Circulating Brain-Related miRNAs as Predictors of Postoperative Delirium in Cardiac Surgery Patients †
Abstract
1. Introduction
2. Results
2.1. Patients’ Characteristics, Univariate and Multivariate Comparisons
2.2. Optimal miRNA Thresholds and Correlations with Other Analyzed Variables
3. Discussion
Limitations
4. Materials and Methods
4.1. Neuropsychiatric Assessment
4.2. Anesthesia
4.3. Surgery
4.4. Laboratory Measurements
4.5. Exosome Isolation
4.6. Isolation and Purification of miRNA
4.7. Expression Profile of miRNA Genes
4.8. cDNA Synthesis and Digital Quantitative PCR
4.9. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Cycling Step | Temperature, °C | Time | Ramp Rate | No of Cycles | |
---|---|---|---|---|---|
miR_96-5p | Enzyme activation | 95 | 10 min | 1 °C/s | 1 |
Enzyme activation | 94 | 30 s | 50 | ||
Annealing/extension | 62.5 | 1 min | 50 | ||
Enzyme deactivation | 98 | 10 min | 1 | ||
Hold | 4 | Infinite | 1 | ||
miR_34c-5p | Enzyme activation | 95 | 10 min | 2.5 °C/s | 1 |
Denaturation | 94 | 30 s | 40 | ||
Annealing/extension | 60 | 1 min | 40 | ||
Enzyme deactivation | 98 | 10 min | 1 | ||
Hold | 4 | Infinite | 1 | ||
miR_9-3p | Enzyme activation | 95 | 10 min | 1 °C/s | 1 |
Denaturation | 94 | 30 s | 50 | ||
Annealing/extension | 62.5 | 1 min | 50 | ||
Enzyme deactivation | 98 | 10 min | 1 | ||
Hold | 4 | Infinite | 1 | ||
miR_183-5p | Enzyme activation | 95 | 10 min | 1 °C/s | 1 |
Denaturation | 94 | 30 s | 50 | ||
Annealing/extension | 62 | 1 min | 50 | ||
Enzyme deactivation | 98 | 10 min | 1 | ||
Hold | 4 | Infinite | 1 | ||
miR_374-3p | Enzyme activation | 95 | 10 min | 2.5 °C/s | 1 |
Denaturation | 94 | 30 s | 40 | ||
Annealing/extension | 60 | 1 min | 40 | ||
Enzyme deactivation | 98 | 10 min | 1 | ||
Hold | 4 | Infinite | 1 |
References
- Al Farsi, R.S.; Al Alawi, A.M.; Al Huraizi, A.R.; Al-Saadi, T.; Al-Hamadani, N.; Al Zeedy, K.; Al-Maqbali, J.S. Delirium in Medically Hospitalized Patients: Prevalence, Recognition and Risk Factors: A Prospective Cohort Study. J. Clin. Med. 2023, 12, 3897. [Google Scholar] [CrossRef]
- Kaźmierski, J.; Miler, P.; Pawlak, A.; Jerczyńska, H.; Nowakowska, K.; Walkiewicz, G.; Woźniak, K.; Krejca, M.; Wilczyński, M. Increased postoperative myeloperoxidase concentration associated with low baseline antioxidant capacity as the risk factor of delirium after cardiac surgery. Ann. Med. 2022, 54, 610–616. [Google Scholar] [CrossRef] [PubMed]
- Vasilevskis, E.E.; Han, J.H.; Hughes, C.G.; Ely, E.W. Epidemiology and risk factors for delirium across hospital settings. Best Pract. Res. Clin. Anaesthesiol. 2012, 26, 277–287. [Google Scholar] [CrossRef]
- Ragheb, J.; McKinney, A.; Zierau, M.; Brooks, J.; Hill-Caruthers, M.; Iskander, M.; Ahmed, Y.; Lobo, R.; Mentz, G.; E Vlisides, P. Delirium and neuropsychological outcomes in critically Ill patients with COVID-19: A cohort study. BMJ Open 2021, 11, e050045. [Google Scholar] [CrossRef]
