ACE-Dependent Alzheimer’s Disease: Circulating ACE Phenotypes in Heterozygous Carriers of Rare ACE Variants
Abstract
1. Introduction
2. Results and Discussion
2.1. Quantification of Blood ACE in Carriers of ACE Mutations
2.2. Conformational Changes Induced by ACE Mutations
2.3. Association Analysis of ACE Mutations and Cognitive Phenotypes
3. Materials and Methods
3.1. Study Participants
3.2. Whole Genome and Whole Exome Sequencing
3.3. Bioinformatic Analysis
3.4. Localization of ACE Mutations on ACE Globule
3.5. Chemicals
3.6. Antibodies
3.7. ACE Activity Assay
3.8. Immunological Characterization of Blood ACE
3.9. Direct Comparison of the Levels of ACE in the Serum and Plasma of the Same Individual
3.10. Statistical Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Correction Statement
References
- Goate, A.; Hardy, J. Twenty years of Alzheimer’s disease-causing mutations. J. Neurochem. 2012, 129 (Suppl. 1), 3–8. [Google Scholar] [CrossRef]
- Korovaitseva, G.I.; Bukina, A.; Farrer, L.A.; Rogaev, E.I. Presenilin polymorphisms in Alzheimer’s disease. Lancet 1997, 350, 959. [Google Scholar] [CrossRef]
- Schwartzentruber, J.; Cooper, S.; Liu, J.Z.; Barrio-Hernandez, I.; Bello, E.; Kumasaka, N.; Young, A.M.H.; Franklin, R.J.M.; Johnson, T.; Estrada, K.; et al. Author Correction: Genome-wide meta-analysis, fine-mapping and integrative prioritization implicate new Alzheimer’s disease risk genes. Nat. Genet. 2021, 53, 392–402, Erratum in Nat. Genet. 2021, 53, 585–586. [Google Scholar] [CrossRef]
- Lambert, J.-C.; Ramirez, A.; Grenier-Boley, B.; Bellenguez, C. Step by step: Towards a better understanding of the genetic architecture of Alzheimer’s disease. Mol. Psychiatry 2023, 28, 2716–2727. [Google Scholar] [CrossRef]
- Kehoe, P.G.; Russ, C.; McIlroy, S.; Williams, H.; Holmans, P.; Holmes, C.; Liolitsa, D.; Vahidassr, D.; Powell, J.; McGleenon, B.; et al. Variation in DCP1, encoding ACE, is associated with susceptibility to Alzheimer’s disease. Nat. Genet. 1999, 21, 71–72. [Google Scholar] [CrossRef]
- Sassi, C.; Ridge, P.G.; Nalls, M.A.; Gibbs, R.; Ding, J.; Lupton, M.K.; Troakes, C.; Lunnon, K.; Al-Sarraj, S.; Brown, K.S.; et al. Influence of coding variability in APP-Aβ metabolism genes in sporadic Alzheimer’s disease. PLoS ONE 2016, 11, e0150079. [Google Scholar] [CrossRef] [PubMed]
- Danilov, S.M.; Adzhubei, I.A.; Kozuch, A.J.; Petukhov, P.A.; Popova, I.A.; Choudhury, A.; Sengupta, D.; Dudek, S.M. Carriers of heterozygous loss-of-function ACE mutations are at risk for Alzheimer’s disease. Biomedicines 2024, 12, 162. [Google Scholar] [CrossRef]
- Hu, J.; Igarashi, A.; Kamata, M.; Nakagawa, H. Angiotensin-converting enzyme degrades Alzheimer amyloid beta-peptide (A beta); retards A beta aggregation, deposition, fibril formation; and inhibits cytotoxicity. J. Biol. Chem. 2001, 276, 47863–47868. [Google Scholar] [CrossRef] [PubMed]
