Structural Study of a Peptide Epitope Bearing Multiple Post-Translational Modifications in Rheumatoid Arthritis
Abstract
1. Introduction
2. Results and Discussion
2.1. Peptide Synthesis
2.2. Recognition of the Different Epitopes by RA Patients’ Sera
2.3. Reactivity to Peptides Containing a Single PTM
2.4. Recognition of Peptides Containing Multiple PTMs
2.5. Conformational and Structural Studies
2.5.1. Circular Dichroism Conformational Studies
2.5.2. Nuclear Magnetic Resonance Structural Studies
2.5.3. Molecular Dynamics Simulations
3. Materials and Methods
3.1. Synthesis, Purification and Characterization of Peptides
3.2. Home-Designed ELISA Assays
3.3. Circular Dichroism Assays
3.4. NMR Methodology
3.5. Molecular Dynamics
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
RA | Rheumatoid arthritis |
PTMs | Post-translational modifications |
PAD | Peptidylarginine deiminase enzyme |
AMPAs | Anti-modified protein/peptide antibodies |
AF2 | AlphaFold 2 |
MHC | Major histocompatibility complex |
NMR | Nuclear magnetic resonance |
TFE | Trifluoroethanol |
pLDDT | Predicted local distance difference test |
PEG | Poly(ethylene glycol) |
SPPS | Solid-phase peptide synthesis |
HPLC | High-performance liquid chromatography |
ESI-MS | Electrospray mass spectrometry |
Cit | Citrulline |
hCit | Homocitrulline |
KAc | Acetyl-lysine |
OD | Optical density |
CD | Circular dichroism |
NOESY | Nuclear Overhauser effect spectroscopy |
TOCSY | Total correlation spectroscopy |
HSQC | Heteronuclear single-quantum coherence |
MD | Molecular dynamics |
Rg | Radius of gyration |
Fmoc | 9-Fluorenyl-methoxycarbonyl |
Trt | Triphenylmethyl |
tBu | Tert-butyl |
Pmc | 2,2,5,7,8-Pentamethyl-chroman-6-sulfonyl |
HATU | 2-(1H-7-azabenzotriazole-1-yl)-1,1,3,3-tetramethyluronium hexafluorophosphate methanaminium |
DIPEA | N,N-Diisopropylethylamine |
DMF | N,N-Dimethylformamide |
PyBOP | Benzotriazole-1-yloxytris(pirrolidino) phosphonium hexafluorophosphate |
HOBt | 1-Hydroxybenzotriazole |
TFA | Trifuoroacetic acid |
TIS | Triisopropylsilane |
ELISA | Enzyme-linked immunosorbent assay |
PBS | Phosphate-buffered saline |
BSA | Bovine serum albumin |
TRIS | Tris(hydroxymethyl)aminomethane |
SDS | Sodium dodecyl sulfate |
SPC | Simple point charge |
References
- Haro, I.; Sanmartí, R. Rheumatoid arthritis: Current advances in pathogenesis, diagnosis and therapy. Curr. Top. Med. Chem. 2013, 13, 697. [Google Scholar] [CrossRef]
- Scherer, H.U.; Häupl, T.; Burmester, G.R. The etiology of rheumatoid arthritis. J. Autoimmun. 2020, 110, 102400. [Google Scholar] [CrossRef]
- Curran, A.M.; Naik, P.; Giles, J.T.; Darrah, E. PAD enzymes in rheumatoid arthritis: Pathogenic effectors and autoimmune targets. Nat. Rev. Rheumatol. 2020, 16, 301–315. [Google Scholar] [CrossRef]
