-muscle-invasive disease compared to either marker alone. | |
S100A9 | Prognosis and progression prediction: increased S100A9 expression is associated with muscle-invasive disease and poorer overall survival. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Karpiuk, K.R.; Młynarczyk, G.; Matowicka-Karna, J.; Darewicz, B. Emerging Biomarkers in Urological Cancers: Angiogenesis and Damage-Associated Molecular Pattern Signaling. Int. J. Mol. Sci. 2025, 26, 9130. https://doi.org/10.3390/ijms26189130
Karpiuk KR, Młynarczyk G, Matowicka-Karna J, Darewicz B. Emerging Biomarkers in Urological Cancers: Angiogenesis and Damage-Associated Molecular Pattern Signaling. International Journal of Molecular Sciences. 2025; 26(18):9130. https://doi.org/10.3390/ijms26189130
Chicago/Turabian StyleKarpiuk, Kacper Robert, Grzegorz Młynarczyk, Joanna Matowicka-Karna, and Barbara Darewicz. 2025. "Emerging Biomarkers in Urological Cancers: Angiogenesis and Damage-Associated Molecular Pattern Signaling" International Journal of Molecular Sciences 26, no. 18: 9130. https://doi.org/10.3390/ijms26189130
APA StyleKarpiuk, K. R., Młynarczyk, G., Matowicka-Karna, J., & Darewicz, B. (2025). Emerging Biomarkers in Urological Cancers: Angiogenesis and Damage-Associated Molecular Pattern Signaling. International Journal of Molecular Sciences, 26(18), 9130. https://doi.org/10.3390/ijms26189130