- Quispel-Aggenbach, D.W.; Zuidema, S.U.; Luijendijk, H.J. The prognosis of delirium in older outpatients. Psychogeriatrics 2024, 24, 329–335. [Google Scholar] [CrossRef] [PubMed]
- Kaźmierski, J.; Miler, P.; Pawlak, A.; Jerczyńska, H.; Woźniak, J.; Frankowska, E.; Brzezińska, A.; Nowakowska, K.; Woźniak, K.; Krejca, M.; et al. Oxidative stress and soluble receptor for advanced glycation end-products play a role in the pathophysiology of delirium after cardiac surgery. Sci. Rep. 2021, 11, 23646. [Google Scholar] [CrossRef]
- Kaźmierski, J.; Miler, P.; Pawlak, A.; Jerczyńska, H.; Woźniak, J.; Frankowska, E.; Brzezińska, A.; Woźniak, K.; Krejca, M.; Wilczyński, M. Elevated Monocyte Chemoattractant Protein-1 as the Independent Risk Factor of Delirium After Cardiac Surgery. A Prospective Cohort Study. J. Clin. Med. 2021, 10, 1587. [Google Scholar] [CrossRef]
- Bartel, D.P. MicroRNAs: Target recognition and regulatory functions. Cell 2009, 136, 215–233. [Google Scholar] [CrossRef]
- Cho, K.H.T.; Xu, B.; Blenkiron, C.; Fraser, M. Emerging Roles of miRNAs in Brain Development and Perinatal Brain Injury. Front. Physiol. 2019, 10, 227. [Google Scholar] [CrossRef]
- Åkerblom, M.; Sachdeva, R.; Quintino, L.; Wettergren, E.E.; Chapman, K.Z.; Manfre, G.; Lindvall, O.; Lundberg, C.; Jakobsson, J. Visualization and genetic modification of resident brain microglia using lentiviral vectors regulated by microRNA-9. Nat. Commun. 2013, 4, 1770. [Google Scholar] [CrossRef]
- Coolen, M.; Katz, S.; Bally-Cuif, L. miR-9: A versatile regulator of neurogenesis. Front. Cell. Neurosci. 2013, 7, 220. [Google Scholar] [CrossRef]
- Zhao, X.; He, X.; Han, X.; Yu, Y.; Ye, F.; Chen, Y.; Hoang, T.; Xu, X.; Mi, Q.-S.; Xin, M.; et al. MicroRNA-mediated control of oligodendrocyte differentiation. Neuron 2010, 65, 612–626. [Google Scholar] [CrossRef]
- Fu, M.; Tao, J.; Wang, D.; Zhang, Z.; Wang, X.; Ji, Y.; Li, Z. Downregulation of MicroRNA-34c-5p facilitated neuroinflammation in drug-resistant epilepsy. Brain Res. 2020, 1749, 147130. [Google Scholar] [CrossRef]
- Tu, Y.; Hu, Y. MiRNA-34c-5p protects against cerebral ischemia/reperfusion injury: Involvement of anti-apoptotic and anti-inflammatory activities. Metab. Brain Dis. 2021, 36, 1341–1351. [Google Scholar] [CrossRef] [PubMed]
- Kinoshita, C.; Kikuchi-Utsumi, K.; Aoyama, K.; Suzuki, R.; Okamoto, Y.; Matsumura, N.; Omata, D.; Maruyama, K.; Nakaki, T. Inhibition of miR-96-5p in the mouse brain increase glutathione levels by altering NOVA1 expression. Commun. Biol. 2021, 4, 182. [Google Scholar] [CrossRef] [PubMed]
- Sim, S.E.; Lim, C.S.; Kim, J.I.; Seo, D.; Chun, H.; Yu, N.K.; Lee, J.; Kang, S.J.; Ko, H.-G.; Choi, J.H.; et al. The Brain-Enriched MicroRNA miR-9-3p Regulates Synaptic Plasticity and Memory. J. Neurosci. 2016, 36, 8641–8652. [Google Scholar] [CrossRef] [PubMed]
