Probiotics in IBD: Evidence and Perspectives on Patient Health and Disease Management
Abstract
1. Introduction
2. Intestinal Microbiota in Management of IBD
3. Probiotics and Their Beneficial Potential in IBD
4. Probiotic Molecular Mechanism of Action in IBD
- 1.
- Altering the composition and function of the gut microbiome;
- 2.
- Supporting the physiology and immunobiology the intestinal mucosa to promote an anti-inflammatory response and facilitate wound healing.
- (a)
- Production of SCFAs, especially butyrate and stimulatory signaling proteins;
- (b)
- Formation of immunoglobulin A;
- (c)
- Reduced production of pro-inflammatory cytokines;
- (d)
- Induction production of anti-inflammatory cytokines;
- (e)
- Increased expression of mucin-2;
- (f)
5. Randomized Clinical Trials on the Use of Probiotics in Ulcerative Colitis
Disease Characteristics | Probiotics | Compared Groups | Results | Ref. |
---|---|---|---|---|
Mild to moderate (UCDAI) active UC | E. coli Nissle 1917 | Probiotics vs. placebo (50% in both groups received 5-ASA) | Effective in preventing the exacerbation of IBDQ scores, clinical remission (Mayo score ≤ 2) and endoscopic remission (Mayo score = 0) in patients with mild to moderate UC | [62] |
Active UC | E. coli Nissle 1917 | Probiotics vs. placebo | No benefit in the of E. coli Nissle 1917 as an add-on treatment to conventional therapies for active UC. Remission reached in group E coli Nissle 1917 was 54% and in the group receiving placebo was 89%. | [63] |
Moderate active UC | E. coli Nissle 1917 enema | Probiotics vs. placebo | A dose-dependent effect of rectal E coli Nissle 1917 compared to placebo was observed in PP (per protocol population) patients with active, mild or moderate UC, but not in the ITT (intent to treat) population. Enema with 40 mL of E. coli appears to be the most promising. Clinical remission (UCDAI ≤ 2) and endoscopic healing (UCDAI = 0). | [64] |
Active UC | E. coli Nissle 1917 | Probiotics vs. mesalazine (+gentamicin in both groups) | In the mesalazine group, remission was in 75% of patients compared to 68% of patients with E. coli Nissle 1917. Relapse was in 73% of patients in the mesalazine group and in 67% of patients inthe E. coli group. Treatment with E. coli Nissle 1917 had a similar effect to mesalazine in maintaining remission of UC. | [65] |
UC in remission | E. coli Nissle 1917 | Probiotics vs. mesalazine | Clinical active index (CAI) was not different between groups. Relapse was in 11.3% of patients in the mesalazine group and in 16.0% of patients in the E coli. Nissle 1917 group. | [66] |
UC in remission | E. coli Nissle 1917 | Probiotics vs. mesalazine | The per protocol (PP) analysis revealed relapse in 36.4% of patients in the E. coli group and in 33.9% in the mesalazine group. Adverse events were reported in 42% patients treated with E. coli and in 35.2% treated with mesalazine. | [67] |
UC in remission—pediatric study | E. coli Nissle 1917 | Probiotics vs. 5-ASA | Relapse rate was 25% in the E. coli Nissle 1917 group and 30% in the 5-ASA group. No serious adverse events were recorded. E. coli Nissle 1917 is effective for maintenance therapy of UC in young patients. | [68] |
Mild to moderate active UC | Probiotic product (Jamieson Lab., Canada, N8W5B5) Lactobacillus paracasei (A234), L. gasseri (A237), L. rhamnosus (A119), L. rhamnosus (A139), L. acidophillus (A118), L. plantarum (A138), L. casei (A179), L. reuteri (A113), Lactococcus lactis (A328), Bifidobacterium animalis subsp. lactis (A026), B. breve (A055), B. longum susp. Longum (A027), B.bifidus (A 058), B. longum subsp. infantis (041) | Probiotics vs. placebo | Probiotic supplementation induced remission, lower stool frequency, and reduced the total partial Mayo score (PMS) from 3.42 to 1.33 (p < 0.001). Compared to the control group, the probiotic group showed a decrease in the level of C-reactive protein, IgA, an increase in the levels of hematological parameters (hematocrit, hemoglobin, RCB), and an increase in IL-10. | [30] |
Mild to moderate active UC | Probiotic product (Jamieson Lab., Canada, N8W5B5) Lactobacillus-9 strains, Bifidobacterium species-5 | Probiotics vs. placebo | Probiotic group had asignificantly higher score in the systemic, social, bowel, emotional, and total SIBSQ in terms of pre-treatment to post-treatment periods (p < 0.001). | [69] |
Mild to moderate (SCCAI) active UC | Lactocare® synbiotic (2 strains of Bifidobacterium, 4 strians of Lactobacillus, Streptococcus thermophilus) + fructo-oligosaccharides | Probiotics vs. placebo | Significant decrease was observed in the SCCAI index in the treatment group from 6.54 to 4.65 (p < 0.017), and in the placebo group from 5.7 to 5.21 (p < 0.17). Lactocare treatment lasting 5 years or more resulted in a 90.9% response rate, while treatment for less than 5 years resulted in a 47.1% response rate. | [70] |
Mild to moderate active IBD | Bifico—probiotic cocktail (Enterococcus faecalis, Bifidobacterium longum, Lactobacillus acidophilus) | Probiotics + mesalazine vs. mesalazine | Probiotics + mesalazine improved microflora composition in IBD patients, increased count of Bifidobacterium and Lactobacillus, and reduced levels of IL-6, C-reactive protein, lactoferrin, α-1-antitrypsin, and β-2 microglobulin. | [71] |
Mild to moderate active UC | Lactobacillus acidophilus, L. plantarum, L. rhamnosus, L. bifidus, L. casei, Bifidobacterium infantis | Probiotics+ 5-ASA vs. 5-ASA | Clinical remission in treated patients showed improvement in disease activity (54.9% vs. 23.5%) and histological index (82.3% vs. 41.4%). | [72] |
UC and CD in remission | Synprove multi-strain (L. rhamnosus, L. plantarum, L. acidophilus, Enterococcus faecium) | Probiotics vs. placebo | Significantly reduced fecal calprotein levels in treated UC patients. No significant changes were demonstrated in CD. | [73] |
