Discovery of an SQS-PSY Domain-Containing Protein in Meloidogyne incognita Reveals Its Function in Parasitism
Abstract
1. Introduction
2. Results
2.1. Feature of SQS-PSY Domain-Containing Protein Encoded by Minc31999
2.2. Heterologous Expression of the SQS-PSY Domain-Containing Protein Encoded by Minc31999 and Catalytic Activity Assay
2.3. Discovery and Evolutionary Analysis of SQS-PSY Domain-Containing Proteins in Nematoda
2.4. Expression Patterns of Minc31999 in M. incognita
2.5. RNAi Minc31999 by Host-Induced Gene Silencing Impacts M. incognita Development and Parasitism
2.6. Overexpression of Minc31999 Gene in A. thaliana May Impact Plant Growth and Resistance Against Nematode M. incognita
2.7. Differentially Expressed Genes (DEGs) Between Minc31999 Overexpressed Lines and WT A. thaliana
3. Discussion
3.1. Evolutionary Conservation of the SQS-PSY Domain-Containing Protein in Nematoda
3.2. The SQS-PSY Domain-Containing Protein Encoded by Minc31999 May Act as an Effector to Be Involved in Nematode–Plant Interaction
3.3. Putative Mechanisms of Minc31999 Involved in Nematode–Plant Interaction
4. Materials and Methods
4.1. Nematode and Plant Materials
4.2. Bioinformatics Analysis
4.3. RNA Extraction and Gene Cloning
4.4. Heterologous Expression and Purification of Protein
4.5. Enzymatic Assay In Vitro
4.6. In Situ Hybridization
4.7. Observation of M. incognita Development in Plant
4.8. RT-qPCR
4.9. Construction of RNA Interference Vector and Host-Induced Gene Silencing (HIGS)
4.10. Overexpression of Minc31999 in A. thaliana and Phenotype Observation
4.11. RNA-Seq and Transcriptome Analysis
4.12. Reactive Oxygen Species (ROS) Burst Detection
4.13. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
RKN | Root-Knot Nematode |
SQS | Squalene Synthase |
PSY | Phytoene Synthase |
MS medium | Murashige and Skoog Medium |
GC-MS | Gas Chromatography–Mass Spectrometry |
LC-MS | Liquid Chromatography–Mass Spectrometry |
HIGS | Host-Induced Gene Silencing |
DEGs | Differentially Expressed Genes |
ROS | Reactive Oxygen Species |
ATMT | Agrobacterium Tumefaciens-Mediated Transformation |
CHS | Chalcone Synthase |
HSP | Heat Shock Protein |
References
- Dai, D.; Xie, C.; Zhou, Y.; Bo, D.; Zhang, S.; Mao, S.; Liao, Y.; Cui, S.; Wang, X.; Li, F.; et al. Unzipped chromosome-level genomes reveal allopolyploid nematode origin pattern as unreduced gamete hybridization. Nat. Commun. 2023, 14, 7156. [Google Scholar] [CrossRef]
- Castagnone-Sereno, P. Genetic variability and adaptive evolution in parthenogenetic root-knot nematodes. Heredity 2006, 96, 282–289. [Google Scholar] [CrossRef]
- Abad, P.; Gouzy, J.; Aury, J.-M.; Castagnone-Sereno, P.; Danchin, E.G.J.; Deleury, E.; Perfus-Barbeoch, L.; Anthouard, V.; Artiguenave, F.; Blok, V.C.; et al. Genome sequence of the metazoan plant-parasitic nematode Meloidogyne incognita. Nat. Biotechnol. 2008, 26, 909–915. [Google Scholar] [CrossRef]
- Bellafiore, S.; Shen, Z.; Rosso, M.-N.; Abad, P.; Shih, P.; Briggs, S. Direct identification of the Meloidogyne incognita secretome reveals proteins with host cell reprogramming potential. PLoS Pathog. 2008, 4, e1000192. [Google Scholar] [CrossRef] [PubMed]