- Yoo, A.S.; Sun, A.X.; Li, L.; Shcheglovitov, A.; Portmann, T.; Li, Y.; Lee-Messer, C.; Dolmetsch, R.E.; Tsien, R.W.; Crabtree, G.R. MicroRNA-mediated conversion of human fibroblasts to neurons. Nature 2011, 476, 228–231. [Google Scholar] [CrossRef]
- Packer, A.N.; Xing, Y.; Harper, S.Q.; Jones, L.; Davidson, B.L. The bifunctional microRNA miR-9/miR-9* regulates REST and CoREST and is downregulated in Huntington’s disease. J. Neurosci. 2018, 28, 14341–14346. [Google Scholar] [CrossRef]
- Cogswell, J.P.; Ward, J.; Taylor, I.A.; Waters, M.; Shi, Y.; Cannon, B.; Kelnar, K.; Kemppainen, J.; Brown, D.; Chen, C.; et al. Identification of miRNA changes in Alzheimer’s disease brain and CSF yields putative biomarkers and insights into disease pathways. J. Alzheimer’s Dis. 2008, 14, 27–41. [Google Scholar] [CrossRef]
- Starhof, C.; Hejl, A.; Heegaard, N.H.; Carlsen, A.L.; Burton, M.; Lilje, B.; Winge, K. The biomarker potential of cell-free microRNA from cerebrospinal fluid in Parkinsonian Syndromes. Mov. Disord. 2019, 34, 246–254. [Google Scholar] [CrossRef]
- Das Gupta, S.; Ciszek, R.; Heiskanen, M.; Lapinlampi, N.; Kukkonen, J.; Leinonen, V.; Puhakka, N.; Pitkänen, A. Plasma miR-9-3p and miR-136-3p as Potential Novel Diagnostic Biomarkers for Experimental and Human Mild Traumatic Brain Injury. Int. J. Mol. Sci. 2021, 22, 1563. [Google Scholar] [CrossRef]
- Wang, P.; Ma, H.; Zhang, Y.; Zeng, R.; Yu, J.; Liu, R.; Jin, X.; Zhao, Y. Plasma Exosome-Derived MicroRNAs as Novel Biomarkers of Traumatic Brain Injury in Rats. Int. J. Med. Sci. 2020, 17, 437–448. [Google Scholar] [CrossRef] [PubMed]
- Wang, B.; Yin, Z.; Lin, Y.; Deng, X.; Liu, F.; Tao, H.; Dong, R.; Lin, X.; Bi, Y. Correlation between microRNA-320 and postoperative delirium in patients undergoing tibial fracture internal fixation surgery. BMC Anesthesiol. 2022, 22, 75. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Zheng, J.; Chen, J. Preoperative Circulating MiR-210, a Risk Factor for Postoperative Delirium Among Elderly Patients with Gastric Cancer Undergoing Curative Resection. Curr. Pharm. Des. 2020, 26, 5213–5219. [Google Scholar] [CrossRef] [PubMed]
- Song, J.; Hu, Y.; Li, H.; Huang, X.; Zheng, H.; Hu, Y.; Wang, J.; Jiang, X.; Li, J.; Yang, Z.; et al. miR-1303 regulates BBB permeability and promotes CNS lesions following CA16 infections by directly targeting MMP9. Emerg. Microbes Infect. 2018, 7, 155. [Google Scholar] [CrossRef]
- Zhu, L.; Zhou, X.; Li, S.; Liu, J.; Yang, J.; Fan, X.; Zhou, S. miR-183-5p attenuates cerebral ischemia injury by negatively regulating PTEN. Mol. Med. Rep. 2020, 22, 3944–3954. [Google Scholar] [CrossRef]
- Mao, S.; Zhao, J.; Zhang, Z.-J.; Zhao, Q. MiR-183-5p overexpression in bone mesenchymal stem cell-derived exosomes protects against myocardial ischemia/reperfusion injury by targeting FOXO1. Immunobiology 2022, 227, 152204. [Google Scholar] [CrossRef]