Mild and moderate to severe active UC | Bifid Triple Viable (BTV, Enterococcus faecalis, Bifidobacterium longum, L. acidophilus) | Probiotics+ 5-ASA vs. 5-ASA | Clinical symptoms score (Mayo score) after treatment was 2.46 in the probiotic group, and 3.96 in the control group. Colon mucosa inflammation score after treatment was 0.54 in the probiotic group and 0.71, inthe control group.Colon mucosa had a decreased expression of IL-1β and an increased expression of IL-10 and IgA. | [74] |
UC in remission | Bifid Triple Viable (BTV, Enterococcus faecalis, Bifidobacterium longum, L. acidophilus) | Probiotics vs. placebo | In the probiotic group, the concentrations of fecal lactobacilli and bifidobacteria were significantly increased, expression of TNF-α and IL-1β were decreased, and there was an elevated expression of IL-10. In the probiotic group, 20% of patients had a relapse during the 2 mo follow-up period, and 93% in the placebo group. | [75] |
Mild to moderate (UCDAI) active UC | Bifid Triple Viabel (BTV, Enterococcus faecalis, Bifidobacterium longum, L. acidophilus) | Probiotics+ 5-ASA vs. 5-ASA | Clinical symptoms and UCDAI were decreased in both groups, levels of TNF-α and IL-8 were reduced and IL-10 was increased | [76] |
Mild to moderate active UC | BFM (B. breve strain Yakult, B. bifidum strain Yakult, L. acidophilus) | Probiotics +5-ASA vs. placebo +5-ASA | CAI (clinical activity index) scoreshoweda decrease of at least three points. Clinical remission of 40% was achieved in the BFM group and 33% in the placebo group. Endoscopic activity index and histological score were reduced in the BFM group after 12 weeks of treatment. SCFA levels were increased.I in the BFM group, especially butyrate and propionate. | [77] |
UC in remission | BFM bifid fermented milk (Bifidobacterium breve strain Yakult, L. acidophilus) | Probiotics vs. placebo | The study was discontinued due to lack of efficacy. Relapse-free survival did not differ between BFM and placebo groups. Bifidobacterium spp. were decreased before relapse. | [78] |
Mild to moderate (UCDAI, TW) active UC | L. casei strain ACTT PTA 3945 | Probiotics vs. placebo | No significant effect was observed when using the probiotics strain. Clinical remission in the probiotics group was 82% and 76% in the placebogroup. Relapse rates did not differ between the groups (14.3% vs. 26..7%). | [79] |
Mild to moderate (UCDAI) active UC | Bifidobacterium longum 536 | Probiotics vs. placebo | Clinical remission (UCDAI ≤ 2) was 63% in probiotic groups and 52% in placebo groups. Endoscopic index, Mayo score, and UCDAI score showed a significant decrease in the probiotic group but not in the placebo group. | [80] |
Moderate to severe active UC (UCDAI) | Lactobacillus salivarius, L. acidophilus, Bifidobacterium bifidus strain BGN4 | Probiotics+ 5-ASA vs. 5-ASA | There were beneficial effects of probiotics in clinical and endoscopic activities. | [81] |
Inactive UC | Bio-Three tablets (Streptococcus faecalis T-110, Clostridium butyricum TO-A, Bacillus mesentericus TO-A) | Probiotics vs. placebo | The remission rate was 69.5% in the probiotic group and 56.6% in the placebo group at 12 mo. Cluster analysis of fecal flora are as follows—7 patients to cluster I, 32 to cluster II, and 7 to cluster III. | [82] |
Active UC | Bifidobacterium—3 strains | Probiotics + mesalazine vs. mesalazine | Serum levels of TNF-α and IL-8 were decreased in both groups. IL-10 was increased in the group with probiotics and mesalazine. Probiotics improve clinical and therapeutic effects. UCDAI decreased in the probiotic group (from 5.36 to 1.85) and in the mesalazine group (from 5.41 to 3.60). | [83] |
Mild to moderate active UC—pediatric study | Lactobacillus reuteri ATCC 55730 | Probiotics vs. placebo | The Mayo (clinical and endoscopic features) significantly decreased in the probiotic and placebo groups. Histological score decreased only in the probiotic group. In the probiotic group, cytokine mucosal expression of IL-10 was increased, and IL-1β, TNF-α and IL-8 were decreased. | [84] |
UC in remission | Probio-Tec AB-25 (L. acidophilus La-5 and Bifidobacterium animalis subsp. lactis BB-12) | Probiotics vs. placebo | No clinical benefit of Probio-Tec AB-25 compared to placebo was demonstrated in the maintenance of UC in remission. 25% of patients in probiotic groups maintained remission after 1 year of treatment and T 8% in placebo group. | [85] |
Mild active UC | Lactobacillus casei DG enema and oral | Probiotics (enema, oral) + 5-ASA vs. 5-ASA | Rectal administration of L. casei DG altered colonic microbiota, increased the number of Lactobacillus spp., decreased Enterobacteriaceae, TLR-4 and IL-1β, and increased mucosa IL-10. Oral administration has no effect on intestinal flora and TLR expression. | [86] |
Mild to moderate active UC | VSL#3 (L. paracasei, L. plantarum, L. acidophilus, L. delbrueckii subsp. bulgaricus, B. longum, B. breve, B. infantis, Streptococcus thermophilus) | Probiotics + balsalazide vs.balsalazide alone vs. mesalazine | The combination of VSL#3 + balsalazide is effective in the treatment of mild-to-moderate active UC an in achieving remission (85.71%), less in balsalazide alone (80.77%), and even lesss in mesalazine (72.73%). | [87] |
Mild to moderate active UC | VSL#3 (L. paracasei, L. plantarum, L. acidophilus, L. delbrueckii subsp. bulgaricus, B. longum, B. breve, B. infantis, Streptococcus thermophilus) | Probiotics + 5-ASA vs. 5-ASA | Clinical remission in VSL#3 group was47.7% and in placebo group, 32.5%. Clinical improvement was demonstrated (reduction in UCDAI, VSL#3 vs. placebo 63.1% vs. 40.8%). Stool frequency, endoscopic scores and physician’s rate of disease activity were without differences. Mild side effects were experienced by 11.2% of patients in the VSl#3 group and 12.3% of patients in the placebo group. | [88] |
Remission of chronic pouchitis in patients with ileal pouch-anal anastomosis | VSL#3 (L. paracasei, L. plantarum, L. acidophilus, L. delbrueckii subsp. bulgaricus, B. longum, B. breve, B. infantis, Streptococcus thermophilus) | Probiotics vs. placebo | Relapse with a 9 mo follow-up period occurred in 15% patients in the VSL#3 group, and 100% in the placebo group. The counts of fecal lactobacilli, bifidobacteria, and S. thermophilus significantly increased (p < 0.01) in the VSL#3 group. | [89] |
