STINGing Cancer: Development, Clinical Application, and Targeted Delivery of STING Agonists
Abstract
1. Introduction
2. Macrophage Involvement in Tumor Elimination
3. STING Signaling Determines Macrophage Polarization
4. Categories of STING Agonists
4.1. STING Agonists in Clinical Trials for Cancer Therapy and Their Immunological Effects
4.1.1. IMSA101
4.1.2. ADU-S100 (MIW 815)
4.1.3. SB 11285
4.1.4. TAK-676 (Dazostinag)
4.1.5. E7766
4.1.6. SYNB 1891
4.1.7. ExoSTING (CDK-002)
4.1.8. ONM-501
4.2. STING Agonists and Their Effect on Macrophages in Preclinical Evaluations
5. Conclusions: STING Agonists Drive Pro-Inflammatory Reprogramming in the TME
6. Limitations of STING as Therapeutic Target
7. Recent Delivery Strategies for STING Agonists
8. Future Directions of STING Agonism in Cancer Therapy
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ohkuri, T.; Kosaka, A.; Nagato, T.; Kobayashi, H. Effects of STING stimulation on macrophages: STING agonists polarize into “classically” or “alternatively” activated macrophages? Hum. Vaccines Immunother. 2018, 14, 285–287. [Google Scholar] [CrossRef]
- Mills, C.D.; Kincaid, K.; Alt, J.M.; Heilman, M.J.; Hill, A.M. M-1/M-2 macrophages and the Th1/Th2 paradigm. J. Immunol. 2000, 164, 6166–6173. [Google Scholar] [CrossRef]
- Murray, P.J.; Allen, J.E.; Biswas, S.K.; Fisher, E.A.; Gilroy, D.W.; Goerdt, S.; Gordon, S.; Hamilton, J.A.; Ivashkiv, L.B.; Lawrence, T.; et al. Macrophage activation and polarization: Nomenclature and experimental guidelines. Immunity 2014, 41, 14–20. [Google Scholar] [CrossRef]
- Stout, R.D.; Jiang, C.; Matta, B.; Tietzel, I.; Watkins, S.K.; Suttles, J. Macrophages sequentially change their functional phenotype in response to changes in microenvironmental influences. J. Immunol. 2005, 175, 342–349. [Google Scholar] [CrossRef] [PubMed]
- Biswas, S.K.; Mantovani, A. Macrophage plasticity and interaction with lymphocyte subsets: Cancer as a paradigm. Nat. Immunol. 2010, 11, 889–896. [Google Scholar] [CrossRef]
- Martinez, F.O.; Gordon, S. The M1 and M2 paradigm of macrophage activation: Time for reassessment. F1000Prime Rep. 2014, 6, 13. [Google Scholar] [CrossRef] [PubMed]
- Nahrendorf, M.; Swirski, F.K. Abandoning M1/M2 for a Network Model of Macrophage Function. Circ. Res. 2016, 119, 414–417. [Google Scholar] [CrossRef] [PubMed]
- Paolicelli, R.C.; Sierra, A.; Stevens, B.; Tremblay, M.E.; Aguzzi, A.; Ajami, B.; Amit, I.; Audinat, E.; Bechmann, I.; Bennett, M.; et al. Microglia states and nomenclature: A field at its crossroads. Neuron 2022, 110, 3458–3483. [Google Scholar] [CrossRef]
- Strizova, Z.; Benesova, I.; Bartolini, R.; Novysedlak, R.; Cecrdlova, E.; Foley, L.K.; Striz, I. M1/M2 macrophages and their overlaps-myth or reality? Clin. Sci. 2023, 137, 1067–1093. [Google Scholar] [CrossRef]
- Bonnotte, B.; Larmonier, N.; Favre, N.; Fromentin, A.; Moutet, M.; Martin, M.; Gurbuxani, S.; Solary, E.; Chauffert, B.; Martin, F. Identification of tumor-infiltrating macrophages as the killers of tumor cells after immunization in a rat model system. J. Immunol. 2001, 167, 5077–5083. [Google Scholar] [CrossRef]
- Mytar, B.; Siedlar, M.; Wołoszyn, M.; Ruggiero, I.; Pryjma, J.; Zembala, M. Induction of reactive oxygen intermediates in human monocytes by tumour cells and their role in spontaneous monocyte cytotoxicity. Br. J. Cancer 1999, 79, 737–743. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Stuehr, D.J.; Nathan, C.F. Nitric oxide. A macrophage product responsible for cytostasis and respiratory inhibition in tumor target cells. J. Exp. Med. 1989, 169, 1543–1555. [Google Scholar] [CrossRef]