- Rutter, W.B.; Hewezi, T.; Abubucker, S.; Maier, T.R.; Huang, G.; Mitreva, M.; Hussey, R.S.; Baum, T.J. Mining novel effector proteins from the esophageal gland cells of Meloidogyne incognita. Mol. Plant Microbe Interact. 2014, 27, 965–974. [Google Scholar] [CrossRef] [PubMed]
- Petitot, A.-S.; Alexis, D.; Mawusse, A.; Corinne, D.; Julie, G.; Morgane, A.; Fernandez, D. Dual RNA-seq reveals Meloidogyne graminicola transcriptome and candidate effectors during the interaction with rice plants. Mol. Plant Pathol. 2015, 17, 860–874. [Google Scholar] [CrossRef]
- Pu, W.; Xiao, K.; Luo, S.; Zhu, H.; Yuan, Z.; Gao, C.; Hu, J. Characterization of five Meloidogyne incognita effectors associated with PsoRPM3. Int. J. Mol. Sci. 2022, 23, 1498. [Google Scholar] [CrossRef]
- Robinson, G.W.; Tsay, Y.H.; Kienzle, B.K.; Smith-Monroy, C.A.; Bishop, R.W. Conservation between human and fungal squalene synthetases: Similarities in structure, function, and regulation. Mol. Cell. Biol. 1993, 13, 2706–2717. [Google Scholar] [PubMed]
- Zhang, T.; Yuan, D.; Xie, J.; Lei, Y.; Li, J.; Fang, G.; Tian, L.; Liu, J.; Cui, Y.; Zhang, M.; et al. Evolution of the cholesterol biosynthesis pathway in animals. Mol. Biol. Evol. 2019, 36, 2548–2556. [Google Scholar] [CrossRef]
- Chitwood, D.J. Biochemistry and function of nematode steroids. Crit. Rev. Biochem. Mol. Biol. 1999, 34, 273–284. [Google Scholar] [CrossRef]
- Lisboa, M.P.; Canal, D.; Filgueiras, J.P.C.; Turchetto-Zolet, A.C. Molecular evolution and diversification of phytoene synthase (PSY) gene family. Genet. Mol. Biol. 2022, 45, e20210411. [Google Scholar] [CrossRef]
- Pagliarini, D.J.; Calvo, S.E.; Chang, B.; Sheth, S.A.; Vafai, S.B.; Ong, S.E.; Walford, G.A.; Sugiana, C.; Boneh, A.; Chen, W.K.; et al. A mitochondrial protein compendium elucidates complex I disease biology. Cell 2008, 134, 112–123. [Google Scholar] [CrossRef]
- Lemire, B.D. Evolution, structure and membrane association of NDUFAF6, an assembly factor for NADH:ubiquinone oxidoreductase (Complex I). Mitochondrion 2017, 35, 13–22. [Google Scholar] [CrossRef] [PubMed]
- Sung, A.Y.; Guerra, R.M.; Steenberge, L.H.; Alston, C.L.; Murayama, K.; Okazaki, Y.; Shimura, M.; Prokisch, H.; Ghezzi, D.; Torraco, A.; et al. Systematic analysis of NDUFAF6 in complex I assembly and mitochondrial disease. Nat. Metab. 2024, 6, 1128–1142. [Google Scholar] [CrossRef]
- Holterman, M.; van der Wurff, A.; van den Elsen, S.; van Megen, H.; Bongers, T.; Holovachov, O.; Bakker, J.; Helder, J. Phylum-wide analysis of SSU rDNA reveals deep phylogenetic relationships among nematodes and accelerated evolution toward crown clades. Mol. Biol. Evol. 2006, 23, 1792–1800. [Google Scholar] [CrossRef]
- Blaxter, M.; Koutsovoulos, G. The evolution of parasitism in Nematoda. Parasitology 2015, 142, S26–S39. [Google Scholar] [CrossRef]
- Haegeman, A.; Mantelin, S.; Jones, J.T.; Gheysen, G. Functional roles of effectors of plant-parasitic nematodes. Gene 2012, 492, 19–31. [Google Scholar] [CrossRef] [PubMed]