Prevention of acute pouchitis in patients with ileal pouch-anal anastomosis | VSL#3 (L. paracasei, L. plantarum, L. acidophilus, L. delbrueckii subsp. bulgaricus, B. longum, B. breve, B. infantis, Streptococcus thermophilus) | Probiotics vs. placebo | Active pouchitis is defined by PDAI ≤ 7. 10% of patients treated with VSL#3 had an episode of acute pouchitis, and 40% of patients in placebo group. | [90] |
UC in remission, with ATB-responsible pouchitis | VSL#3 (L. paracasei, L. plantarum, L. acidophilus, L. delbrueckii subsp. bulgaricus, B. longum, B. breve, B. infantis, Streptococcus thermophilus) | Probiotics vs. placebo | Remission was achieved in 85% of patients with VSL#3 and in 6% of patients with placebo. Remission (PDAI, pouchitis disease activity index) ≤ 2 + endoscopic PDAI ≤ 1. | [91] |
Active UC—pediatric study | VSL#3 (L. paracasei, L. plantarum, L. acidophilus, L. delbrueckii subsp. bulgaricus, B. longum, B. breve, B. infantis, Streptococcus thermophilus) | Probiotics + 5-ASA vs.placebo + 5-ASA, in both groups + steroid induction | Clinical remission was achieved in 92.8% in the VSL#3 group and 36.4% in the placebo group. Relapse within 6 months of diagnosis occurred in 3 patients in the VSL#3 group and in 6 patients in the placebo group. Endoscopic and histological scores decreased more in the VSL#3 group than in the placebo group. | [92] |
Mild to moderate active UC | VSL#3 (L. paracasei, L. plantarum, L. acidophilus, L. delbrueckii subsp. bulgaricus, B. longum, B. breve, B. infantis, Streptococcus thermophilus) | Probiotics vs. placebo | Improvement in UCDAI scores and individual symptomsoccuredat weeks 6 and 12 in the VSL#3 group compared to the placebo group. The number of patients who achieved remission in the VSL#3 group was 42.9% and in the placebo group was 18.6%. | [93] |
Mild to moderate active UC | VSL#3 (L. paracasei, L. plantarum, L. acidophilus, L. delbruecki subsp. bulgaricus, B. longum, B. breve, B. infantis, Streptococcus thermophilus) | Probiotics vs. placebo | In the VSL#3 group, dendritic cell TLR-2 expression was reduced, the IL-10 level was increased, and IL-12p40 was decreased. Treatment of UC patients with VSL#3 favorably modulated dendritic cells, increased regulatory cytokines, and decreased pro-inflammatory cytokines and TLR expression. | [94] |
UC in remission | Lactobacillus GG | Probiotics vs. mesalazine vs. probiotics + mesalazine | Clinical remission after 6 months of treatment was 91% in the LGG group, 87% in the mesalazine group, and 94% in the combination group. Clinical relapse rate was not significant among the three groups. Endoscopic relapse rates were not statistically significant in the three groups but increased slightly after 6 and 12 months of treatment. | [95] |
6. Randomized Clinical Trials on the Use of Probiotics in Crohn’s Disease
Disease Characteristics | Probiotics | Compared Groups | Results | Ref. |
---|---|---|---|---|
CD in remission | Saccharomyces boulardii | Probiotics + mesalazine vs. mesalazine | Clinical relapses as assessed by CDAI > 150 points occurred in 37% of patients in the mesalazine group and in 6.25% of patients treated with the combination of mesalazine and probiotics. | [96] |
CD in remission | Saccharomyces boulardii | Probiotics vs. placebo | In patients with S. boulardii, intestinal permeability improved according to a reduction of the lactulose/mannitol ratio. In the placebo group, the lactulose/mannitol ratio increased. | [97] |
CD in remission | Saccharomyces boulardii | Probiotics vs. placebo | CD relapse was 47.5% in the S. boulardii group and 53.2% in the placebo group. Crohn’s disease activity index (CDAI) was not different between the groups. S. boulardii is safe but has no beneficial effects on CD patients in remission after steroid or salicylate therapies. | [98] |
Active CD | Bifid Triple Viable (BTV, Enterococcus faecalis, Bifidobacterium longum, L. acidophilus) | Probiotics + glucorcorticoids + sulfasalazine vs. sulfasalazine | Levels of inflammatory markers (CRP, TNF-α, IL-10) were lower in the treatment group than in the control group (p < 0.01). In both groups, levels of Lactobailli were increased, and Enterococci with Peptococcus decreased. Probiotics with glucorticoids reduced the incidence of infection, abdominal distension, diarrhea, and other side effects. | [99] |
CD after ileo-caecal resection | VSL#3 (L. paracasei, L. plantarum, L. acidophilus, L. delbruecki subsp. bulgaricus, B. longum, B. breve, B. infantis, Streptococcus thermophilus) | Probiotics vs. placebo | Patients in the VSL#3 group had reduced levels of inflammatory cytokine compared to the placebo group (p < 0.05). Major recurrencea rates at day 90 was 20.5% and 42.1% in the VSL#3 group at 365 days. | [100] |
Remission of colonic CD | E. coli Nissle 1917 | Probiotics vs. placebo | Clinical relapses were assessed by CDAI > 150 points. The application of E. coli Nissle 1917 reduced the risk of relapse and minimized the need for glucocorticoids. | [101] |
CD after ileo-caecal resection | Lactobacillus johnsonii LA1 | Probiotics vs. placebo | Endoscopic recurrence was 64% in the placebo group and 49% in the LA1 group at 6 mo. The distribution of the endoscopic score did not differ between groups, and LA1 did not have a sufficient effect. | [102] |
CD after ileo-caecal resection | Lactobacillus johnsonii LA1 | Probiotics vs. placebo | Severe recurrence (i3 + i4) was 21% in the LA1 group and 15% in the placebo group using ITT analysis, and according to PP analysis, it was 19% in the LA1 group and 9% in the placebo group. Clinical relapse rate (CDAI) > 70 points was 15% in the LA1 group and 13.5% in placebo group. | [103] |
CD in remission-pediatric study | Lactobacillus rhamnosus GG | Probiotics vs. placebo | Relapse (PCDAI > 30 points) was 31% in the LGG group and 17% in the placebo group. LGG as a supplement did not prolong the time to relapse in children with CD. | [104] |