- Hemming, M.; Selkoe, D. Amyloid β-protein is degraded by cellular angiotensin-converting enzyme (ACE) and elevated by an ACE inhibitor. J. Biol. Chem. 2005, 280, 37644–37650. [Google Scholar] [CrossRef]
- Zou, K.; Maeda, T.; Watanabe, A.; Liu, J.; Liu, S.; Oba, R.; Satoh, Y.; Komano, H.; Michikawa, M. Aβ42-to-Aβ40 and angiotensin-converting activities in different domains of angiotensin-converting enzyme. J. Biol. Chem. 2009, 284, 31914–31920. [Google Scholar] [CrossRef] [PubMed]
- Regenold, W.T.; Blumenthal, J.B.; Loreck, D.J.; Mordecai, K.L.; Scarinzi, G.; Doddi, S.R.; Adler, L. Elevated plasma Aβ42 in cognitively impaired individuals taking ACE inhibitor antihypertensive. Am. J. Alzheimer’s Dis. Other Demen. 2017, 32, 347–352. [Google Scholar] [CrossRef]
- Liu, S.; Ando, F.; Fujita, Y.; Liu, J.; Maeda, T.; Shen, X.; Kikuchi, K.; Matsumoto, A.; Yokomori, M.; Tanabe-Fujimura, C.; et al. A clinical dose of angiotensin-converting enzyme (ACE) inhibitor and heterozygous ace deletion exacerbate Alzheimer’s disease pathology in mice. J. Biol. Chem. 2019, 294, 9760–9770. [Google Scholar] [CrossRef] [PubMed]
- Xie, X.-Y.; Zhao, Q.-H.; Huang, Q.; Dammer, E.; Chen, S.; Ren, R.-J.; Wang, G. Genetic profiles of familial late-onset Alzheimer’s disease in China: The Shanghai FLOAD Study. Genes. Dis. 2022, 9, 1639–1649. [Google Scholar] [CrossRef] [PubMed]
- Korf, E.A.; Belinskaia, D.A.; Glotov, A.S.; Glotov, O.S.; Novokovich, Y.S.; Korostin, D.O.; Rebrikov, D.V.; Dudek, S.M.; Goncharov, N.V.; Danilov, S.M. ACE-dependent Alzheimer’s disease: Further assessment of the impact of ACE mutations on blood ACE levels. Biochim. Biophys. Acta (BBA)-Mol. Basis Dis. 2025, 1871, 167817. [Google Scholar] [CrossRef]
- Danilov, S.M.; Kalinin, S.; Chen, Z.; Vinokour, E.I.; Nesterovitch, A.B.; Schwartz, D.E.; Gribouval, O.; Gubler, M.-C.; Minshall, R.D. Angiotensin I-converting enzyme Gln1069Arg mutation impairs trafficking to the cell surface resulting in selective denaturation of the C-domain. PLoS ONE 2010, 5, e10438. [Google Scholar] [CrossRef] [PubMed]
- Danilov, S.M.; Balyasnikova, I.V.; Danilova, A.S.; Naperova, I.A.; Arablinskaya, N.E.; Borisov, S.E.; Metzger, R.; Franke, F.E.; Schwartz, D.E.; Gachok, I.V.; et al. Conformational fingerprinting of the angiotensin I-converting enzyme (ACE). 1. Application in sarcoidosis. J. Proteome Res. 2010, 9, 5782–5793. [Google Scholar] [CrossRef]
- Danilov, S.M. Conformational fingerprinting using monoclonal antibodies (on the example of angiotensin I-converting enzyme-ACE). Mol. Biol. 2017, 51, 906–920. [Google Scholar] [CrossRef]
- Popova, I.A.; Lubbe, L.; Petukhov, P.A.; Kalantarov, G.F.; Trakht, I.N.; Chernykh, E.R.; Leplina, O.Y.; Lyubimov, A.V.; Garcia, J.G.N.; Dudek, S.M.; et al. Epitope mapping of novel monoclonal antibodies to human angiotensin I-converting enzyme. Protein Sci. 2021, 30, 1577–1593. [Google Scholar] [CrossRef]