- Urban, J.L.; Shepard, H.M.; Rothstein, J.L.; Sugarman, B.J.; Schreiber, H. Tumor necrosis factor: A potent effector molecule for tumor cell killing by activated macrophages. Proc. Natl. Acad. Sci. USA 1986, 83, 5233–5237. [Google Scholar] [CrossRef]
- Arango Duque, G.; Descoteaux, A. Macrophage cytokines: Involvement in immunity and infectious diseases. Front. Immunol. 2014, 5, 491. [Google Scholar] [CrossRef]
- Gordon, S.; Martinez, F.O. Alternative activation of macrophages: Mechanism and functions. Immunity 2010, 32, 593–604. [Google Scholar] [CrossRef]
- Goerdt, S.; Orfanos, C.E. Other functions, other genes: Alternative activation of antigen-presenting cells. Immunity 1999, 10, 137–142. [Google Scholar] [CrossRef]
- Italiani, P.; Mazza, E.M.C.; Lucchesi, D.; Cifola, I.; Gemelli, C.; Grande, A.; Battaglia, C.; Bicciato, S.; Boraschi, D. Transcriptomic profiling of the development of the inflammatory response in human monocytes in vitro. PLoS ONE 2014, 9, e87680. [Google Scholar] [CrossRef] [PubMed]
- Stein, M.; Keshav, S.; Harris, N.; Gordon, S. Interleukin 4 potently enhances murine macrophage mannose receptor activity: A marker of alternative immunologic macrophage activation. J. Exp. Med. 1992, 176, 287–292. [Google Scholar] [CrossRef]
- Topoll, H.H.; Zwadlo, G.; Lange, D.E.; Sorg, C. Phenotypic dynamics of macrophage subpopulations during human experimental gingivitis. J. Periodontal Res. 1989, 24, 106–112. [Google Scholar] [CrossRef]
- Chang, Z.L.; Bonvini, E.; Varesio, L.; Holden, H.T.; Herberman, R.B. Differential in vitro modulation of suppressor and antitumor functions of mouse macrophages by lymphokines and/or endotoxin. Cell. Immunol. 1988, 114, 282–292. [Google Scholar] [CrossRef] [PubMed]
- Lewis, C.E.; Pollard, J.W. Distinct role of macrophages in different tumor microenvironments. Cancer Res. 2006, 66, 605–612. [Google Scholar] [CrossRef]
- Saha, B.; Das, G.; Vohra, H.; Ganguly, N.K.; Mishra, G.C. Macrophage-T cell interaction in experimental mycobacterial infection. Selective regulation of co-stimulatory molecules on Mycobacterium-infected macrophages and its implication in the suppression of cell-mediated immune response. Eur. J. Immunol. 1994, 24, 2618–2624. [Google Scholar] [CrossRef]
- Wu, H.; Xu, J.-B.; He, Y.-L.; Peng, J.-J.; Zhang, X.-H.; Chen, C.-Q.; Li, W.; Cai, S.-R. Tumor-associated macrophages promote angiogenesis and lymphangiogenesis of gastric cancer. J. Surg. Oncol. 2012, 106, 462–468. [Google Scholar] [CrossRef]
- Zuljan, E.; von der Emde, B.; Piwonski, I.; Pestana, A.; Klinghammer, K.; Mock, A.; Horak, P.; Heining, C.; Klauschen, F.; Pretzell, I.; et al. A macrophage-predominant immunosuppressive microenvironment and therapeutic vulnerabilities in advanced salivary gland cancer. Nat. Commun. 2025, 16, 5303. [Google Scholar] [CrossRef]
- Xu, B.; Sun, H.; Song, X.; Liu, Q.; Jin, W. Mapping the Tumor Microenvironment in TNBC and Deep Exploration for M1 Macrophages-Associated Prognostic Genes. Front. Immunol. 2022, 13, 923481. [Google Scholar] [CrossRef]
- Hughes, R.; Qian, B.Z.; Rowan, C.; Muthana, M.; Keklikoglou, I.; Olson, O.C.; Tazzyman, S.; Danson, S.; Addison, C.; Clemons, M.; et al. Perivascular M2 Macrophages Stimulate Tumor Relapse after Chemotherapy. Cancer Res. 2015, 75, 3479–3491. [Google Scholar] [CrossRef]
- Leblond, M.M.; Peres, E.A.; Helaine, C.; Gerault, A.N.; Moulin, D.; Anfray, C.; Divoux, D.; Petit, E.; Bernaudin, M.; Valable, S. M2 macrophages are more resistant than M1 macrophages following radiation therapy in the context of glioblastoma. Oncotarget 2017, 8, 72597–72612. [Google Scholar] [CrossRef]