CD in remission | Lactobacillus rhamnosus GG | Probiotics vs. placebo | Relapse was defined as an increase in CDAI > 100 points. Time to relapse was 16 weeks in LGG the group and 12 weeks in the placebo group. LGG had shown no benefit in inducing or maintaining remission in CD. | [105] |
CD after ileo-caecal resection | Lactobacillus rhamnosus GG | Probiotics vs. placebo | Clinical recurrence (CDAI >150 points) was 16.6% in the LGG group and 10.5% in the placebo group. Endoscopic recurrence occurred in 60% in the LGG group and in the 35.3% in the placebo group. LGG dis not prevent endoscopic recurrence. | [106] |
7. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lee, M.; Chang, E.B. Inflammatory bowel diseases (IBD) and the microbiome-searching the crime scene for clues. Gastroenterology 2021, 160, 524–537. [Google Scholar] [CrossRef]
- Dharmasiri, S.; Garrido-Martin, E.M.; Harris, R.J.; Bateman, A.C.; Collins, J.E.; Fraser Cummings, J.R.; Sanchez-Elsner, T. Human intestinal macrophages are involved in the pathology of both ulcerative colitis and Crohn disease. Inflamm. Bowel Dis. 2021, 27, 1641–1652. [Google Scholar] [CrossRef]
- Dvornikova, K.A.; Platonova, O.N.; Bystrova, E.Y. Inflammatory Bowel Disease: Crosstalk between Histamine, Immunity, and Disease. Int. J. Mol. Sci. 2023, 24, 9937. [Google Scholar] [CrossRef]
- Mak, W.Y.; Zhao, M.; Ng, S.C.; Burisch, J. The epidemiology of inflammatory bowel disease: East meets west. J. Gastroenterol. Hepatol. 2020, 35, 380–389. [Google Scholar] [CrossRef] [PubMed]
- El Menyiy, N.; El Allam, A.; Aboulaghras, S.; Jaouadi, I.; Bakrim, S.; El Omari, N.; Shariati, A.; Miftakhutdinov, A.; Wilairatana, P.; Mubarak, M.S.; et al. Inflammatory auto-immune diseases of the intestine and their management by natural bioactive compounds. Biomed. Pharmacother. 2022, 151, 113158. [Google Scholar] [CrossRef] [PubMed]
- Nishida, A.; Nishino, K.; Sakai, K.; Owaki, Y.; Noda, Y.; Imaeda, H. Can control of gut microbiota be a fu-ture therapeutic option for inflammatory bowel disease? World J. Gastroenterol. 2021, 27, 3317–3326. [Google Scholar] [CrossRef] [PubMed]
- Darb Emamie, A.; Rajabpour, M.; Ghanavati, R.; Asadolahi, P.; Farzi, S.; Sobouti, B.; Darbandi, A. The effects of probiotics, prebiotics and synbiotics on the reduction of IBD complications, a periodic review during 2009–2020. J. Appl. Microbiol. 2021, 130, 1823–1838. [Google Scholar] [CrossRef]
- Roy, S.; Dhaneshwar, S. Role of prebiotics, probiotics, and synbiotics in management of inflammatory bowel disease: Current perspectives. World J. Gastroenterol. 2023, 29, 2078–2100, Correction in World J. Gastroenterol. 2023, 29, 5178–5179. [Google Scholar] [CrossRef]
- Mazziotta, C.; Tognon, M.; Martini, F.; Torreggiani, E.; Rotondo, J.C. Probiotics mechanism of action on immune cells and beneficial effects on human health. Cells 2023, 12, 184. [Google Scholar] [CrossRef]
- Ungaro, R.; Mehandru, S.; Allen, P.B.; Peyrin-Biroulet, L.; Colombel, J.F. Ulcerative Colitis. Lancet 2017, 389, 1756–1770. [Google Scholar] [CrossRef]
- Torres, J.; Mehandru, S.; Colombel, J.F.; Peyrin-Biroulet, L. Crohn’s Disease. Lancet 2017, 389, 1741–1755. [Google Scholar] [CrossRef] [PubMed]
- Ouahed, J.; Spencer, E.; Kotlarz, D.; Shouval, D.S.; Kowalik, M.; Peng, K.; Field, M.; Grushkin-Lerner, L.; Pai, S.Y.; Bousvaros, A.; et al. Very early onset inflammatory bowel disease: A clinical approach with a focus on the role of genetics and underlying immune deficiencies. Inflamm. Bowel Dis. 2020, 26, 820–842. [Google Scholar] [CrossRef]
- Balestrieri, P.; Ribolsi, M.; Guarino, M.P.L.; Emerenziani, S.; Altomare, A.; Cicala, M. Nutritional aspects in inflammatory bowel diseases. Nutrients 2020, 12, 372. [Google Scholar] [CrossRef]
- Humbel, F.; Rieder, J.H.; Franc, Y.; Juillerat, P.; Scharl, M.; Misselwitz, B.; Schreiner, P.; Begré, S.; Rogler, G.; Känel, R.; et al. Association of Alterations in intestinal microbiota with impaired psychological function in patients with inflammatory bowel diseases in remission. Clin. Gastroenterol. Hepatol. 2020, 18, 2019–2029.e11. [Google Scholar] [CrossRef]
- Kazmierczak-Siedlecka, K.; Roviello, G.; Catalano, M.; Polom, K. Gut microbiota modulation in the context of immune-related aspects of Lactobacillus spp. and Bifidobacterium spp. in gastrointestinal cancers. Nutrients 2021, 13, 2674. [Google Scholar] [CrossRef] [PubMed]
- Nishida, A.; Inoue, R.; Inatomi, O.; Bamba, S.; Naito, Y.; Andoh, A. Gut microbiota in the pathogenesis of inflammatory bowel disease. Clin, J. Gastroenterol. 2018, 11, 1–10. [Google Scholar] [CrossRef]
- Qiu, P.; Ishimoto, T.; Fu, L.; Zhang, J.; Zhang, Z.; Liu, Y. The gut microbiota in inflammatory bowel disease. Front. Cell. Infect. Microbiol. 2022, 12, 733992. [Google Scholar] [CrossRef]
- Lu, Q.; Yang, M.F.; Liang, Y.J.; Xu, J.; Xu, H.M.; Nie, Y.Q.; Wang, L.S.; Yao, J.; Li, D.F. Immunology of inflammatory bowel disease: Molecular mechanisms and therapeutics. J. Inflamm. Res. 2022, 15, 1825–1844. [Google Scholar] [CrossRef]
- Zhang, L.; Liu, F.; Xue, J.; Lee, S.A.; Liu, L.; Riordan, S.M. Bacterial species associated with human inflammatory bowel disease and their pathogenic mechanisms. Front. Microbiol. 2022, 13, 801892. [Google Scholar] [CrossRef]
- Liu, W.; Zhang, Y.; Qiu, B.; Fan, S.; Ding, H.; Liu, Z. Quinoa whole grain diet compromises the changes of gut microbiota and colonic colitis induced by dextran sulfate sodium in C57BL/6 mice. Sci. Rep. 2018, 8, 14916. [Google Scholar] [CrossRef] [PubMed]
- Ramos, G.P.; Papadakis, K.A. Mechanisms of disease: Inflammatory bowel diseases. Mayo Clin. Proc. 2019, 94, 155–165. [Google Scholar] [CrossRef] [PubMed]
- Younis, N.; Zarif, R.; Mahfouz, R. Inflammatory bowel disease: Between genetics and microbiota. Mol. Biol. Rep. 2020, 47, 3053–3063. [Google Scholar] [CrossRef]
- Manzanillo, P.; Mouchess, M.; Ota, N.; Dai, B.; Ichikawa, R.; Wuster, A.; Haley, B.; Alvarado, G.; Kwon, Y.; Caothien, R.; et al. Inflammatory Bowel Disease Susceptibility Gene C1ORF106 Regulates Intestinal Epithelial Permeability. ImmunoHorizons 2018, 2, 164–171. [Google Scholar] [CrossRef]