- Haro, I.; Sanmartí, R.; Gómara, M.J. Implications of Post-Translational Modifications in Autoimmunity with Emphasis on Citrullination, Homocitrullination and Acetylation for the Pathogenesis, Diagnosis and Prognosis of Rheumatoid Arthritis. Int. J. Mol. Sci. 2022, 23, 15803. [Google Scholar] [CrossRef]
- Darrah, E.; Andrade, F. Rheumatoid arthritis and citrullination. Curr. Opin. Rheumatol. 2018, 30, 72–78. [Google Scholar] [CrossRef] [PubMed]
- Tarcsa, E.; Marekov, L.N.; Mei, G.; Melino, G.; Lee, S.C.; Steinert, P.M. Protein unfolding by peptidylarginine deiminase. Substrate specificity and structural relationships of the natural substrates trichohyalin and filaggrin. J. Biol. Chem. 1996, 271, 30709–30716. [Google Scholar] [CrossRef]
- Jaisson, S.; Lorimier, S.; Ricard-Blum, S.; Sockalingum, G.D.; Delevallée-Forte, C.; Kegelaer, G.; Manfait, M.; Garnotel, R.; Gillery, P. Impact of carbamylation on type I collagen conformational structure and its ability to activate human polymorphonuclear neutrophils. Chem. Biol. 2006, 13, 149–159. [Google Scholar] [CrossRef] [PubMed]
- Young, D.S.; Meersman, F.; Oxley, D.; Webster, J.; Gill, A.; Bronstein, I.; Dear, D.V. Effect of enzymatic deimination on the conformation of recombinant prion protein. BBA-Proteins Proteom. 2009, 1794, 1123–1133. [Google Scholar] [CrossRef] [PubMed]
- Ordóñez, A.; Martínez-Martínez, I.; Corrales, F.J.; Miqueo, C.; Miñano, A.; Vicente, V.; Corral, J. Effect of citrullination on the function and conformation of antithrombin. FEBS J. 2009, 276, 6763–6772. [Google Scholar] [CrossRef]
- Olson, J.S.; Lubmer, J.M.; Meyer, D.J.; Grant, J.E. An in silico analysis of primary and secondary structure specificity determinants for human peptidylarginine deiminase types 2 and 4. Comp. Biol. Chem. 2017, 70, 107–115. [Google Scholar] [CrossRef]
- Jumper, J.; Evans, R.; Pritzel, A.; Green, T.; Figurnov, M.; Ronneberger, O.; Tunyasuvunakool, K.; Bates, R.; Žídek, A.; Potapenko, A.; et al. Highly accurate protein structure prediction with AlphaFold. Nature 2021, 596, 583–589. [Google Scholar] [CrossRef]
- Sollid, L.M.; Pos, W.; Wucherpfennig, K.W. Molecular mechanisms for contribution of MHC molecules to autoimmune diseases. Curr. Opin. Immunol. 2014, 31, 24–30. [Google Scholar] [CrossRef] [PubMed]
- Ting, Y.T.; Petersen, J.; Ramarathinam, S.H.; Scally, S.W.; Loh, K.L.; Thomas, R.; Suri, A.; Baker, D.G.; Purcell, A.W.; Reid, H.H.; et al. The interplay between citrullination and HLA-DRB1 polymorphism in shaping peptide binding hierarchies in rheumatoid arthritis. J. Biol. Chem. 2018, 293, 3236–3251. [Google Scholar] [CrossRef] [PubMed]
- Mikhaylov, V.; Brambley, C.A.; Keller, G.L.J.; Arbuiso, A.G.; Weiss, L.I.; Baker, B.M.; Arnold, J.; Levine, A.J. Accurate modeling of peptide-MHC structures with AlphaFold. Structure 2024, 32, 228–241. [Google Scholar] [CrossRef]