- Zhao, J.; Li, L.; Liu, Q.; Liu, P.; Li, S.; Yang, D.; Chen, Y.; Pagnotta, S.; Favery, B.; Abad, P.; et al. A MIF-like effector suppresses plant immunity and facilitates nematode parasitism by interacting with plant annexins. J. Exp. Bot. 2019, 70, 5943–5958. [Google Scholar] [CrossRef] [PubMed]
- Smailagic, D.; Maksimovic, J.D.; Marin, M.; Stupar, S.; Ninkovic, S.; Banjac, N.; Stanisic, M. Phloretin inhibits the growth of Arabidopsis shoots by inducing chloroplast damage and programmed cell death. J. Plant Physiol. 2024, 303, 154354. [Google Scholar] [CrossRef]
- Ha, C.M.; Rao, X.; Saxena, G.; Dixon, A. Growth-defense trade-offs and yield loss in plants with engineered cell walls. New Phytol. 2021, 231, 60–74. [Google Scholar] [CrossRef]
- Deepalakkshmi, B.; Gowsalya, K.; Poornima, J.; Bhavani, M.; Elumalai, M. Pathogenesis Related Protein–A brief abridgment of types and functions. J. Emerg. Technol. Innov. Res. 2021, 8, f120–f128. [Google Scholar]
- Matthews, B.F.; Beard, H.; Brewer, E.; Kabir, S.; MaDonald, M.H.; Youssef, R.M. Arabidopsis genes, AtNPR1, AtTGA2 and AtPR-5, confer partial resistance to soybean cyst nematode (Heterodera glycines) when overexpressed in transgenic soybean roots. BMC Plant Biol. 2014, 14, 96. [Google Scholar] [CrossRef] [PubMed]
- Nishizawa, A.; Yabuta, Y.; Yoshida, E.; Maruta, T.; Yoshimura, K.; Shigeoka, S. Arabidopsis heat shock transcription factor A2 as a key regulator in response to several types of environmental stress. Plant J. 2006, 48, 535–547. [Google Scholar] [CrossRef] [PubMed]
- Baek, M.; DiMaio, F.; Anishchenko, I.; Dauparas, J.; Ovchinnikov, S.; Lee, G.R.; Wang, J.; Cong, Q.; Kinch, L.N.; Schaeffer, R.D.; et al. Accurate prediction of protein structures and interactions using a three-track neural network. Science 2021, 373, 871–876. [Google Scholar] [CrossRef] [PubMed]
- McGinnis, S.; Madden, T.L. BLAST: At the core of a powerful and diverse set of sequence analysis tools. Nucleic Acids Res. 2004, 32, W20–W25. [Google Scholar] [CrossRef]
- Edgar, R.C. MUSCLE: Multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 2004, 32, 1792–1797. [Google Scholar] [CrossRef]
- Hoang, D.T.; Chernomor, O.; von Haeseler, A.; Minh, B.Q.; Vinh, L.S. UFBoot2: Improving the ultrafast bootstrap approximation. Mol. Biol. Evol. 2018, 35, 518–522. [Google Scholar] [CrossRef]
- Letunic, I.; Bork, P. Interactive Tree of Life (iTOL) v5: An online tool for phylogenetic tree display and annotation. Nucleic Acids Res. 2021, 49, W293–W296. [Google Scholar] [CrossRef]
- Wang, Q.; Huang, X.-Q.; Cao, T.-J.; Zhuang, Z.; Wang, R.; Lu, S. Heteromeric geranylgeranyl diphosphate synthase contributes to carotenoid biosynthesis in ripening fruits of red pepper (Capsicum annuum var. conoides). J. Agric. Food Chem. 2018, 66, 11691–11700. [Google Scholar] [CrossRef]
- Jin, Y.; Wang, D.; Im, W.-T.; Siddiqi, M.Z.; Yang, D.-C. Ketonization of ginsenoside C-K by novel recombinant 3-β-hydroxysteroid dehydrogenases and effect on human fibroblast cells. Molecules 2023, 28, 3792. [Google Scholar] [CrossRef]