- Saez, A.; Herrero-Fernandez, B.; Gomez-Bris, R.; Sánchez-Martinez, H.; Gonzalez-Granado, J.M. Pathophysiology of Inflammatory Bowel Disease: Innate Immune System. Int. J. Mol. Sci. 2023, 24, 1526. [Google Scholar] [CrossRef]
- Edelblum, K.L.; Turner, J.R. The Tight Junction in Inflammatory Disease: Communication Breakdown. Curr. Opin. Pharmacol. 2009, 9, 715–720. [Google Scholar] [CrossRef]
- Schreiner, P.; Neurath, M.F.; Ng, S.C.; El-Omar, E.M.; Sharara, A.I.; Kobayashi, T.; Hisamatsu, T.; Hibi, T.; Rogler, G. Mechanism-Based Treatment Strategies for IBD: Cytokines, Cell Adhesion Molecules, JAK Inhibitors, Gut Flora, and More. Inflamm. Intest. Dis. 2019, 4, 79–96. [Google Scholar] [CrossRef] [PubMed]
- Carlsson, A.H.; Yakymenko, O.; Olivier, I.; Håkansson, F.; Postma, E.; Keita, A.V.; Söderholm, J.D. Faecalibacterium prausnitzii Supernatant Improves Intestinal Barrier Function in Mice DSS Colitis. Scand. J. Gastroenterol. 2013, 48, 1136–1144. [Google Scholar] [CrossRef] [PubMed]
- Yan, J.B.; Luo, M.M.; Chen, Z.Y.; He, B.H. The Function and Role of the Th17/Treg Cell Balance in Inflammatory Bowel Disease. J. Immunol. Res. 2020, 2020, 8813558. [Google Scholar] [CrossRef]
- Aschenbrenner, D.; Quaranta, M.; Banerjee, S.; Ilott, N.; Jansen, J.; Steere, B.; Chen, Y.H.; Ho, S.; Cox, K.; Arancbia-Cárcamo, C.V.; et al. Deconvolution of monocyte responses in inflammatory bowel disease reveals an IL-1 cytokine network that regulates IL-23 in genetic and acquired IL-10 resistance. Gut 2021, 70, 1023–1036. [Google Scholar] [CrossRef]
- Agraib, L.M.; Yamani, M.I.; Tayyem, R.; Abu-Sneineh, A.T.; Rayyan, Y.M. Probiotic supplementation induces remission and changes in the immunoglobulins and inflammatory response in active ulcerative colitis patients: A pilot, randomized, double-blind, placebo-controlled study. Clin. Nutr. ESPEN 2022, 51, 83–91. [Google Scholar] [CrossRef]
- Liu, X.J.; Yu, R.; Zou, K.F. Probiotic mixture VSL# 3 alleviates dextran sulfate sodium-induced colitis in mice by downregulating T follicular helper cells. Curr. Med. Sci. 2019, 39, 371–378. [Google Scholar] [CrossRef] [PubMed]
- Duan, L.; Cheng, S.; Li, L.; Liu, Y.; Wang, D.; Liu, G. Natural anti-inflammatory compounds as drug candidates for inflammatory bowel disease. Front. Pharmacol. 2021, 12, 684486. [Google Scholar] [CrossRef]
- Jakubczyk, D.; Leszczynska, K.; Gorska, S. The effectiveness of probiotics in the treatment of inflammatory bowel disease (IBD)—A Critical Review. Nutrients 2020, 12, 1973. [Google Scholar] [CrossRef]
- Bernstein, C.N. Antibiotics, probiotics and prebiotics in IBD. Nestle Nutr. Inst. Workshop Ser. 2014, 79, 83–100. [Google Scholar] [CrossRef]
- Ooijevaar, R.E.; Terveer, E.M.; Verspaget, H.W.; Kuijper, E.J.; Keller, J.J. Clinical application and potential of fecal microbiota transplantation. Annu. Rev. Med. 2019, 70, 335–351. [Google Scholar] [CrossRef] [PubMed]
- Malinowski, B.; Wicinski, M.; Sokolowska, M.M.; Hill, N.A.; Szambelan, M. The rundown of dietary supplements and their effects on inflammatory bowel disease-a review. Nutrients 2020, 12, 1423. [Google Scholar] [CrossRef]
- Hill, C.; Guarner, F.; Reid, G.; Gibson, G.R.; Merenstein, D.J.; Pot, B.; Morelli, L.; Canani, R.B.; Flint, H.J.; Salminen, S.; et al. Expert consensus document. The International Scientific Association for Probiotics and Prebiotics consensus statement on the scope and appropriate use of the term probiotic. Nat. Rev. Gastroenterol. Hepatol. 2014, 11, 506–514. [Google Scholar] [CrossRef] [PubMed]
- Cordina, C.; Shaikh, I.; Shrestha, S.; Camilleri-Brennan, J. Probiotics in the management of gastrointestinal disease: Analysis of the attitudes and prescribing practices of gastroenterologists and surgeons. J. Dig. Dis. 2011, 12, 489–496. [Google Scholar] [CrossRef]
- Cheifetz, A.S.; Gianotti, R.; Luber, R.; Gibson, P.R. Complementary and alternative medicines used by patients with inflammatory bowel diseases. Gastroenterology 2017, 152, 415–429. [Google Scholar] [CrossRef]
- Khan, I.; Ullah, N.; Zha, L.; Bai, Y.; Khan, A.; Zhao, T.; Che, T.; Zhang, C. Alteration of gut microbiota in inflammatory bowel disease (IBD): Cause or consequence? IBD treatment targeting the gut microbiome. Pathogens 2019, 8, 126. [Google Scholar] [CrossRef]
- Xia, B.; Liu, X.; Li, Z.; Ren, J.; Xuebo, L. The effects of microbiota-targeted approaches in inflammatory bowel disease: Probiotics, probiotic foods, and prebiotics. Curr. Opin. Food Sci. 2023, 49, 10095. [Google Scholar] [CrossRef]
- Lal, S.; Kandiyal, B.; Ahuja, V.; Takeda, K.; Das, B. Gut microbiome dysbiosis in inflammatory bowel disease. Prog. Mol. Biol. Transl. Sci. 2022, 192, 179–204. [Google Scholar] [CrossRef]
- Celiberto, L.S.; Graef, F.A.; Healey, G.R.; Bosman, E.S.; Jacobson, K.; Sly, L.M.; Vallance, B.A. Inflammatory bowel disease and immunonutrition: Novel therapeutic approaches through modulation of diet and the gut microbiome. Immunology 2018, 155, 36–52. [Google Scholar] [CrossRef]
- Hiippala, K.; Jouhten, H.; Ronkainen, A.; Hartikainen, A.; Kainulainen, V.; Jalanka, J.; Satokari, R. The potential of gut commensals in reinforcing intestinal barrier function and alleviating inflammation. Nutrients 2018, 10, 988. [Google Scholar] [CrossRef] [PubMed]
- Akhtar, M.; Chen, Y.; Ma, Z.; Zhang, X.; Shi, D.; Khan, J.A.; Liu, H. Gut microbiota-derived short chain fatty acids are potential mediators in gut inflammation. Anim. Nutr. 2022, 8, 350–360. [Google Scholar] [CrossRef] [PubMed]
- Gao, C.; Major, A.; Rendon, D.; Lugo, M.; Jackson, V.; Shi, Z.; Mori-Akiyama, Y.; Versalovic, J. Histamine H2 receptor-mediated suppression of intestinal inflammation by probiotic Lactobacillus reuteri. mBio 2015, 6, e01358-15. [Google Scholar] [CrossRef]
- Kung, H.F.; Lee, Y.C.; Huang, Y.L.; Huang, Y.R.; Su, Y.C.; Tsai, Y.H. Degradation of histamine by Lactobacillus plantarum isolated from miso products. J. Food Prot. 2017, 80, 1682–1688. [Google Scholar] [CrossRef]
- O’Mahony, L.; Akdis, M.; Akdis, C.A. Regulation of the immune response and inflammation by histamine and histamine receptors. J. Allergy Clin. Immunol. 2011, 128, 1153–1162. [Google Scholar] [CrossRef] [PubMed]