- Roser, A.E.; Gomes, L.C.; Halder, R.; Jain, G.; Maass, F.; Tönges, L.; Tatenhorst, L.; Bähr, M.; Fischer, A.; Lingor, P.; et al. miR-182-5p and miR-183-5p Act as GDNF Mimics in Dopaminergic Midbrain Neurons. Mol. Ther. Nucleic Acids. 2018, 11, 9–22. [Google Scholar] [CrossRef]
- Kim, J.H.; Choi, J.S.; Lee, B.H. PI3K/Akt and MAPK pathways evoke activation of FoxO transcription factor to undergo neuronal apoptosis in brain of the silkworm Bombyx mori (Lepidoptera: Bombycidae). Cell. Mol. Biol. 2012, 10 (Suppl. 58), OL1780–OL1785. [Google Scholar]
- Ding, H.; Jia, Y.; Lv, H.; Chang, W.; Liu, F.; Wang, D. Extracellular vesicles derived from bone marrow mesenchymal stem cells alleviate neuroinflammation after diabetic intracerebral hemorrhage via the miR-183-5p/PDCD4/NLRP3 pathway. J. Endocrinol. Investig. 2021, 44, 2685–2698. [Google Scholar] [CrossRef]
- Zhou, Y.; Xiao, S.; Li, C.; Chen, Z.; Zhu, C.; Zhou, Q.; Ou, J.; Li, J.; Chen, Y.; Luo, C.; et al. Extracellular Vesicle-Encapsulated miR-183-5p from Rhynchophylline-Treated H9c2 Cells Protect against Methamphetamine-Induced Dependence in Mouse Brain by Targeting NRG1. Evid. Based Complement. Altern. Med. 2021, 2021, 2136076. [Google Scholar] [CrossRef]
- Miller, K.E.; MacDonald, J.P.; Sullivan, L.; Venkata, L.P.R.; Shi, J.; Yeates, K.O.; Chen, S.; Alshaikh, E.; Taylor, H.G.; Hautmann, A.; et al. Salivary miRNA Expression in Children with Persistent Post-Concussive Symptoms. Front. Public Health 2022, 10, 890420. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Chen, Y.; Chen, X.; Wei, Q.; Ou, R.; Gu, X.; Cao, B.; Shang, H. MicroRNA-183-5p is stress-inducible and protects neurons against cell death in amyotrophic lateral sclerosis. J. Cell. Mol. Med. 2020, 24, 8614–8622. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Wang, S.; Greene, R.; Song, Y.; Chan, C.; Lindroth, H.; Khan, S.; Rios, G.; Sanders, R.D.; Khan, B. Postoperative delirium and its relationship with biomarkers for dementia: A meta-analysis. Int. Psychogeriatr. 2022, 17, 377–390. [Google Scholar] [CrossRef] [PubMed]
- Noah, A.M.; Almghairbi, D.; Evley, R.; Moppett, I.K. Preoperative inflammatory mediators and postoperative delirium: Systematic review and meta-analysis. Br. J. Anaesth. 2021, 127, 424–434. [Google Scholar] [CrossRef]
- Ito, Y.; Suzuki, K.; Sasaki, R.; Otani, M.; Aoki, K. Mortality rates from cancer or all causes and SOD activity level and Zn/Cu ratio in peripheral blood: Population-based follow-up study. J. Epidemiol. 2002, 12, 14–21. [Google Scholar] [CrossRef]
- Mao, C.; Yuan, J.-Q.; Lv, Y.-B.; Gao, X.; Yin, Z.-X.; Kraus, V.B.; Luo, J.-S.; Chei, C.-L.; Matchar, D.B.; Zeng, Y.; et al. Associations between superoxide dismutase, malondialdehyde and all-cause mortality in older adults: A community-based cohort study. BMC Geriatr. 2019, 19, 104. [Google Scholar] [CrossRef]