- Danilov, S.M.; Jain, M.S.; A. Petukhov, P.; Kurilova, O.V.; Ilinsky, V.V.; Trakhtman, P.E.; Dadali, E.L.; Samokhodskaya, L.M.; Kamalov, A.A.; Kost, O.A. Blood ACE phenotyping for personalized medicine; revelation of patients with conformationally altered ACE. Biomedicines 2023, 11, 534. [Google Scholar] [CrossRef]
- Kryukova, O.V.; Islanov, I.O.; Zaklyazminskaya, E.V.; Korostin, D.O.; Belova, V.A.; Cheranev, V.V.; Repinskaia, Z.A.; Tonevitskaya, S.A.; Petukhov, P.A.; Dudek, S.M.; et al. Effects of Angiotensin-I-Converting Enzyme (ACE) Mutations Associated with Alzheimer’s Disease on Blood ACE Phenotype. Biomedicines 2024, 12, 2410. [Google Scholar] [CrossRef]
- Kryukova, O.V.; Korostin, D.O.; Belova, V.A.; Cheranev, V.V.; Repinskaia, Z.A.; Uporov, I.V.; Dudek, S.M.; Kost, O.A.; Rebrikov, D.V.; Danilov, S.M. Effect of ACE mutations on blood ACE phenotype parameters. PLoS ONE 2024, 19, e0308289. [Google Scholar] [CrossRef]
- Soubrier, F.; Alhenc-Gelas, F.; Hubert, C.; Allegrini, J.; John, M.; Tregear, G.; Corvol, P. Two putative active centers in human angiotensin I-converting enzyme revealed by molecular cloning. Proc. Natl. Acad. Sci. USA 1988, 85, 9386–9390. [Google Scholar] [CrossRef] [PubMed]
- Lubbe, L.; Sewell, B.T.; Woodward, J.D.; Sturrock, E.D. Cryo-EM reveals mechanisms of angiotensin I-converting enzyme allostery and dimerization. EMBO J. 2022, 41, e110550. [Google Scholar] [CrossRef] [PubMed]
- Danilov, S.; Savoie, F.; Lenoir, B.; Jeunemaitre, X.; Azizi, M.; Tarnow, L.; Alhenc-Gelas, F. Development of enzyme-linked immunoassays for human angiotensin-I converting enzyme suitable for large-scale studies. J. Hypertens. 1996, 14, 719–727. [Google Scholar] [CrossRef]
- Samokhodskaya, L.M.; Jain, M.S.; Kurilova, O.V.; Bobkov, A.P.; Kamalov, A.A.; Dudek, S.M.; Danilov, S.M. Phenotyping angiotensin-converting enzyme in blood: A necessary approach for precision medicine. J. Appl. Lab. Med. 2021, 6, 1179–1191. [Google Scholar] [CrossRef]
- Rigat, B.; Hubert, C.; Alhenc-Gelas, F.; Cambien, F.; Corvol, P.; Soubrier, F. An insertion/deletion polymorphism in the angiotensin I-converting enzyme gene accounting for half the variance of serum enzyme levels. J. Clin. Investig. 1990, 86, 1343–1346. [Google Scholar] [CrossRef]
- Costerousse, O.; Allegrini, J.; Lopez, M.; Alhenc-Gelas, F. Angiotensin I-converting enzyme in human circulating mononuclear cells: Genetic polymorphism of expression in T-lymphocytes. Biochem. J. 1993, 290 Pt 1, 33–40. [Google Scholar] [CrossRef] [PubMed]
- Danser, A.H.J.; Schalekamp, M.A.D.H.; Bax, W.A.; Van Den Brink, A.M.; Saxena, P.R.; Riegger, G.A.J.; Schunkert, H. Angiotensin-converting enzyme in the human heart. Effect of the deletion/insertion polymorphism. Circulation 1995, 92, 1387–1388. [Google Scholar] [CrossRef] [PubMed]
- Tiret, L.; Rigat, B.; Visvikis, S.; Breda, C.; Corvol, P.; Cambien, F.; Soubrier, F. Evidence, from combined segregation and linkage analysis, that a variant of the angiotensin I-converting enzyme (ACE) gene controls plasma ACE levels. Am. J. Hum. Genet. 1992, 51, 197–205. [Google Scholar]