- Cristofori, F.; Dargenio, V.N.; Dargenio, C.; Miniello, V.L.; Barone, M.; Francavilla, R. Anti-inflammatory and immunomodulatory effects of probiotics in gut inflammation: A door to the body. Front. Immunol. 2021, 12, 578386. [Google Scholar] [CrossRef]
- Xu, H.; Ma, C.; Zhao, F.; Chen, P.; Liu, Y.; Sun, Z.; Cui, L.; Kwok, L.Y.; Zhang, H. Adjunctive treatment with probiotics partially alleviates symptoms and reduces inflammation in patients with irritable bowel syndrome. Eur. J. Nutr. 2021, 60, 2553–2565. [Google Scholar] [CrossRef]
- Trakman, G.L.; Fehity, S.; Basnayake, C.; Hamilton, A.L.; Russell, E.; Wilson-O’Brien, A.; Kamm, M.A. Diet and gut microbiome in gastro-intestinal disease. J. Gastroenterol. Hepatol. 2022, 37, 237–245. [Google Scholar] [CrossRef]
- Abraham, B.P.; Quigley, E.M.M. Probiotics in inflammatory bowel disease. Gastroenterol. Clin. N. Am. 2017, 46, 769–782. [Google Scholar] [CrossRef]
- Glassner, K.L.; Abraham, B.P.; Quigley, E.M.M. The microbiome and inflammatory bowel disease. J. Allergy Clin. Immunol. 2020, 145, 16–27. [Google Scholar] [CrossRef] [PubMed]
- Mishra, J.; Stubbs, M.; Kuang, L.; Vara, N.; Kumar, P.; Kumar, N. Inflammatory Bowel Disease Therapeutics: A Focus on Probiotic Engineering. Mediat. Inflamm. 2022, 2022, 9621668. [Google Scholar] [CrossRef] [PubMed]
- Alhubail, M.; McBain, A.J.; O’Neill, C.A. A survey of multiple candidate probiotic bacteria reveals specificity in the ability to modify the effects of key wound pathogens. Appl. Ind. Microbiol. 2024, 12, e00347-24. [Google Scholar] [CrossRef]
- Hijová, E.; Bertková, I.; Štofilová, J.; Strojný, L.; Chmelárová, A.; Bomba, A. Anti-inflammtory potential of Lactobacillus plantarum LS-07 in acute colitis in rats. AVB 2018, 68, 55–64. [Google Scholar] [CrossRef]
- Canfora, E.E.; Jocken, J.W.; Blaak, E.E. Short-chain fatty acids in control of body weight and insulin sensitivity. Nat. Rev. Endocrinol. 2015, 11, 577–591. [Google Scholar] [CrossRef]
- Guandalini, S.; Sansotta, N. Probiotics in the Treatment of Inflammatory Bowel Disease. Adv. Exp. Med. Biol. 2019, 1125, 101–107. [Google Scholar] [CrossRef] [PubMed]
- Celiberto, L.S.; Bedani, R.; Rossi, E.A.; Cavallini, D.C. Probiotics: The scientific evidence in the context of inflammatory bowel disease. Crit. Rev. Food Sci. Nutr. 2017, 57, 1759–1768. [Google Scholar] [CrossRef]
- Shida, K.; Kiyoshima-Shibata, J.; Kaji, R.; Nagaoka, M.; Nanno, M. Peptidoglycan from lactobacilli inhibits interleukin-12 production by macrophages induced by Lactobacillus casei through Toll-like receptor 2-dependent and independent mechanisms. Immunology 2009, 128, e858–e869. [Google Scholar] [CrossRef]
- Karczewski, J.; Troost, F.J.; Konings, I.; Dekker, J.; Kleerebezem, M.; Brummer, R.J.M.; Wells, J.M. Regulation of human epithelial tight junction proteins by Lactobacillus plantarum in vivo and protective effects on the epithelial barrier. Am. J. Physiol. Gastrointest. Liver Physiol. 2010, 298, G851–G859. [Google Scholar] [CrossRef]
- Park, S.K.; Kang, S.B.; Kim, S.S.; Kim, T.O.; Cha, J.M.; Im, J.P.; Choi, C.H.; Kim, E.S.; Seo, G.S.; Eun, C.S.; et al. Additive effect of probiotics (Mutaflor) on 5-aminosalicylic acid therapy in patients with ulcerative colitis. Korean J. Intern. Med. 2022, 37, 949–957. [Google Scholar] [CrossRef]
- Petersen, A.M.; Mirsepasi, H.; Halkjar, S.I.; Mortensen, E.M.; Nordgaard-Lassen, I.; Krogfelt, K.A. Ciprofloxacin and probiotic Escherichia coli Nissle add-on treatment in active ulcerative colitis: A double-blind randomized placebo controlled clinical trial. J. Crohns Colitis 2014, 8, 1498–1505. [Google Scholar] [CrossRef]
- Matthes, H.; Krummenerl, T.; Giensch, M.; Wolff, C.; Schulze, J. Clinical trial: Probiotic treatment of acute distal ulcerative colitis with rectally administered Escherichia coli Nissle 1917 (EcN). BMC Complement. Altern. Med. 2010, 10, 13. [Google Scholar] [CrossRef]
- Rembacken, B.J.; Snelling, A.M.; Hawkey, P.M.; Chalmers, D.M.; Axon, A.T. Non-pathogenic Escherichia coli versus mesalazine for the treatment of ulcerative colitis: A randomised trial. Lancet 1999, 354, 635–639. [Google Scholar] [CrossRef]
- Kruis, W.; Schutz, E.; Fric, P.; Fixa, B.; Judmaier, G.; Stolte, M. Double-blind comparison of an oral Escherichia coli preparation and mesalazine in maintaining remission of ulcerative colitis. Aliment. Pharmacol. Ther. 1997, 11, 853–858. [Google Scholar] [CrossRef]
- Kruis, W.; Fric, P.; Pokrotnieks, J.; Lukás, M.; Fixa, B.; Kascák, M.; Kamm, M.A.; Weismueller, J.; Beglinger, C.; Stolte, M.; et al. Maintaining remission of ulcerative colitis with the probiotic Escherichia coli Nissle 1917 is as effective as with standard mesalazine. Gut 2004, 53, 1617–1623. [Google Scholar] [CrossRef] [PubMed]
- Henker, J.; Muller, S.; Laass, M.W.; Schreiner, A.; Schulze, J. Probiotic Escherichia coli Nissle 1917 (EcN) for successful remission maintenance of ulcerative colitis in children and adolescents: An openlabel pilot study. Z. Gastroenterol. 2008, 46, 874–875. [Google Scholar] [CrossRef]
- Rayyan, Y.M.; Agraib, L.M.; Alkhatib, B.; Yamani, M.I.; Abu-Sneineh, A.T.; Tayyern, R.F. Does probiotic supplementation improve quality of life in mild-to-moderate active ulcerative colitis patients in Jordan? A secondary outcome of the randomized, double-blind, placebo-controlled study. Eur. J. Nutr. 2023, 62, 3069–3077. [Google Scholar] [CrossRef] [PubMed]
- Amiriani, T.; Rajabli, N.; Faghani, M.; Besharat, S.; Roshandel, G.; Tabib, A.A.; Joshaghani, H. Effect of Lactocare® synbiotic on disease severity in ulcerative colitis: A randomized placebo-controlled double-blind clinical trial. Middle East J. Dig. Dis. 2020, 12, 27–33. [Google Scholar] [CrossRef]
- Fan, H.; Du, J.; Liu, X.; Zheng, W.W.; Zhuang, Z.H.; Wang, C.D.; Gao, R. Effects of pentasa-combined probiotics on the microflora structure and prognosis of patients with inflammatory bowel disease. Turk. J. Gastroenterol. 2019, 30, 680–685. [Google Scholar] [CrossRef]