- Hamada, Y.; Takata, T.; Iwama, H.; Kawakita, R.; Nonaka, W.; Deguchi, K.; Kobara, H.; Morishita, A.; Miyamoto, O.; Nakamura, T.; et al. Temporal expression profiles of microRNAs associated with acute phase of brain ischemia in gerbil hippocampus. Heliyon 2024, 10, e28875. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Jin, F.; Jin, L.; Wei, B.; Li, X.; Li, R.; Liu, W.; Guo, S.; Fan, H.; Duan, C. miR-96-5p alleviates cerebral ischemia-reperfusion injury in mice by inhibiting pyroptosis via downregulating caspase 1. Exp. Neurol. 2024, 374, 114676. [Google Scholar] [CrossRef] [PubMed]
- Szwed, K.; Szwed, M.; Kozakiewicz, M.; Karłowska-Pik, J.; Soja-Kukieła, N.; Bartoszewska, A.; Borkowska, A. Circulating MicroRNAs and Novel Proteins as Potential Biomarkers of Neurological Complications After Heart Bypass Surgery. J. Clin. Med. 2021, 10, 3091. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Fan, M.; Huang, Y.; Li, K.; Yang, X.; Bai, J.; Si, Q.; Peng, Z.; Jia, C.; Zhang, Q.; Tao, D. Fox-LDL regulates proliferation and apoptosis in VSMCs by controlling the miR-183-5p/FOXO1. Genes Genom. 2022, 44, 671–681. [Google Scholar] [CrossRef]
- Sun, B.; Shan, Z.; Sun, G.; Wang, X. Micro-RNA-183-5p acts as a potential diagnostic biomarker for atherosclerosis and regulates the growth of vascular smooth muscle cell. J. Chin. Med. Assoc. 2021, 84, 33–37. [Google Scholar] [CrossRef]
- Zhao, X.; Jia, Y.; Chen, H.; Yao, H.; Guo, W. Plasma-derived exosomal miR-183 associates with protein kinase activity and may serve as a novel predictive biomarker of myocardial ischemic injury. Exp. Ther. Med. 2019, 18, 179–187. [Google Scholar] [CrossRef]
- Tong, K.L.; Zuhdi, A.S.M.; Ahmad, W.A.W.; Vanhoutte, P.M.; De Magalhaes, J.P.; Mustafa, M.R.; Wong, P.F. Circulating MicroRNAs in young patients with acute coronary syndrome. Int. J. Mol. Sci. 2018, 19, 1467. [Google Scholar] [CrossRef]
- Lv, D.; Guo, Y.; Zhang, L.; Li, X.; Li, G. Circulating miR-183-5p levels are positively associated with the presence and severity of coronary artery disease. Front. Cardiovasc. Med. 2023, 10, 1196348. [Google Scholar] [CrossRef] [PubMed]
- Folstein, M.F.; Folstein, S.E.; McHugh, P.R. “Mini-mental state”. A practical method for grading the cognitive state of patients for the clinician. J. Psychiatr. Res. 1975, 12, 189–198. [Google Scholar] [CrossRef] [PubMed]
- American Psychiatric Association. Diagnostic and Statistical manual of Mental Disorders: Diagnostic and Statistical Manual of Mental Disorders, 5th ed.; American Psychiatric Association: Arlington, VA, USA, 2013. [Google Scholar]
- Ely, E.W.; Margolin, R.; Francis, J.; May, L.R.; Truman, B.R.; Dittus, R.; Speroff, T.; Gautam, S.; Bernard, G.R.; Inouye, S.K. Evaluation of delirium in critically ill patients: Validation of the Confusion Assessment Method for the Intensive Care Unit (CAM-ICU). Crit. Care Med. 2001, 29, 1370–1379. [Google Scholar] [CrossRef] [PubMed]