- Glukhov, E.; Kalitin, D.; Stepanenko, D.; Zhu, Y.; Nguyen, T.; Jones, G.; Patsahan, T.; Simmerling, C.; Mitchell, J.C.; Vajda, S.; et al. MHC-Fine: Fine-tuned AlphaFold for precise MHC-peptide complex prediction. Biophys. J. 2024, 123, 2902–2909. [Google Scholar] [CrossRef] [PubMed]
- Pérez, M.L.; Gómara, M.J.; Kasi, D.; Alonso, A.; Viñas, O.; Ercilla, G.; Sanmartí, R.; Haro, H. Synthesis of Overlapping Fibrin Citrullinated Peptides and their use for Diagnosing Rheumatoid Arthritis. Chem. Biol. Drug Des. 2006, 68, 194–200. [Google Scholar] [CrossRef]
- Perez, M.L.; Gomara, M.J.; Ercilla, G.; Sanmarti, R.; Haro, I. Antibodies to citrullinated human fibrinogen synthetic peptides in diagnosing rheumatoid arthritis. J. Med. Chem. 2007, 50, 3573–3584. [Google Scholar] [CrossRef]
- Vincenzi, M.; Mercurio, F.A.; Leone, M. About TFE: Old and New Findings. Curr. Protein. Pept. Sci. 2019, 20, 425–451. [Google Scholar] [CrossRef]
- Babos, F.; Szarka, E.; Nagy, G.; Majer, Z.; Sármay, G.; Magyar, A.; Hudecz, F. Role of N- or C-Terminal Biotinylation in Autoantibody Recognition of Citrullin Containing Filaggrin Epitope Peptides in Rheumatoid Arthritis. Bioconjugate Chem. 2013, 24, 817–827. [Google Scholar] [CrossRef]
- Schellekens, G.A.; de Jong, B.A.; van den Hoogen, F.H.; van de Putte, L.B.; van Venrooij, W.J. Citrulline is an essential constituent of antigenic determinants recognized by rheumatoid arthritis-specific autoantibodies. J. Clin. Investig. 1998, 101, 273–281. [Google Scholar] [CrossRef]
- Perez, T.; Gomez, A.; Sanmarti, R.; Viñas, O.; Ercilla, G.; Haro, I. Use of [Cit312,314] filaggrin (306–324) analogue for the diagnosis of rheumatoid arthritis. Conformational study by Circular Dichroism and Fourier Transformed Infrared Spectroscopy. Lett. Pept. Sci. 2002, 9, 291–300. [Google Scholar] [CrossRef]
- Chen, Y.H.; Yang, J.T.; Chau, K.H. Determination of the Helix and ß Form of Proteins in Aqueous Solution by Circular Dichroism. Biochemistry 1974, 13, 3350–3359. [Google Scholar] [CrossRef]
- Williamson, M.P. Secondary-Structure Dependent Chemical Shifts in Proteins. Biopolymers 1990, 29, 1423–1431. [Google Scholar] [CrossRef]
- Wishart, D.S.; Nip, A.M. Protein Chemical Shift Analysis: A Practical Guide. Biochem. Cell Biol. 1998, 76, 153–163. [Google Scholar] [CrossRef]
- Wishart, D.S.; Bigam, C.G.; Holm, A.; Hodges, R.S.; Sykes, B.D. 1H, 13C and 15N Random Coil NMR Chemical Shifts of the Common Amino Acids. I. Investigations of Nearest-Neighbor Effects. J. Biomol. NMR 1995, 5, 67–81. [Google Scholar] [CrossRef]
- Conibear, A.C.; Rosengren, K.J.; Becker, C.F.W.; Kaehlig, H. Random Coil Shifts of Posttranslationally Modified Amino Acids. J. Biomol. NMR 2019, 73, 587–599. [Google Scholar] [CrossRef]
- Williamson, M.P.; Asakura, T. Calculation of Chemical Shifts of Protons on Alpha Carbons in Proteins. J. Magn. Reson. 1991, 94, 557–562. [Google Scholar] [CrossRef]