- Sanchez-Morales, A.; Perez-Ayala, M.F.; Cruz-Martinez, M.; Arenas-Osuna, J.; Ramirez-Mendoza, P.; Ceniceros, R.A.; Mora-Caňas, E.M.; Cruz-Moninguez, P.; Saavedra-Salinas, M.A. Probiotics’ effectiveness on symptoms, histological features and feeding tolerance in ulcerative colitis. Rev. Med. Inst. Mex. Seguro Soc. 2019, 57, 9–14. [Google Scholar]
- Bjarnason, I.; Sission, G.; Hayee, B. A randomised, double-blind, placebo-controlled trial of a multi-strain probiotic in patients with asymptomatic ulcerative colitis and Crohn’s disease. Inflammopharmacology 2019, 27, 465–473. [Google Scholar] [CrossRef]
- Li, G.; Zeng, S.; Liao, W.; Lv, N. The effect of bifid triple viable on immune function of patients with ulcerative colitis. Gastroenterol. Res. Pract. 2012, 2012, ID404752. [Google Scholar] [CrossRef][Green Version]
- Cui, H.H.; Chen, C.L.; Wang, J.D.; Yang, Y.J.; Cun, Y.; Wu, J.B.; Liu, Y.H.; Dan, H.L.; Jian, Y.T.; Chen, X.Q. Effects of probiotic on intestinal mucosa of patients with ulcerative colitis. World J. Gastroenterol. 2004, 10, 1521–1525. [Google Scholar] [CrossRef]
- Huang, M.; Chen, Z.; Lang, C.; Chen, J.; Yang, B.; Xue, L.; Zhang, Y. Efficacy of mesalazine in combination with bifid triple viable capsules on ulcerative colitis and the resultant effect on the inflammatory factors. Pak. J. Pharm. Sci. 2019, 31, 2891–2895. [Google Scholar]
- Kato, K.; Mizuno, S.; Umesaki, Y.; Ishii, Y.; Sugitani, M.; Imaoka, A.; Olsuka, M.; Hasunuma, O.; Kurihara, R.; Iwasaki, A.; et al. Randomized placebo-controlled trial assessing the effect of bifidobacteria-fermented milk on active ulcerative colitis. Aliment. Pharmacol. Ther. 2004, 20, 1133–1341. [Google Scholar] [CrossRef]
- Matsuoka, K.; Uemura, Y.; Kanai, T.; Kunisaki, R.; Suzuki, Y.; Yokoyama, K.; Yoshimura, N.; Hibi, T. Efficacy of Bifidobacterium breve fermented milk in maintaining remission of ulcerative colitis. Dig. Dis. Sci. 2018, 63, 1910–1919. [Google Scholar] [CrossRef]
- Vejdani, R.; Bahari, A.; Zadeh, A.M.; Azmi, M.; Ebrahimi-Daryani, M.; Hashtroudi, A.A.; Mehr, A.J.; Abdollahi, M.; Sayyah, A.; Zali, M.R.; et al. Effects of Lactobacillus casei probiotic on mild to moderate ulcerative colitis: A placebo controlled study. Indian J. Med. Sci. 2017, 69, 24–28. [Google Scholar] [CrossRef]
- Tamaki, H.; Nakase, H.; Inoue, S.; Kawanami, C.; Itani, T.; Ohana, M.; Kusaka, T.; Uose, S.; Hisatsune, H.; Tojo, M.; et al. Efficacy of probiotic treatment with Bifidobacterium longum 536 for induction of remission in active ulcerative colitis: A randomized, double-blinded, placebo-controlled multicenter trial. Dig. Endosc. 2016, 28, 67–74. [Google Scholar] [CrossRef]
- Palumbo, V.D.; Romeo, M.; Marino Gammazza, A.; Carini, F.; Damiani, P.; Damiano, G.; Buscerni, S.; Lo Monte, A.I.; Gerges-Geagea, A.; Jurjus, A.; et al. The long-term effects of probiotics in the therapy of ulcerative colitis: A clinical study. Biomed. Pap. Med. Fac. Univ. Palacky 2016, 160, 372–377. [Google Scholar] [CrossRef]
- Yoshimatsu, Y.; Yamada, A.; Furukawa, R.; Sono, K.; Osamura, A.; Nakamura, K.; Aoki, H.; Tsuda, Y.; Hosoe, N.; Takada, N.; et al. Effectiveness of probiotic therapy for the prevention of relapse in patients with inactive ulcerative colitis. World J. Gastroenterol. 2015, 21, 5985–5994. [Google Scholar] [CrossRef]
- Liu, P.; Sun, L.; Zhang, Z.H.; Zhang, P.; Zhang, J. Clinical efficacy of Salofalk combined with beneficial bacteria in patients with ulcerative colitis. World Chin. J. Dig. 2014, 22, 3344–3348. [Google Scholar] [CrossRef]
- Oliva, S.; Di Nardo, G.; Ferrari, F.; Mallardo, S.; Rossi, P.; Patrizi, G.; Cucchiara, S.; Stronati, L. Randomised clinical trial: The effectiveness of Lactobacillus reuteri ATCC 55730 rectal enema in children with active distal ulcerative colitis. Aliment. Pharmacol. Ther. 2012, 35, 327–334. [Google Scholar] [CrossRef]
- Wildt, S.; Nordgaard, I.; Hansen, U.; Brockmann, E.; Rumessen, J.J. A randomised double-blind placebo-controlled trial with Lactobacillus acidophillus La-5 and Bifidobacterium animalis subsp. lactis BB-12 for maintenance of remission in ulcerative colitis. J. Crohns Colitis 2011, 5, 115–121. [Google Scholar] [CrossRef]
- D’Inca, R.; Barollo, M.; Scarpa, M.; Grillo, A.R.; Brun, P.; Vettorato, M.G.; Castagliuolo, I.; Sturniolo, G.C. Rectal administration of lactobacillus casei DG modifies flora composition and toll-like receptor expression in colonic mucosa of patients with mild ulcerative colitis. Dig. Dis. Sci. 2011, 56, 1178–1187. [Google Scholar] [CrossRef]
- Tursi, A.; Brandimarte, G.; Giorgetti, G.M.; Forti, G.; Modeo, M.E.; Gigliobianco, A. Low-dose balsalazide plus a high-potency probiotic preparation is more effective than balsalazide alone or mesalazine in the treatment of acute mild-tomoderate ulcerative colitis. Med. Sci. Monit. 2004, 10, PI126–PI131. [Google Scholar] [PubMed]
- Tursi, A.; Brandimarte, G.; Papa, A.; Giglio, A.; Elisei, W.; Giorgetti, G.M.; Forti, G.; Morini, S.; Hassan, C.; Pistoia, M.A.; et al. Treatment of relapsing mild-to-moderate ulcerative colitis with the probiotic VSL#3 as adjunctive to a standard pharmaceutical treatment: A double-blind, randomized, placebo-controlled study. Am. J. Gastroenterol. 2010, 105, 2218–2227. [Google Scholar] [CrossRef]
- Gionchetti, P.; Rizzello, F.; Venturi, A.; Brigidi, P.; Matteuzzi, D.; Bazzocchi, G.; Poggioli, G.; Miglioli, M.; Campieri, M. Oral bacteriotherapy as maintenance treatment in patients with chronic pouchitis: A double-blind, placebo-controlled trial. Gastroenterology 2000, 119, 305–309. [Google Scholar] [CrossRef]
- Gionchetti, P.; Rizzello, F.; Helwig, U.; Venturi, A.; Lammers, K.M.; Brigidi, P.; Vitali, B.; Poggioli, G.; Miglioli, M.; Campieri, M. Prophylaxis of pouchitis onset with probiotic therapy: A ouble-blind, placebo-controlled trial. Gastroenterology 2003, 124, 1202–1209. [Google Scholar] [CrossRef]
- Mimura, T.; Rizzello, F.; Helwig, U.; Poggioli, G.; Schreiber, S.; Talbot, I.C.; Nicholis, R.J.; Gionchetti, P.; Campieri, M.; Kamm, M.A. Once daily high dose probiotic therapy (VSL#3) for maintaining remission in recurrent or refractory pouchitis. Gut 2004, 53, 108–114. [Google Scholar] [CrossRef]