- Kazmierski, J.; Kowman, M.; Banach, M.; Fendler, W.; Okonski, P.; Banys, A.; Jaszewski, R.; Rysz, J.; Sobow, T.; Kloszewska, I. The use of DSM-IV and ICD-10 criteria and diagnostic scales for delirium among cardiac surgery patients: Results from the IPDACS study. J. Neuropsychiatry Clin. Neurosci. 2010, 22, 426–432. [Google Scholar] [CrossRef] [PubMed]
Characteristic | Mean or N | SD or % |
---|---|---|
Age (years) | 68.13 | 6.80 |
Gender (Male) | 92 | 76.67% |
Weight (kg) | 81.69 | 12.38 |
Height (cm) | 170.22 | 8.20 |
Education (years) | 11.74 | 3.75 |
CDT test | 5.77 | 2.44 |
MMSE Score | 27.44 | 2.22 |
Ejection fraction (%) | 51.68 | 10.26 |
CCS score | 2.47 | 0.77 |
NYHA grade | 2.18 | 0.72 |
Urea concentration (mmol/L) | 7.58 | 8.76 |
Creatinine concentration (μmol/L) | 90.59 | 35.70 |
Presence of anxiety disorders | 7 | 5.83% |
Presence of depression | 25 | 20.83% |
Diabetes | 45 | 37.50% |
Arterial hypertension | 102 | 85% |
Peripheral vascular disease | 22 | 18.33% |
Vascular diseases of the CNS | 12 | 10% |
Epilepsy | 3 | 2.50% |
Head injuries | 1 | 0.83% |
Asthma | 4 | 3.33% |
Chronic obstructive pulmonary disease | 7 | 5.83% |
Smoking tobacco | 53 | 44.17% |
Anemia (Hb 10 mg/dL for female; 12 mg/dL for male) | 25 | 20.83% |
Creatinine > 1.2 mg/dL | 18 | 15.00% |
Atrial fibrillation | 18 | 15.00% |
Surgery duration (h) | 3.93 | 0.85 |
ECC | 91 | 75.83% |
Intraoperative resuscitation | 3 | 2.50% |
Intraoperative steroid use | 2 | 1.67% |
Postoperative pCO2 ≥ 45 mmHg | 25 | 20.83% |
Postoperative pO2 ≤ 60 mmHg | 16 | 13.33% |
Postoperative hyperthermia | 15 | 12.50% |
Massive postoperative blood transfusion (>4 units) | 6 | 5.00% |
Plasma transfusion (≥1 unit) | 15 | 12.50% |
Length of stay in the ICU (days) | 3.71 | 2.24 |
Aortic cross-clamping time (min) | 36.26 | 28.54 |
miRNA | Pre-Operative Level Copies/mL a | Post-Operative Level Copies/mL a |
---|---|---|
miR-9-3p | 79 (13.0–172.1) | 101.4 (20.7–191.9) |
miR-34c-5p | 12.5 (0.0–45.4) | 25.7 (0–108.1) |
miR-96-5p | 311.6 (110.2–696.8) | 156.7 (68.7–325.7) |
miR-183-5p | 78.9 (14.3–179.2) | 73.4 (10.4–168.2) |
miR-374-3p | 2.8 (0.0–30.04) | 0 (0.0–16.3) |
Superoxidase dismutase (ng/mL) | 2.68 (2.06–3.53) | 2.13 (1.62–3.01) |
Antioxidant activity (µmol/L) | 2.1 (1.3–2.9) | 1.8 (1.2–2.6) |
Variable | Non-Delirious a | Delirious a | Effect Size b | p Value c |
---|---|---|---|---|
Preoperative miR-9-3p | 87.4 (34.7–187.2) | 53.8 (5.1–156.6) | 0.32 | 0.39 |
Preoperative miR-34c-5p | 20.5 (0.0–63.1) | 8.0 (0.0–42.5) | 0.19 | 0.28 |
Preoperative miR-96-5p | 368.2 (169.7–832.5) | 165.7 (55.0–507.9) | 0.49 | 0.05 |
Preoperative miR-183-5p | 210.5 (67.7–347.6) | 53.02 (9.6–173.2) | 0.77 | 0.0005 |
Preoperative miR-374-3p | 9.3 (0.0–39.7) | 0 (0.0–11.2) | 0.34 | 0.26 |
Postoperative miR-9-3p | 118.5 (45.04–185.9) | 57.13 (0–201.9) | 0.32 | 0.39 |
Postoperative miR-34c-5p | 51.4 (15.7–121.4) | 7.6 (0–69.6) | 0.56 | 0.009 |
Postoperative miR-96-5p | 187.2 (96.5–364.2) | 119.2 (33–278.6) | 0.47 | 0.07 |