- Busquets, A.; Keim, V.; Closa, M.; Del Arco, A.; Boronat, A.; Arró, M.; Ferrer, A. Arabidopsis thaliana contains a single gene encoding squalene synthase. Plant Mol. Biol. 2008, 67, 25–36. [Google Scholar] [CrossRef] [PubMed]
- Tao, H.; Lauterbach, L.; Bian, G.; Chen, R.; Hou, A.; Mori, T.; Cheng, S.; Hu, B.; Lu, L.; Mu, X.; et al. Discovery of non-squalene triterpenes. Nature 2022, 606, 414–419. [Google Scholar] [CrossRef]
- Lancaster, J.; Khrimian, A.; Young, S.; Lehner, B.; Luck, K.; Wallingford, A.; Ghosh, S.K.B.; Zerbe, P.; Muchlinski, A.; Marek, P.E.; et al. De novo formation of an aggregation pheromone precursor by an isoprenyl diphosphate synthase-related terpene synthase in the harlequin bug. Proc. Natl. Acad. Sci. USA 2018, 115, 37. [Google Scholar] [CrossRef]
- Reddy, G.K.; Leferink, N.G.H.; Umemura, M.; Ahmed, S.T.; Breitling, R.; Scrutton, N.S.; Takano, E. Exploring novel bacterial terpene synthases. PLoS ONE 2020, 15, e0232220. [Google Scholar] [CrossRef]
- Henneman, L.; van Cruchten, A.G.; Denis, S.W.; Amolins, M.W.; Placzek, A.T.; Gibbs, R.A.; Kulik, W.; Waterham, H.R. Detection of nonsterol isoprenoids by HPLC-MS/MS. Anal. Biochem. 2008, 383, 18–24. [Google Scholar] [CrossRef]
- Nagel, R.; Gershenzon, J.; Schmidt, A. Nonradioactive assay for detecting Isoprenyl diphosphate synthase activity in crude plant extracts using liquid chromatography coupled with tandem mass spectrometry. Anal. Biochem. 2012, 422, 33–38. [Google Scholar] [CrossRef]
- Jaouannet, M.; Nguyen, C.N.; Quentin, M.; Jaubert-Possamai, S.; Rosso, M.N.; Favery, B. In situ Hybridization (ISH) in preparasitic and parasitic stages of the plant-parasitic nematode Meloidogyne spp. Bio-Protocol 2018, 8, e2766. [Google Scholar] [CrossRef] [PubMed]
- Boer, J.M.D.; Yan, Y.; Smant, G.; Davis, E.L.; Baum, T.J. In-situ hybridization to messenger RNA in Heterodera glycines. J. Nematol. 1998, 30, 309–312. [Google Scholar]
- Bybd, D.W.; Kirkpatrick, T.; Barker, K.R. An improved technique for clearing and staining plant tissues for detection of nematodes. J. Nematol. 1983, 15, 142–143. [Google Scholar]
- Livak, K.J.; Schmittgen, T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT Method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef] [PubMed]
- Dafny-Yelin, M.; Chung, S.-M.; Frankman, E.L.; Tzfira, T. pSAT RNA interference vectors: A modular series for multiple gene down-regulation in plants. Plant Physiol. 2007, 145, 1272–1281. [Google Scholar] [CrossRef][Green Version]
- Zhang, X.; Henriques, R.; Lin, S.S.; Niu, Q.W.; Chua, N.H. Agrobacterium-mediated transformation of Arabidopsis thaliana using the floral dip method. Nat. Protoc. 2006, 1, 641–646. [Google Scholar] [CrossRef] [PubMed]
- Chaudhary, S.; Dutta, T.K.; Tyagi, N.; Shivakumara, T.N.; Papolu, P.K.; Chobhe, K.A.; Rao, U. Host-induced silencing of Mi-msp-1 confers resistance to root-knot nematode Meloidogyne incognita in eggplant. Transgenic Res. 2019, 28, 327–340. [Google Scholar] [CrossRef]