- Xu, M.; Liu, M.; Du, X.; Li, S.; Li, H.; Li, X.; Li, Y.; Wang, Y.; Qin, Z.; Fu, Y.X.; et al. Intratumoral Delivery of IL-21 Overcomes Anti-Her2/Neu Resistance through Shifting Tumor-Associated Macrophages from M2 to M1 Phenotype. J. Immunol. 2015, 194, 4997–5006. [Google Scholar] [CrossRef] [PubMed]
- Yang, C.; He, L.; He, P.; Liu, Y.; Wang, W.; He, Y.; Du, Y.; Gao, F. Increased drug resistance in breast cancer by tumor-associated macrophages through IL-10/STAT3/bcl-2 signaling pathway. Med. Oncol. 2015, 32, 352. [Google Scholar] [CrossRef] [PubMed]
- Porcheray, F.; Viaud, S.; Rimaniol, A.-C.; Léone, C.; Samah, B.; Dereuddre-Bosquet, N.; Dormont, D.; Gras, G. Macrophage activation switching: An asset for the resolution of inflammation. Clin. Exp. Immunol. 2005, 142, 481–489. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Bergholz, J.S.; Ding, L.; Lin, Z.; Kabraji, S.K.; Hughes, M.E.; He, X.; Xie, S.; Jiang, T.; Wang, W.; et al. STING agonism reprograms tumor-associated macrophages and overcomes resistance to PARP inhibition in BRCA1-deficient models of breast cancer. Nat. Commun. 2022, 13, 3022. [Google Scholar] [CrossRef]
- Li, X.; Shu, C.; Yi, G.; Chaton, C.T.; Shelton, C.L.; Diao, J.; Zuo, X.; Kao, C.C.; Herr, A.B.; Li, P. Cyclic GMP-AMP synthase is activated by double-stranded DNA-induced oligomerization. Immunity 2013, 39, 1019–1031. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Wu, J.; Du, F.; Xu, H.; Sun, L.; Chen, Z.; Brautigam, C.A.; Zhang, X.; Chen, Z.J. The cytosolic DNA sensor cGAS forms an oligomeric complex with DNA and undergoes switch-like conformational changes in the activation loop. Cell Rep. 2014, 6, 421–430. [Google Scholar] [CrossRef]
- Ablasser, A.; Goldeck, M.; Cavlar, T.; Deimling, T.; Witte, G.; Röhl, I.; Hopfner, K.-P.; Ludwig, J.; Hornung, V. cGAS produces a 2′-5′-linked cyclic dinucleotide second messenger that activates STING. Nature 2013, 498, 380–384. [Google Scholar] [CrossRef]
- Gao, P.; Ascano, M.; Wu, Y.; Barchet, W.; Gaffney, B.L.; Zillinger, T.; Serganov, A.A.; Liu, Y.; Jones, R.A.; Hartmann, G.; et al. Cyclic G(2′,5′)pA(3′,5′)p is the metazoan second messenger produced by DNA-activated cyclic GMP-AMP synthase. Cell 2013, 153, 1094–1107. [Google Scholar] [CrossRef]
- Jin, L.; Waterman, P.M.; Jonscher, K.R.; Short, C.M.; Reisdorph, N.A.; Cambier, J.C. MPYS, a novel membrane tetraspanner, is associated with major histocompatibility complex class II and mediates transduction of apoptotic signals. Mol. Cell. Biol. 2008, 28, 5014–5026. [Google Scholar] [CrossRef]
- Wu, J.; Sun, L.; Chen, X.; Du, F.; Shi, H.; Chen, C.; Chen, Z.J. Cyclic GMP-AMP is an endogenous second messenger in innate immune signaling by cytosolic DNA. Science 2013, 339, 826–830. [Google Scholar] [CrossRef]
- Sun, W.; Li, Y.; Chen, L.; Chen, H.; You, F.; Zhou, X.; Zhou, Y.; Zhai, Z.; Chen, D.; Jiang, Z. ERIS, an endoplasmic reticulum IFN stimulator, activates innate immune signaling through dimerization. Proc. Natl. Acad. Sci. USA 2009, 106, 8653–8658. [Google Scholar] [CrossRef]
- Dobbs, N.; Burnaevskiy, N.; Chen, D.; Gonugunta, V.K.; Alto, N.M.; Yan, N. STING Activation by Translocation from the ER Is Associated with Infection and Autoinflammatory Disease. Cell Host Microbe 2015, 18, 157–168. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Shang, G.; Gui, X.; Zhang, X.; Bai, X.-C.; Chen, Z.J. Structural basis of STING binding with and phosphorylation by TBK1. Nature 2019, 567, 394–398. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Cai, X.; Wu, J.; Cong, Q.; Chen, X.; Li, T.; Du, F.; Ren, J.; Wu, Y.-T.; Grishin, N.V.; et al. Phosphorylation of innate immune adaptor proteins MAVS, STING, and TRIF induces IRF3 activation. Science 2015, 347, aaa2630. [Google Scholar] [CrossRef]