Postoperative miR-183-5p | 89.1 (14.5–247) | 39 (0–98.1) | 0.49 | 0.05 |
Postoperative miR-374-3p | 0 (0–18.0) | 0 (0–15.4) | 0.09 | 0.99 |
Variable | Non-Delirious a | Delirious a | Effect Size b | p Value c |
---|---|---|---|---|
CABG plus valve surgery | 2 (3.3%) | 8 (23.3%) | 0.18 | 0.04 |
Duration of surgery (h) | 4 (3–4.5) | 4 (3.4–4.4) | 0.15 | 0.41 |
Extracorporeal circulation | 40 (66.7%) | 51 (85%) | 0.21 | 0.02 |
Intraoperative circulatory support | 16 (26.7%) | 17 (28.3%) | 0.24 | 0.16 |
Post-op. hyperthermia > 38 °C | 6 (10%) | 9 (15%) | 0.08 | 0.40 |
Post-op. pO2 ≤ 60 mmHg | 5 (8.3%) | 11(18.3%) | 0.15 | 0.10 |
Post-op. pCO2 ≥ 45 mmHg | 7 (11.7%) | 18 (30%) | 0.40 | 0.01 |
Plasma transfusion > 1 unit | 6 (10%) | 9 (15%) | 0.08 | 0.40 |
Blood transfusion > 4 units | 1 (6.7%) | 5 (8.3%) | 0.15 | 0.21 |
Variable | Coefficient | Standard Error | OR (95% CI) | p Value |
---|---|---|---|---|
Depression | 2.53 | 0.79 | 12.6 (2.7–59.2) | <0.001 |
Preoperative miR-183-5p | −0.002 | 0.001 | 0.99 (0.995–0.999) | 0.005 |
Postoperative pCO2 >= 45 | 1.32 | 0.62 | 3.7 (1.1–12.6) | 0.03 |
Cigarette smoking | 0.91 | 0.46 | 2.4 (1.007–6.15) | 0.05 |
Female Gender | 1.26 | 0.56 | 3.5 (1.2–10.5) | 0.02 |
Peripheral vascular disease | 1.38 | 0.68 | 3.9 (1.04–15.2) | 0.04 |
Constant | −1.005 | 0.40 | - | 0.01 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nowakowska, K.; Walkiewicz, G.; Stec-Martyna, E.; Kulczycka-Wojdala, D.; Frankowska, E.; Miler, P.; Pawlak, A.; Woźniak, K.; Krejca, M.; Wilczyński, M.; et al. Circulating Brain-Related miRNAs as Predictors of Postoperative Delirium in Cardiac Surgery Patients. Int. J. Mol. Sci. 2025, 26, 9062. https://doi.org/10.3390/ijms26189062
Nowakowska K, Walkiewicz G, Stec-Martyna E, Kulczycka-Wojdala D, Frankowska E, Miler P, Pawlak A, Woźniak K, Krejca M, Wilczyński M, et al. Circulating Brain-Related miRNAs as Predictors of Postoperative Delirium in Cardiac Surgery Patients. International Journal of Molecular Sciences. 2025; 26(18):9062. https://doi.org/10.3390/ijms26189062
Chicago/Turabian StyleNowakowska, Karina, Grzegorz Walkiewicz, Emilia Stec-Martyna, Dominika Kulczycka-Wojdala, Emilia Frankowska, Piotr Miler, Agnieszka Pawlak, Katarzyna Woźniak, Michał Krejca, Mirosław Wilczyński, and et al. 2025. "Circulating Brain-Related miRNAs as Predictors of Postoperative Delirium in Cardiac Surgery Patients" International Journal of Molecular Sciences 26, no. 18: 9062. https://doi.org/10.3390/ijms26189062
APA StyleNowakowska, K., Walkiewicz, G., Stec-Martyna, E., Kulczycka-Wojdala, D., Frankowska, E., Miler, P., Pawlak, A., Woźniak, K., Krejca, M., Wilczyński, M., & Kazmierski, J. (2025). Circulating Brain-Related miRNAs as Predictors of Postoperative Delirium in Cardiac Surgery Patients. International Journal of Molecular Sciences, 26(18), 9062. https://doi.org/10.3390/ijms26189062