- Biller, H.; Zissel, G.; Ruprecht, B.; Nauck, M.; Busse Grawitz, A.; Müller-Quernheim, J. Genotype-corrected reference values for serum angiotensin-converting enzyme. Eur. Resp. J. 2006, 28, 1085–1090. [Google Scholar] [CrossRef]
- Kruit, A.; Grutters, J.C.; Gerritsen, W.B.M.; Kos, S.; Wodzig, W.K.W.H.; Van Den Bosch, J.M.M.; Ruven, H.J.T. ACE I/D-corrected Z-scores to identify normal and elevated ACE activity in sarcoidosis. Respir. Med. 2007, 101, 510–515. [Google Scholar] [CrossRef]
- Patel, R.; Ansari, A. Serum angiotensin converting enzyme activity in patients with chronic renal failure on long term hemodialysis. Clin. Chem. Acta 1979, 92, 491–495. [Google Scholar] [CrossRef]
- Silverstein, E.; Brunswick, J.; Rao, T.K.; Friedland, J. Increased serum angiotensin-converting enzyme in chronic renal disease. Nephron 1984, 37, 206–210. [Google Scholar] [CrossRef]
- Petrov, M.N.; Shilo, V.Y.; Tarasov, A.V.; Schwartz, D.E.; Garcia, J.G.N.; Kost, O.A.; Danilov, S.M. Conformational changes in blood ACE in chronic uremia. PLoS ONE 2012, 7, e49290. [Google Scholar] [CrossRef] [PubMed]
- Ferkingstad, E.; Sulem, P.; Atlason, B.A.; Sveinbjornsson, G.; Magnusson, M.I.; Styrmisdottir, E.L.; Gunnarsdottir, K.; Helgason, A.; Oddsson, A.; Halldorsson, B.V.; et al. Large-scale integration of the plasma proteome with genetics and disease. Nat. Genet. 2021, 53, 1712–1721. [Google Scholar] [CrossRef] [PubMed]
- Cuddy, L.K.; Prokopenko, D.; Cunningham, E.P.; Brimberry, R.; Song, P.; Kirchner, R.; Chapman, B.A.; Hofmann, O.; Hide, W.; Procissi, D.; et al. Aβ-accelerated neurodegeneration caused by Alzheimer’s-associated ace variant R1279Q is rescued by angiotensin system inhibition in mice. Sci. Transl. Med. 2020, 12, eaaz2541. [Google Scholar] [CrossRef]
- Popova, I.A.; Lindeblad, M.O.; Bobkov, A.P.; Kamalov, A.A.; Toth, A.; Dudek, S.M.; Danilov, S.M. Urinary ACE phenotyping as a research and diagnostic tool: Identification of sex-dependent ACE immunoreactivity. Biomedicine 2023, 11, 953. [Google Scholar]
- Quitterer, U.; AbdAlla, S. Improvements of symptoms of Alzheimer`s disease by inhibition of the angiotensin system. Pharmacol. Res. 2020, 154, 104230. [Google Scholar] [CrossRef]
- Nassan, M.; Daghlas, I.; Piras, I.S.; Rogalski, E.; Reus, L.M.; Pijnenburg, Y.; Cuddy, L.K.; Saxena, R.; Mesulam, M.; Huentelman, M. Evaluating the association between genetically proxied ACE inhibition and dementias. Alzheimer’s Dement. 2023, 19, 3894–3901. [Google Scholar] [CrossRef] [PubMed]
- Gao, J.; Bi, X.; Jiang, W.; Wang, Y. Integration of multi-omics quantitative trait loci evidence reveals novel susceptibility genes for Alzheimer’s disease. Sci. Rep. 2025, 15, 30158. [Google Scholar] [CrossRef]
- Kim, M.S.; Park, S.; Kim, J.Y.; Myung, W.; Song, M.; Do, R.; Nho, K.; Kim, E.; Hwang, S.; Yu, Z.; et al. ACE inhibition increases Alzheimer’s disease risk by promoting tau phosphorylation. medRxiv 2025. [Google Scholar] [CrossRef]