- Wright, P.E. Use of Chemical Shift. Methods Enzimol. 1994, 239, 392–416. [Google Scholar]
- Szilágyi, L. Chemical Shifts in Proteins Come of Age. Prog. Nucl. Magn. Reson. Spectrosc. 1995, 27, 325–442. [Google Scholar] [CrossRef]
- Wishart, D.S.; Sykes, B.D. Chemical Shifts as a Tool for Structure Determination. Methods Enzymol. 1994, 239, 363–392. [Google Scholar]
- Ramírez-Alvarado, M.; Blanco, F.J.; Niemann, H.; Serrano, L. Role of β-Turn Residues in β-Hairpin Formation and Stability in Designed Peptides. J. Mol. Biol. 1997, 273, 898–912. [Google Scholar] [CrossRef]
- Santiveri, C.M.; Pantoja-Uceda, D.; Rico, M.; Angeles Jiménez, M. β-Hairpin Formation in Aqueous Solution and in the Presence of Trifluoroethanol: A1H And13C Nuclear Magnetic Resonance Conformational Study of Designed Peptides. Biopolymers 2005, 79, 150–162. [Google Scholar] [CrossRef]
- Ramirez-Alvarado, M.; Blanco, F.J.; Serrano, L. De novo design and structural analysis of a model beta-hairpin peptide system. Nat. Struct. Biol. 1996, 3, 604–612. [Google Scholar] [CrossRef]
- Searle, M.S.; Zerella, R.; Williams, D.H.; Packman, L.C. Native-like β-Hairpin Structure in an Isolated Fragment from Ferredoxin: NMR and CD Studies of Solvent Effects on the N-Terminal 20 Residues. Protein Eng. 1996, 9, 559–565. [Google Scholar] [CrossRef]
- Brandt, G.S. Secondary Structure. In Molecular Life Sciences; Wells, R.D., Bond, J.S., Klinman, J., Masters, B.S.S., Eds.; Springer: New York, NY, USA, 2018. [Google Scholar]
- Siligardi, G.; Drake, A.F.; Mascagni, P.; Neri, P.; Lozzi, L.; Niccolai, N.; Gibbons, W.A. Resolution of conformation equilibria in linear peptides by circular dichroism in cryogenic solvents. Biochem. Biophys. Res. Commun. 1987, 143, 1005–1011. [Google Scholar] [CrossRef] [PubMed]
- Rajan, R.; Balaram, P. A Model for the Interaction of Trifluoroethanol with Peptides and Proteins. Int. J. Pept. Protein Res. 1996, 48, 328–336. [Google Scholar] [CrossRef] [PubMed]
- Buck, M. Trifluoroethanol and Colleagues: Cosolvents Come of Age. Recent Studies with Peptides and Proteins. Q. Rev. Biophys. 1998, 31, 297–355. [Google Scholar] [CrossRef] [PubMed]
- Wagner, G.; Neuhaus, D.; Worgotter, E.; Vasak, M.; Kagi, J.H.; Wuthrich, K. Nuclear Magnetic Resonance Identification of “Half-Turn” and 3-Helix Secondary Structure in Rabbit Liver Metallothionein-2. J. Mol. Biol. 1986, 187, 131–135. [Google Scholar] [CrossRef]
- Wuthrich, K.; Billeter, M.; Braun, W. Polypeptide Secondary Structure Determination by Nuclear Magnetic Resonance Observation of Short Proton-Proton Distances. J. Mol. Biol. 1984, 180, 715–740. [Google Scholar] [CrossRef]
- Wilkinson, L.; Friendly, M. The History of the Cluster Heat Map. Am. Stat. 2009, 63, 179–184. [Google Scholar] [CrossRef]