- Zhao, J.; Sun, Q.; Quentin, M.; Ling, J.; Abad, P.; Zhang, X.; Li, Y.; Yang, Y.; Favery, B.; Mao, Z.; et al. A Meloidogyne incognita C-type lectin effector targets plant catalases to promote parasitism. New Phytol. 2021, 232, 2124–2137. [Google Scholar] [CrossRef]
- Pertea, M.; Kim, D.; Pertea, G.M.; Leek, J.T.; Salzberg, S.L. Transcript-level expression analysis of RNA-seq experiments with HISAT, StringTie and Ballgown. Nat. Protoc. 2016, 11, 1650–1667. [Google Scholar] [CrossRef]
- Kim, D.; Paggi, J.M.; Park, C.; Bennett, C.; Salzberg, S.L. Graph-based genome alignment and genotyping with HISAT2 and HISAT-genotype. Nat. Biotechnol. 2019, 37, 907–915. [Google Scholar] [CrossRef]
- Danecek, P.; Bonfield, J.K.; Liddle, J.; Marshall, J.; Ohan, V.; Pollard, M.O.; Whitwham, A.; Keane, T.; McCarthy, S.A.; Davies, R.M.; et al. Twelve years of SAMtools and BCFtools. GigaScience 2021, 10, giab008. [Google Scholar] [CrossRef]
- Shumate, A.; Wong, B.; Pertea, G.; Pertea, M. Improved transcriptome assembly using a hybrid of long and short reads with StringTie. PLoS Comput. Biol. 2022, 18, e1009730. [Google Scholar] [CrossRef] [PubMed]
- Benjamini, Y.; Hochberg, Y. Controlling the false discovery rate: A practical and powerful approach to multiple testing. J. R. Stat. Soc. B 1995, 57, 289–300. [Google Scholar] [CrossRef]
- Chen, C.; Wu, Y.; Li, J.; Wang, X.; Zeng, Z.; Xu, J.; Liu, Y.; Feng, J.; Chen, H.; He, Y.; et al. TBtools-II: A “one for all, all for one” bioinformatics platform for biological big-data mining. Mol. Plant 2023, 16, 1733–1742. [Google Scholar] [CrossRef]
Life Stage | SRA Accession | Sequence ID | Score (Bits) | E-Value |
---|---|---|---|---|
Egg | SRX2923455 | SRA:SRR5689337.31485.1 | 1701 | <1 × 10−300 |
J2 | SRX2923454 | SRA:SRR5689335.29893.1 | 1620 | <1 × 10−300 |
J3 | SRX2923453 | SRA:SRR5689336.25751.1 | 939 | <1 × 10−300 |
J4 | SRX2923452 | SRA:SRR5689338.12770.1 | 1602 | <1 × 10−300 |
Female | SRX2923451 | SRA:SRR5689339.21014.1 | 1638 | <1 × 10−300 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lu, J.; Lin, R.; Ma, Y.; Sun, X.; Jiao, Y.; Cheng, X.; Xie, B. Discovery of an SQS-PSY Domain-Containing Protein in Meloidogyne incognita Reveals Its Function in Parasitism. Int. J. Mol. Sci. 2025, 26, 9113. https://doi.org/10.3390/ijms26189113
Lu J, Lin R, Ma Y, Sun X, Jiao Y, Cheng X, Xie B. Discovery of an SQS-PSY Domain-Containing Protein in Meloidogyne incognita Reveals Its Function in Parasitism. International Journal of Molecular Sciences. 2025; 26(18):9113. https://doi.org/10.3390/ijms26189113
Chicago/Turabian StyleLu, Junru, Runmao Lin, Yunlong Ma, Xin Sun, Yang Jiao, Xinyue Cheng, and Bingyan Xie. 2025. "Discovery of an SQS-PSY Domain-Containing Protein in Meloidogyne incognita Reveals Its Function in Parasitism" International Journal of Molecular Sciences 26, no. 18: 9113. https://doi.org/10.3390/ijms26189113
APA StyleLu, J., Lin, R., Ma, Y., Sun, X., Jiao, Y., Cheng, X., & Xie, B. (2025). Discovery of an SQS-PSY Domain-Containing Protein in Meloidogyne incognita Reveals Its Function in Parasitism. International Journal of Molecular Sciences, 26(18), 9113. https://doi.org/10.3390/ijms26189113