- Boomsma, F.; de Bruyn, J.H.; Derkx, F.H.; Schalekamp, M.A. Opposite effects of captopril on angiotensin I-converting enzyme ‘activity’ and ‘concentration’; relation between enzyme inhibition and long-term blood pressure response. Clin. Sci. 1981, 60, 491–498. [Google Scholar] [CrossRef] [PubMed]
- Danilov, S.M.; Tovsky, S.I.; Schwartz, D.E.; Dull, R.O. ACE Phenotyping as a Guide Toward Personalized Therapy with ACE Inhibitors. J. Cardiovasc. Pharmacol. Ther. 2017, 22, 374–386. [Google Scholar] [CrossRef] [PubMed]
- Schächter, F.; Faure-Delanef, L.; Guénot, F.; Rouger, H.; Froguel, P.; Lesueur-Ginot, L.; Cohen, D. Genetic associations with human longevity at the APOE and ACE loci. Nat. Genet. 1994, 6, 29–32. [Google Scholar] [CrossRef]
- Andrews, S.; FastQC: A Quality Control Tool for High Throughput Sequence Data. Babraham Bioinformatics, Babraham Institute. 2010. Available online: http://www.bioinformatics.babraham.ac.uk/projects/fastqc/ (accessed on 8 July 2023).
- Bushnell, B. BBMap: A fast, accurate, splice-aware aligner. In 9th Annual Genomics of Energy & Environment Meeting; Lawrence Berkeley National Laboratory: Berkeley, CA, USA, 2014; Report 2014, LBNL-7065E. Available online: https://www.osti.gov/biblio/1241166 (accessed on 14 July 2023).
- Vasimuddin, M.; Misra, S.; Li, H.; Aluru, S. Efficient architecture-aware acceleration of BWA-MEM for multicore systems. In Proceedings of the 2019 IEEE 33rd International Parallel and Distributed Processing Symposium, IPDPS, Rio de Janeiro, Brazil, 20–24 May 2019; pp. 314–324. [Google Scholar] [CrossRef]
- Li, H.; Handsaker, B.; Wysoker, A.; Fennell, T.; Ruan, J.; Homer, N.; Marth, G.; Abecasis, G.; Durbin, R.; 1000 Genome Project Data Processing Subgroup. The Sequence Alignment/Map format and SAMtools. Bioinformatics 2009, 25, 2078–2079. [Google Scholar] [CrossRef]
- Picard Toolkit. Broad Institute, GitHub Repository. Available online: https://broadinstitute.github.io/picard/ (accessed on 18 July 2023).
- Desvignes, J.P.; Bartoli, M.; Delague, V.; Krahn, M.; Miltgen, M.; Béroud, C.; Salgado, D. VarAFT: A variant annotation and filtration system for human next generation sequencing data. Nucleic Acids Res. 2018, 46, W545–W553. [Google Scholar] [CrossRef]
- Danecek, P.; Bonfield, J.K.; Liddle, J.; Marshall, J.; Ohan, V.; Pollard, M.O.; Whitwham, A.; Keane, T.; McCarthy, S.A.; Davies, R.M.; et al. Twelve years of SAMtools and BCFtools. GigaScience 2021, 10, giab008. [Google Scholar] [CrossRef]
- Adzhubei, I.A.; Schmidt, S.; Peshkin, L.; Ramensky, V.E.; Gerasimova, A.; Bork, P.; Kondrashov, A.S.; Sunyaev, S.R. A method and server for predicting damaging missense mutations. Nat. Methods 2010, 7, 248–249. [Google Scholar] [CrossRef]
- Cheng, J.; Novati, G.; Pan, J.; Bycroft, C.; Žemgulytė, A.; Applebaum, T.; Pritzel, A.; Wong, L.H.; Zielinski, M.; Sargeant, T.; et al. Accurate proteome-wide missense variant effect prediction with AlphaMissense. Science 2023, 381, eadg7492. [Google Scholar] [CrossRef]