- Miele, E.; Pascarella, F.; Giannetti, E.; Quaglietta, L.; Baldassano, R.N.; Saiano, A. Effect of a probiotic preparation (VSL#3) on induction and maintenance of remission in children with ulcerative colitis. Am. J. Gastroenterol. 2009, 104, 437–443. [Google Scholar] [CrossRef]
- Sood, A.; Midha, V.; Makharia, G.K.; Ahuja, V.; Singal, D.; Goswami, P.; Tandon, R.K. The Probiotic Preparation, VSL#3 Induces Remission in Patients With Mild-to-Moderately Active Ulcerative Colitis. Clin. Gastroenterol. Hepatol. 2009, 7, 1202–1209.e1. [Google Scholar] [CrossRef]
- Ng, S.C.; Plamondon, S.; Kamm, M.A.; Hart, A.I.; Al-Hassai, H.O.; Guenther, T.; Stagg, A.J.; Knight, S.C. Immunosuppressive effects via human intestinal dendritic cells of probiotic bacteria and steroids in the treatment of acute ulcerative colitis. Inflamm. Bowel Dis. 2010, 16, 1286–1298. [Google Scholar] [CrossRef]
- Zocco, M.A.; dal Verme, L.Z.; Cremonini, F.; Piscaglia, A.C.; Nista, E.C.; Candelli, M.; Novi, M.; Rigante, D.; Cazzato, I.A.; Ojetti, V.; et al. Efficacy of Lactobacillus GG in maitaining remission of ulcerative colitis. Aliment. Pharmacol. Ther. 2006, 23, 1567–1574. [Google Scholar] [CrossRef]
- Guslandi, M.; Mezzi, G.; Sorghi, M.; Testoni, P.A. Saccharomyces boulardii in maintenance treatment of Crohn’s disease. Dig. Dis. Sci. 2000, 5, 1462–1464. [Google Scholar] [CrossRef]
- Garcia Vilela, E.; De Abreu Ferrari, M.D.L.; Da Gama Torres, H.O.; Pinto, A.G.; Aguirre, A.C.C.; Martins, F.P.; Goulart, E.M.A.; Da Cunha, A.S. Influence of Saccharomyces boulardii on the intestinal permeability of patients with Crohn’s disease in remission. Scand. J. Gastroenterol. 2008, 43, 842–848. [Google Scholar] [CrossRef]
- Bourreille, A.; Cadiot, G.; Le Dreau, G.; Laharie, D.; Beaugerie, L.; Dupas, J.L.; Marteau, P.; Rampal, P.; Moyse, D.; Saleh, A.; et al. Saccharomyces boulardii does not prevent relapse of Crohn’s disease. Clin. Gastroenterol. Hepatol. 2013, 11, 982–987. [Google Scholar] [CrossRef]
- Su, H.; Kang, Q.; Wang, H.; Yin, H.; Duan, L.; Liu, Y.; Fan, R. Effects of glucocorticoids combined with probiotics in treating Crohn’s disease on inflammatory factors and intestinal microflora. Exp. Ther. Med. 2018, 16, 2999–3003. [Google Scholar] [CrossRef]
- Fedorak, R.N.; Feagan, B.G.; Hotte, N.; Laddin, D.; Dieleman, L.A.; Petrunia, D.M.; Enns, R.; Bitton, A.; Chiba, N.; Paré, P.; et al. The probiotic VSL#3 has anti-inflammatory effects and could reduce endoscopic recurrence after surgery for Crohn’s disease. Clin. Gastroenterol. Hepatol. 2015, 13, 928–935.e2. [Google Scholar] [CrossRef]
- Malchow, H.A. Crohn’s disease and Escherichia coli. A new approach in therapy to maintain remission of colonic Crohn’s disease? J. Clin. Gastroenterol. 1997, 25, 653–658. [Google Scholar] [CrossRef]
- Marteau, P.; Lemann, M.; Seksik, P.; Laharie, D.; Colombel, J.F.; Bouhnik, Y.; Cadiot, G.; Soulé, J.C.; Bourreille, A.; Metman, E.; et al. Ineffectiveness of Lactobacillus johnsonii LA1 for prophylaxis of postoperative recurrence in Crohn’s disease: A randomised, double blind, placebo controlled GETAID trial. Gut 2006, 55, 842–847. [Google Scholar] [CrossRef]
- Van Gossum, A.; Dewit, O.; Louis, E.; de Hetogh, G.; Baert, F.; Fontaine, F.; DeVos, M.; Enslen, M.; Paintin, M.; Franchimont, D. Multicenter randomized-controlled clinical trial of probiotics (Lactobacillus johnsonii, LA1) on early endoscopic recurrence of Crohn’s disease after lleo-caecal resection. Inflamm. Bowel Dis. 2007, 13, 135–142. [Google Scholar] [CrossRef]
- Bousvaros, A.; Guandalini, S.; Baldassano, R.N.; Botelho, C.; Evans, J.; Ferry, G.D.; Goldin, B.; Hartigan, L.; Kugathasan, S.; Levy, J.; et al. A randomized, double-blind trial of Lactobacillus GG versus placebo in addition to standard maintenance therapy for children with Crohn’s disease. Inflamm. Bowel Dis. 2005, 11, 833–839. [Google Scholar] [CrossRef]
- Schultz, M.; Timmer, A.; Herfarth, H.H.; Sartor, R.B.; Vanderhoof, J.A.; Rath, H.C. Lactobacillus GG in inducing and maintaining remission of Crohn’s disease. BMC Gastroenterol. 2004, 4, 5. [Google Scholar] [CrossRef]
- Prantera, C.; Scribano, M.L.; Falasco, G.; Andreoli, A.; Luzi, C. Ineffectiveness of probiotics in preventing recurrence after curative resection for Crohn’s disease: A randomised controlled trial with Lactobacillus GG. Gut 2002, 51, 405–409. [Google Scholar] [CrossRef]
- Peña-Cearra, A.; Song, D.; Castelo, J.; Palacios, A.; Lavín, J.L.; Azkargorta, M.; Elortza, F.; Fuertes, M.; Pascual-Itoiz, M.A.; Barriales, D.; et al. Mitochondrial dysfunction promotes microbial composition that negatively impacts on ulcerative colitis development and progression. npj Biofilms Microbiomes 2023, 9, 74. [Google Scholar] [CrossRef]
- Kumar Prajapati, S.; Yadav, D.; Katiyar, S.; Jain, S.; Yadav, H. Postbiotics as Mitochondrial Modulators in Inflammatory Bowel Disease: Mechanistic Insights and Therapeutic Potential. Biomolecules 2025, 15, 954. [Google Scholar] [CrossRef]
- Kumar Prapajati, S.; Jain, S.; Yadav, H. Age-Related cognitive decline and dementia: Interface of microbiome-immune-neuronal interactions. J. Gerontol. Ser. A Biol. Sci. Med. Sci. 2025, 80, glaf038. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hijová, E. Probiotics in IBD: Evidence and Perspectives on Patient Health and Disease Management. Int. J. Mol. Sci. 2025, 26, 9065. https://doi.org/10.3390/ijms26189065
Hijová E. Probiotics in IBD: Evidence and Perspectives on Patient Health and Disease Management. International Journal of Molecular Sciences. 2025; 26(18):9065. https://doi.org/10.3390/ijms26189065
Chicago/Turabian StyleHijová, Emília. 2025. "Probiotics in IBD: Evidence and Perspectives on Patient Health and Disease Management" International Journal of Molecular Sciences 26, no. 18: 9065. https://doi.org/10.3390/ijms26189065
APA StyleHijová, E. (2025). Probiotics in IBD: Evidence and Perspectives on Patient Health and Disease Management. International Journal of Molecular Sciences, 26(18), 9065. https://doi.org/10.3390/ijms26189065