- Taniguchi, T.; Ogasawara, K.; Takaoka, A.; Tanaka, N. IRF family of transcription factors as regulators of host defense. Annu. Rev. Immunol. 2001, 19, 623–655. [Google Scholar] [CrossRef]
- Ishikawa, H.; Barber, G.N. STING is an endoplasmic reticulum adaptor that facilitates innate immune signalling. Nature 2008, 455, 674–678. [Google Scholar] [CrossRef]
- Liu, F.; Niu, Q.; Fan, X.; Liu, C.; Zhang, J.; Wei, Z.; Hou, W.; Kanneganti, T.-D.; Robb, M.L.; Kim, J.H.; et al. Priming and Activation of Inflammasome by Canarypox Virus Vector ALVAC via the cGAS/IFI16-STING-Type I IFN Pathway and AIM2 Sensor. J. Immunol. 2017, 199, 3293–3305. [Google Scholar] [CrossRef]
- Man, S.M.; Karki, R.; Malireddi, R.K.S.; Neale, G.; Vogel, P.; Yamamoto, M.; Lamkanfi, M.; Kanneganti, T.-D. The transcription factor IRF1 and guanylate-binding proteins target activation of the AIM2 inflammasome by Francisella infection. Nat. Immunol. 2015, 16, 467–475. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.; Hu, H.; Liu, Z.; Xu, J.; Gao, Y.; Zhan, X.; Zhou, S.; Zhong, W.; Wu, D.; Wang, P.; et al. Macrophage STING signaling promotes NK cell to suppress colorectal cancer liver metastasis via 4-1BBL/4-1BB co-stimulation. J. Immunother. Cancer 2023, 3, e006481. [Google Scholar] [CrossRef] [PubMed]
- Song, X.; Ma, F.; Herrup, K. Accumulation of Cytoplasmic DNA Due to ATM Deficiency Activates the Microglial Viral Response System with Neurotoxic Consequences. J. Neurosci. Off. J. Soc. Neurosci. 2019, 39, 6378–6394. [Google Scholar] [CrossRef] [PubMed]
- Coll, R.C.; Schroder, K.; Pelegrín, P. NLRP3 and pyroptosis blockers for treating inflammatory diseases. Trends Pharmacol. Sci. 2022, 43, 653–668. [Google Scholar] [CrossRef]
- Corrales, L.; Woo, S.-R.; Williams, J.B.; McWhirter, S.M.; Dubensky, T.W.; Gajewski, T.F. Antagonism of the STING Pathway via Activation of the AIM2 Inflammasome by Intracellular DNA. J. Immunol. 2016, 196, 3191–3198. [Google Scholar] [CrossRef]
- Ohkuri, T.; Kosaka, A.; Ishibashi, K.; Kumai, T.; Hirata, Y.; Ohara, K.; Nagato, T.; Oikawa, K.; Aoki, N.; Harabuchi, Y.; et al. Intratumoral administration of cGAMP transiently accumulates potent macrophages for anti-tumor immunity at a mouse tumor site. Cancer Immunol. Immunother. CII 2017, 66, 705–716. [Google Scholar] [CrossRef]
- Ishikawa, H.; Ma, Z.; Barber, G.N. STING regulates intracellular DNA-mediated, type I interferon-dependent innate immunity. Nature 2009, 461, 788–792. [Google Scholar] [CrossRef]
- Li, X.-D.; Wu, J.; Gao, D.; Wang, H.; Sun, L.; Chen, Z.J. Pivotal Roles of cGAS-cGAMP Signaling in Antiviral Defense and Immune Adjuvant Effects. Science 2013, 341, 1390–1394. [Google Scholar] [CrossRef]
- Kong, X.; Zuo, H.; Huang, H.-D.; Zhang, Q.; Chen, J.; He, C.; Hu, Y. STING as an emerging therapeutic target for drug discovery: Perspectives from the global patent landscape. J. Adv. Res. 2023, 44, 119–133. [Google Scholar] [CrossRef] [PubMed]
- Le Naour, J.; Zitvogel, L.; Galluzzi, L.; Vacchelli, E.; Kroemer, G. Trial watch: STING agonists in cancer therapy. Oncoimmunology 2020, 9, 1777624. [Google Scholar] [CrossRef]