- Skinner, S.P.; Fogh, R.H.; Boucher, W.; Ragan, T.J.; Mureddu, L.G.; Vuister, G.W. CcpNmr AnalysisAssign: A flexible platform for integrated NMR analysis. J. Biomol. NMR 2016, 66, 111–124, Erratum in J. Biomol. NMR 2017, 67, 321. [Google Scholar] [CrossRef]
- Bonomi, M.; Parrinello, M. Enhanced Sampling in the Well-Tempered Ensemble. Phys. Rev. Lett. 2010, 104, 190601. [Google Scholar] [CrossRef] [PubMed]
- Tien, M.Z.; Sydykova, D.K.; Meyer, A.G.; Wilke, C.O. PeptideBuilder: A simple Python library to generate model peptides. PeerJ 2013, 1, e80. [Google Scholar] [CrossRef]
- Oostenbrink, C.; Villa, A.; Mark, A.E.; Van Gunsteren, W.F. A biomolecular force field based on the free enthalpy of hydration and solvation: The GROMOS force-field parameter sets 53A5 and 53A6. J. Comp. Chem. 2004, 25, 1656–1676. [Google Scholar] [CrossRef]
- Schmid, N.; Eichenberger, A.P.; Choutko, A.; Riniker, S.; Winger, M.; Mark, A.E.; van Gunsteren, W.F. Definition and testing of the GROMOS force-field versions 54A7 and 54B7. Eur. Biophys. J. 2011, 40, 843–856. [Google Scholar] [CrossRef]
- Petrov, D.; Margreitter, C.; Grandits, M.; Oostenbrink, C.; Zagrovic, B. A Systematic Framework for Molecular Dynamics Simulations of Protein Post-Translational Modifications. PLoS Comput. Biol. 2013, 9, e1003154. [Google Scholar] [CrossRef]
- Margreitter, C.; Petrov, D.; Zagrovic, B. Vienna-PTM web server: A toolkit for MD simulations of protein post-translational modifications. Nucleic Acids Res. 2013, 41, W422–W426. [Google Scholar] [CrossRef]
- Shen, Y.; Bax, A. SPARTA+: A modest improvement in empirical NMR chemical shift prediction by means of an artificial neural network. J Biomol. NMR. 2010, 48, 13–22. [Google Scholar] [CrossRef] [PubMed]
- Appadurai, R.; Koneru, J.K.; Bonomi, M.; Robustelli, P.; Srivastava, A. Clustering Heterogeneous Conformational Ensembles of Intrinsically Disordered Proteins with t-Distributed Stochastic Neighbor Embedding. J. Chem. Theory Comput. 2023, 19, 4711–4727. [Google Scholar] [CrossRef]
- Van Der Spoel, D.; Lindahl, E.; Hess, B.; Groenhof, G.; Mark, A.E.; Berendsen, H.J.C. GROMACS: Fast, flexible, and free. J. Comput. Chem. 2005, 26, 1701–1718. [Google Scholar] [CrossRef] [PubMed]
- Abraham, M.J.; Murtola, T.; Schulz, R.; Páll, S.; Smith, J.C.; Hess, B.; Lindahl, E. GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX 2015, 1, 19–25. [Google Scholar] [CrossRef]
- The PLUMED Consortium. Promoting transparency and reproducibility in enhanced molecular simulations. Nat. Methods 2019, 16, 670–673. [Google Scholar] [CrossRef] [PubMed]
- Tribello, G.A.; Bonomi, M.; Branduardi, D.; Camilloni, C.; Bussi, G. PLUMED 2: New feathers for an old bird. Comp. Phys. Comm. 2014, 185, 604–613. [Google Scholar] [CrossRef]