- Belova, V.; Pavlova, A.; Afasizhev, R.; Moskalenko, V.; Korzhanova, M.; Krivoy, A.; Cheranev, V.; Nikashin, B.; Bulusheva, I.; Rebrikov, D.; et al. System analysis of the sequencing quality of human whole exome samples on BGI NGS platform. Sci. Rep. 2022, 12, 609. [Google Scholar] [CrossRef]
- Danilov, S.M.; Balyasnikova, I.V.; Albrecht, R.F.; Kost, O.A. Simultaneous determination of ACE activity with 2 substrates provides information on the status of somatic ACE and allows detection of inhibitors in human blood. J. Cardiovasc. Pharmacol. 2008, 52, 90–103. [Google Scholar] [CrossRef] [PubMed]
Cognitive Impairment | ACE Mutation Carriers (n = 13) | Non-Carriers (n = 145) | OR (95% CI) | RR (95% CI) | ARI (95% CI) | p (Fisher’s Exact Test) | Phi | Yule’s Q |
---|---|---|---|---|---|---|---|---|
Dementia | 4 (30.8%) | 22 (15.2%) | 2.48 (0.70–8.78) | 2.03 (0.82–5.00) | 15.6 pp (−3.7 to 42.9) | 0.231 | +0.116 | +0.426 |
Hippocampal dysfunction | 2 (15.4%) | 15 (10.3%) | 1.58 (0.32–7.79) | 1.49 (0.38–5.81) | 5.0 pp (−7.6 to 32.2) | 0.634 | +0.045 | +0.223 |
Frontal dysfunction | 5 (38.5%) | 49 (33.8%) | 1.22 (0.38–3.94) | 1.14 (0.55–2.35) | 4.7 pp (−17.6 to 31.7) | 0.765 | +0.027 | +0.101 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mironenko, I.V.; Kryukova, O.V.; Buianova, A.A.; Churov, A.V.; Arbatsky, M.S.; Kubrikova, A.A.; Petrusenko, Y.S.; Repinskaia, Z.A.; Shmitko, A.O.; Ilyina, G.A.; et al. ACE-Dependent Alzheimer’s Disease: Circulating ACE Phenotypes in Heterozygous Carriers of Rare ACE Variants. Int. J. Mol. Sci. 2025, 26, 9099. https://doi.org/10.3390/ijms26189099
Mironenko IV, Kryukova OV, Buianova AA, Churov AV, Arbatsky MS, Kubrikova AA, Petrusenko YS, Repinskaia ZA, Shmitko AO, Ilyina GA, et al. ACE-Dependent Alzheimer’s Disease: Circulating ACE Phenotypes in Heterozygous Carriers of Rare ACE Variants. International Journal of Molecular Sciences. 2025; 26(18):9099. https://doi.org/10.3390/ijms26189099
Chicago/Turabian StyleMironenko, Iaroslav V., Olga V. Kryukova, Anastasiia A. Buianova, Alexey V. Churov, Mikhail S. Arbatsky, Alyona A. Kubrikova, Yunna S. Petrusenko, Zhanna A. Repinskaia, Anna O. Shmitko, Galit A. Ilyina, and et al. 2025. "ACE-Dependent Alzheimer’s Disease: Circulating ACE Phenotypes in Heterozygous Carriers of Rare ACE Variants" International Journal of Molecular Sciences 26, no. 18: 9099. https://doi.org/10.3390/ijms26189099
APA StyleMironenko, I. V., Kryukova, O. V., Buianova, A. A., Churov, A. V., Arbatsky, M. S., Kubrikova, A. A., Petrusenko, Y. S., Repinskaia, Z. A., Shmitko, A. O., Ilyina, G. A., Kost, O. A., Dudek, S. M., Strazhesko, I. D., Isaev, R. I., Mkhitaryan, E. A., Tkacheva, O. N., Rebrikov, D. V., & Danilov, S. M. (2025). ACE-Dependent Alzheimer’s Disease: Circulating ACE Phenotypes in Heterozygous Carriers of Rare ACE Variants. International Journal of Molecular Sciences, 26(18), 9099. https://doi.org/10.3390/ijms26189099