- Corrales, L.; Glickman, L.H.; McWhirter, S.M.; Kanne, D.B.; Sivick, K.E.; Katibah, G.E.; Woo, S.-R.; Lemmens, E.; Banda, T.; Leong, J.J.; et al. Direct Activation of STING in the Tumor Microenvironment Leads to Potent and Systemic Tumor Regression and Immunity. Cell Rep. 2015, 11, 1018–1030. [Google Scholar] [CrossRef] [PubMed]
- Jenal, U.; Reinders, A.; Lori, C. Cyclic di-GMP: Second messenger extraordinaire. Nat. Rev. Microbiol. 2017, 15, 271–284. [Google Scholar] [CrossRef]
- Meric-Bernstam, F.; Sandhu, S.K.; Hamid, O.; Spreafico, A.; Kasper, S.; Dummer, R.; Shimizu, T.; Steeghs, N.; Lewis, N.; Talluto, C.C.; et al. Phase Ib study of MIW815 (ADU-S100) in combination with spartalizumab (PDR001) in patients (pts) with advanced/metastatic solid tumors or lymphomas. J. Clin. Oncol. 2019, 37, 2507. [Google Scholar] [CrossRef]
- Alley, S.C.; Okeley, N.M.; Senter, P.D. Antibody-drug conjugates: Targeted drug delivery for cancer. Curr. Opin. Chem. Biol. 2010, 14, 529–537. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Xu, Z.; Li, T.; Thakur, A.; Wen, Y.; Zhang, K.; Liu, Y.; Liang, Q.; Liu, W.; Qin, J.-J.; et al. Nanomaterial-encapsulated STING agonists for immune modulation in cancer therapy. Biomark. Res. 2024, 12, 2. [Google Scholar] [CrossRef]
- Jang, S.C.; Economides, K.D.; Moniz, R.J.; Sia, C.L.; Lewis, N.; McCoy, C.; Zi, T.; Zhang, K.; Harrison, R.A.; Lim, J.; et al. ExoSTING, an extracellular vesicle loaded with STING agonists, promotes tumor immune surveillance. Commun. Biol. 2021, 4, 497. [Google Scholar] [CrossRef]
- Janku, F.; Luke, J.J.; Brennan, A.; Riese, R.; Varterasian, M.; Armstrong, M.B.; Kuhn, K.L.; Sokolovska, A.; Strauss, J.F. Abstract CT110: Intratumoral injection of SYNB1891, a synthetic biotic designed to activate the innate immune system, demonstrates target engagement in humans including intratumoral STING activation. Cancer Res. 2021, 81, CT110. [Google Scholar] [CrossRef]
- Leventhal, D.S.; Sokolovska, A.; Li, N.; Plescia, C.; Kolodziej, S.A.; Gallant, C.W.; Christmas, R.; Gao, J.-R.; James, M.J.; Abin-Fuentes, A.; et al. Immunotherapy with engineered bacteria by targeting the STING pathway for anti-tumor immunity. Nat. Commun. 2020, 11, 2739. [Google Scholar] [CrossRef]
- Malli Cetinbas, N.; Monnell, T.; Soomer-James, J.; Shaw, P.; Lancaster, K.; Catcott, K.C.; Dolan, M.; Mosher, R.; Routhier, C.; Chin, C.-N.; et al. Tumor cell-directed STING agonist antibody-drug conjugates induce type III interferons and anti-tumor innate immune responses. Nat. Commun. 2024, 15, 5842. [Google Scholar] [CrossRef]
- Weiskopf, K.; Weissman, I.L. Macrophages are critical effectors of antibody therapies for cancer. mAbs 2015, 7, 303–310. [Google Scholar] [CrossRef]
- Liang, B.; Xing, X.; Storts, H.; Ye, Z.; Claybon, H.; Austin, R.; Ding, R.; Liu, B.; Wen, H.; Miles, W.O.; et al. Antagonistic roles of cGAS/STING signaling in colorectal cancer chemotherapy. Front. Oncol. 2024, 14, 1441935. [Google Scholar] [CrossRef]
- Lv, M.; Chen, M.; Zhang, R.; Zhang, W.; Wang, C.; Zhang, Y.; Wei, X.; Guan, Y.; Liu, J.; Feng, K.; et al. Manganese is critical for antitumor immune responses via cGAS-STING and improves the efficacy of clinical immunotherapy. Cell Res. 2020, 30, 966–979. [Google Scholar] [CrossRef]
- Makarova, A.M.; Iannello, A.; Rae, C.S.; King, B.; Besprozvannaya, M.; Faulhaber, J.; Skoble, J.; Thanos, C.D.; Glickman, L.H. Abstract 5016: STACT-TREX1: A systemically-administered STING pathway agonist targets tumor-resident myeloid cells and induces adaptive anti-tumor immunity in multiple preclinical models. Cancer Res. 2019, 79, 5016. [Google Scholar] [CrossRef]