- Harris, C.R.; Millman, K.J.; van der Walt, S.J.; Gommers, R.; Virtanen, P.; Cournapeau, D.; Wieser, E.; Taylor, J.; Berg, S.; Smith, N.J.; et al. Array programming with NumPy. Nature 2020, 585, 357–362. [Google Scholar] [CrossRef] [PubMed]
- Hunter, J.D. Matplotlib: A 2D Graphics Environment. Comput. Sci. Eng. 2007, 9, 90–95. [Google Scholar] [CrossRef]
Peptide | Sequence | RP-HPLC | ESI-MS | |
---|---|---|---|---|
Rt (min) | Calculated | Experimental | ||
P1 (control) | Biotinyl-PEG2-HSTKRGHAKSRPVRG | 12.1 | 2216.6 | 2215.8 |
P2 | Biotinyl-PEG2-HSTKCitGHAKSRPVCitG | 11.9 | 2218.6 | 2217.5 |
P3 | Biotinyl-PEG2-HSThCitRGHAhCitSRPVRG | 11.9 | 2302.6 | 2301.5 |
P4 | Biotinyl-PEG2-HSTK(Ac)RGHAK(Ac)SRPVRG | 12.2 | 2300.7 | 2299.5 |
P5 | Biotinyl-PEG2-HSThCitCitGHAhCitSRPVCitG | 12.3 | 2304.6 | 2303.5 |
P6 | Biotinyl-PEG2-HSTK(Ac)CitGHAK(Ac)SRPVCitG | 12.5 | 2302.6 | 2301.6 |
P7 | Biotinyl-PEG2-HSTK(Ac)RGHAhCitSRPVRG | 12.1 | 2301.6 | 2300.4 |
P8 | Biotinyl-PEG2-HSThCitRGHAK(Ac)SRPVRG | 11.8 | 2301.6 | 2300.6 |
P9 | Biotinyl-PEG2-HSTK(Ac)CitGHAhCitSRPVCitG | 12.2 | 2303.6 | 2302.6 |
P10 | Biotinyl-PEG2-HSThCitCitGHAK(Ac)SRPVCitG | 12.3 | 2303.6 | 2302.7 |
P11 | Biotinyl-PEG2-HSTK(Ac)RGHAhCitSRPVCitG | 12.1 | 2302.6 | 2301.6 |
Restraint Strength | R0 Distance (Å) | R1 Distance (Å) | R2 Distance (Å) |
---|---|---|---|
Very weak | 0.55 | 10 | 10 |
Weak | 0.18 | 0.55 | 0.83 |
Medium | 0.18 | 0.33 | 0.5 |
Strong | 0.18 | 0.25 | 0.38 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gómara, M.J.; García-Moreno, C.; Bárcenas, O.; Castellanos-Moreira, R.; Sarmiento, J.C.; Crehuet, R.; Pérez, Y.; Sanmartí, R.; Haro, I. Structural Study of a Peptide Epitope Bearing Multiple Post-Translational Modifications in Rheumatoid Arthritis. Int. J. Mol. Sci. 2025, 26, 9026. https://doi.org/10.3390/ijms26189026
Gómara MJ, García-Moreno C, Bárcenas O, Castellanos-Moreira R, Sarmiento JC, Crehuet R, Pérez Y, Sanmartí R, Haro I. Structural Study of a Peptide Epitope Bearing Multiple Post-Translational Modifications in Rheumatoid Arthritis. International Journal of Molecular Sciences. 2025; 26(18):9026. https://doi.org/10.3390/ijms26189026
Chicago/Turabian StyleGómara, María José, Cristina García-Moreno, Oriol Bárcenas, Raúl Castellanos-Moreira, Juan Camilo Sarmiento, Ramon Crehuet, Yolanda Pérez, Raimon Sanmartí, and Isabel Haro. 2025. "Structural Study of a Peptide Epitope Bearing Multiple Post-Translational Modifications in Rheumatoid Arthritis" International Journal of Molecular Sciences 26, no. 18: 9026. https://doi.org/10.3390/ijms26189026
APA StyleGómara, M. J., García-Moreno, C., Bárcenas, O., Castellanos-Moreira, R., Sarmiento, J. C., Crehuet, R., Pérez, Y., Sanmartí, R., & Haro, I. (2025). Structural Study of a Peptide Epitope Bearing Multiple Post-Translational Modifications in Rheumatoid Arthritis. International Journal of Molecular Sciences, 26(18), 9026. https://doi.org/10.3390/ijms26189026