- Onyedibe, K.I.; Wang, M.; Sintim, H.O. ENPP1, an Old Enzyme with New Functions, and Small Molecule Inhibitors-A STING in the Tale of ENPP1. Molecules 2019, 24, 4192. [Google Scholar] [CrossRef] [PubMed]
- Rasmussen, M.; Alvik, K.; Kannen, V.; Olafsen, N.E.; Erlingsson, L.A.M.; Grimaldi, G.; Takaoka, A.; Grant, D.M.; Matthews, J. Loss of PARP7 Increases Type I Interferon Signaling in EO771 Breast Cancer Cells and Prevents Mammary Tumor Growth by Increasing Antitumor Immunity. Cancers 2023, 15, 3689. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Guan, Y.; Lv, M.; Zhang, R.; Guo, Z.; Wei, X.; Du, X.; Yang, J.; Li, T.; Wan, Y.; et al. Manganese Increases the Sensitivity of the cGAS-STING Pathway for Double-Stranded DNA and Is Required for the Host Defense against DNA Viruses. Immunity 2018, 48, 675–687.e677. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Lu, S.-F.; Wan, B.; Ming, S.-L.; Li, G.-L.; Su, B.-Q.; Liu, J.-Y.; Wei, Y.-S.; Yang, G.-Y.; Chu, B.-B. Maintenance of cyclic GMP-AMP homeostasis by ENPP1 is involved in pseudorabies virus infection. Mol. Immunol. 2018, 95, 56–63. [Google Scholar] [CrossRef]
- Uslu, U.; Sun, L.; Castelli, S.; Finck, A.V.; Assenmacher, C.-A.; Young, R.M.; Chen, Z.J.; June, C.H. The STING agonist IMSA101 enhances chimeric antigen receptor T cell function by inducing IL-18 secretion. Nat. Commun. 2024, 15, 3933. [Google Scholar] [CrossRef]
- Moser, J.C.; Alistar, A.; Cohen, E.; Garmey, E.; Kazmi, S.; Mooneyham, T.; Sun, L.; Yap, T.; Mahalingam, D. 618 Phase 1 clinical trial evaluating the safety, biologic and anti-tumor activity of the novel STING agonist IMSA101 administered both as monotherapy and in combination with PD-(L)1 checkpoint inhibitors. J. Immunother. Cancer 2023, 11, A704. [Google Scholar] [CrossRef]
- Lee, P.; Malhotra, J.; Salsamendi, J.; Arbab, M.; Biswas, T.; Baschnagel, A.; Deek, M.P.; Garmey, E.G.; Hamstra, D.A.; Huynh, M.A.; et al. Two phase 2A clinical trials to evaluate the safety and efficacy of IMSA101 in combination with radiotherapy and checkpoint inhibitors in oligometastatic and oligoprogressive solid tumor malignancies. J. Clin. Oncol. 2024, 42, TPS2685. [Google Scholar] [CrossRef]
- Berger, G.; Knelson, E.H.; Jimenez-Macias, J.L.; Nowicki, M.O.; Han, S.; Panagioti, E.; Lizotte, P.H.; Adu-Berchie, K.; Stafford, A.; Dimitrakakis, N.; et al. STING activation promotes robust immune response and NK cell–mediated tumor regression in glioblastoma models. Proc. Natl. Acad. Sci. USA 2022, 119, e2111003119. [Google Scholar] [CrossRef]
- Lee, S.J.; Yang, H.; Kim, W.R.; Lee, Y.S.; Lee, W.S.; Kong, S.J.; Lee, H.J.; Kim, J.H.; Cheon, J.; Kang, B.; et al. STING activation normalizes the intraperitoneal vascular-immune microenvironment and suppresses peritoneal carcinomatosis of colon cancer. J. Immunother. Cancer 2021, 9, e002195. [Google Scholar] [CrossRef] [PubMed]
- Meric-Bernstam, F.; Sweis, R.F.; Hodi, F.S.; Messersmith, W.A.; Andtbacka, R.H.I.; Ingham, M.; Lewis, N.; Chen, X.; Pelletier, M.; Chen, X.; et al. Phase I Dose-Escalation Trial of MIW815 (ADU-S100), an Intratumoral STING Agonist, in Patients with Advanced/Metastatic Solid Tumors or Lymphomas. Clin. Cancer Res. An. Off. J. Am. Assoc. Cancer Res. 2022, 28, 677–688, Erratum in Clin Cancer Res. 2023, 29, 2336. https://doi.org/10.1158/1078-0432.CCR-23-1170. [Google Scholar] [CrossRef]
- Ji, N.; Wang, M.; Tan, C. Liposomal Delivery of MIW815 (ADU-S100) for Potentiated STING Activation. Pharmaceutics 2023, 15, 638. [Google Scholar] [CrossRef]
- Challa, S.V.; Zhou, S.; Sheri, A.; Padmanabhan, S.; Meher, G.; Gimi, R.; Schmidt, D.; Cleary, D.; Afdhal, N.; Iyer, R. Preclinical studies of SB 11285, a novel STING agonist for immuno-oncology. J. Clin. Oncol. 2017, 35, e14616. [Google Scholar] [CrossRef]
- Challa, S.; Ramachandran, B.; Vijayakrishnan, L.; Weitzel, D.; Zhou, S.; Iyer, K. Abstract B96: Pharmacodynamic studies of SB 11285, a systemically bioavailable STING agonist in orthotopic tumor models. Cancer Immunol. Res. 2020, 8, B96. [Google Scholar] [CrossRef]
- Luke, J.; Janku, F.; Olszanski, A.; Leach, K.; Iyer, R.; Abbas, A. 367 A phase 1/1b dose-escalation study of intravenously administered SB 11285 alone and in combination with atezolizumab in patients with advanced solid tumors. J. Immunother. Cancer 2020, 8, A224. [Google Scholar] [CrossRef]
- Zhou, S.; Challa, S.; Nair, V.; Meher, G.; Sheri, A.; Gimi, R.; Padmanabhan, S.; Cleary, D.; Suppiah, L.; Schmidt, D.; et al. Abstract B87: Mechanistic insights into the antitumor activity of SB 11285—A novel STING agonist. Cancer Immunol. Res. 2020, 8, B87. [Google Scholar] [CrossRef]
- Carideo Cunniff, E.; Sato, Y.; Mai, D.; Appleman, V.A.; Iwasaki, S.; Kolev, V.; Matsuda, A.; Shi, J.; Mochizuki, M.; Yoshikawa, M.; et al. TAK-676: A Novel Stimulator of Interferon Genes (STING) Agonist Promoting Durable IFN-dependent Antitumor Immunity in Preclinical Studies. Cancer Res. Commun. 2022, 2, 489–502. [Google Scholar] [CrossRef]
- Cooper, B.; Chmura, S.J.; Luke, J.J.; Shiao, S.L.; Basho, R.K.; Iams, W.T.; Page, D.B.; Li, C.; Gregory, R.C.; Shaw, M.H.; et al. Abstract CT243: Phase 1 study of TAK-676 + pembrolizumab following radiation therapy in patients with advanced non-small-cell lung cancer (NSCLC), triple-negative breast cancer (TNBC), or squamous-cell carcinoma of the head and neck (SCCHN). Cancer Res. 2022, 82, CT243. [Google Scholar] [CrossRef]
- Cooper, B.T.; Chmura, S.J.; Luke, J.J.; Shiao, S.L.; Basho, R.K.; Iams, W.T.; Page, D.B.; Li, C.; Gregory, R.C.; Shaw, M.; et al. TAK-676 in combination with pembrolizumab after radiation therapy in patients (pts) with advanced non–small cell lung cancer (NSCLC), triple-negative breast cancer (TNBC), or squamous-cell carcinoma of the head and neck (SCCHN): Phase 1 study design. J. Clin. Oncol. 2022, 40, TPS2698. [Google Scholar] [CrossRef]
- Rajasekaran, K.; Ow, T.J.; Nathan, C.-A.; Tang, A.L.; Mehta, V.; Schiff, B.A.; Pang, J.; van Zante, A.; Turner, A.; Grenley, M.O.; et al. Multiplexed trackable intratumor microdosing of the investigational STING agonist TAK-676 alone and in combination in the native tumor microenvironment of patients with head and neck cancer: A phase 0 trial. J. Clin. Oncol. 2023, 41, 2579. [Google Scholar] [CrossRef]
- Huang, K.-C.; Chanda, D.; McGrath, S.; Dixit, V.; Zhang, C.; Wu, J.; Tendyke, K.; Yao, H.; Hukkanen, R.; Taylor, N.; et al. Pharmacologic Activation of STING in the Bladder Induces Potent Antitumor Immunity in Non-Muscle Invasive Murine Bladder Cancer. Mol. Cancer Ther. 2022, 21, 914–924, Erratum in Mol. Cancer Ther. 2023, 22, 551. https://doi.org/10.1158/1535-7163.mct-23-0121. [Google Scholar] [CrossRef] [PubMed]
- Kim, D.-S.; Endo, A.; Fang, F.G.; Huang, K.-C.; Bao, X.; Choi, H.-w.; Majumder, U.; Shen, Y.Y.; Mathieu, S.; Zhu, X.; et al. E7766, a Macrocycle-Bridged Stimulator of Interferon Genes (STING) Agonist with Potent Pan-Genotypic Activity. ChemMedChem 2021, 16, 1740–1743. [Google Scholar] [CrossRef] [PubMed]
- Endo, A.; Kim, D.-S.; Huang, K.-C.; Hao, M.-H.; Mathieu, S.; Choi, H.-w.; Majumder, U.; Zhu, X.; Shen, Y.; Sanders, K.; et al. Abstract 4456: Discovery of E7766: A representative of a novel class of macrocycle-bridged STING agonists (MBSAs) with superior potency and pan-genotypic activity. Cancer Res. 2019, 79, 4456. [Google Scholar] [CrossRef]
- Huang, K.-C.; Endo, A.; McGrath, S.; Chandra, D.; Wu, J.; Kim, D.-S.; Albu, D.; Ingersoll, C.; Tendyke, K.; Loiacono, K.; et al. Abstract 3269: Discovery and characterization of E7766, a novel macrocycle-bridged STING agonist with pan-genotypic and potent antitumor activity through intravesical and intratumoral administration. Cancer Res. 2019, 79, 3269. [Google Scholar] [CrossRef]
- Jiang, R.; Hart, A.; Burgess, L.; Kim, D.-S.; Lai, W.G.; Dixit, V. Prediction of Transporter-Mediated Drug-Drug Interactions and Phenotyping of Hepatobiliary Transporters Involved in the Clearance of E7766, a Novel Macrocycle-Bridged Dinucleotide. Drug Metab. Dispos. Biol. Fate Chem. 2021, 49, 265–275. [Google Scholar] [CrossRef] [PubMed]
- Drozdowski, B.; Arai, K.; Kim, D.-S.; Phillips, C.; Jean-Toussaint, R.; Huang, K.-C.; Bao, X.; Kaburagi, Y.; Kuboi, Y.; Lim, C.; et al. 1017 PSMA-E7766 ADC: Harnessing targeted delivery of STING agonists for anti-tumor activity in prostate cancer. J. Immunother. Cancer 2024, 12 (Suppl. 2), A1138. [Google Scholar] [CrossRef]
- Luke, J.J.; Pinato, D.J.; Juric, D.; LoRusso, P.; Hosein, P.J.; Desai, A.M.; Haddad, R.; de Miguel, M.; Cervantes, A.; Kim, W.S.; et al. Phase I dose-escalation and pharmacodynamic study of STING agonist E7766 in advanced solid tumors. J. Immunother. Cancer 2025, 13, e010511. [Google Scholar] [CrossRef]
- Thomlinson, R.H.; Gray, L.H. The histological structure of some human lung cancers and the possible implications for radiotherapy. Br. J. Cancer 1955, 9, 539–549. [Google Scholar] [CrossRef]
- Riese, R.; Luke, J.; Lewis, K.; Janku, F.; Piha-Paul, S.; Verschraegen, C.; Brennan, A.; Armstrong, M.; Varterasian, M.; Sokolovska, A.; et al. 500 SYNB1891, a bacterium engineered to produce a STING agonist, demonstrates target engagement in humans following intratumoral injection. J. Immunother. Cancer 2021, 9 (Suppl. 2), A532. [Google Scholar] [CrossRef]
- Jang, S.C.; Moniz, R.J.; Sia, C.L.; Harrison, R.A.; Houde, D.; Ross, N.; Xu, K.; Lewis, N.; Bourdeau, R.; McCoy, C.; et al. Abstract 944: ExoSTING: An engineered exosome therapeutic that selectively delivers STING agonist to the tumor resident antigen-presenting cells resulting in improved tumor antigen-specific adaptive immune response. Cancer Res. 2019, 79, 944. [Google Scholar] [CrossRef]
- Kirwin, K.; Jang, S.C.; Sia, C.; Dooley, K.; Zi, T.; Zhang, K.; Liu, Y.; Economides, K.; Patel, S.; Sathyanaryanan, S. 572 Combination therapy of exoSTING, exoIL-12 activates systemic anti-tumor immunity. J. Immunother. Cancer 2021, 9 (Suppl. 2), A601. [Google Scholar] [CrossRef]
- Codiak Provides Platform-Validating Clinical Update and Data from Phase 1 Trials of exoSTING™ and exoIL-12™. Available online: https://www.biospace.com/codiak-provides-platform-validating-clinical-update-and-data-from-phase-1-trials-of-exosting-and-exoil-12 (accessed on 28 July 2025).
- Codiak Reports Positive Initial Data for exoSTING™ Phase 1/2 Trial Indicating Tolerability, Immune Activation, and Evidence of Tumor Shrinkage in Injected and Non-Injected Tumors in the First Three Dose Escalation Cohorts. Available online: https://www.biospace.com/codiak-reports-positive-initial-data-for-exosting-phase-1-2-trial-indicating-tolerability-immune-activation-and-evidence-of-tumor-shrinkage-in-injected-and-non-injected-tumors-in-the-first-three-dose-escalation-cohorts (accessed on 7 August 2025).
- Foldi, J.; Piha-Paul, S.A.; Villaruz, L.C.; McArthur, H.L.; Olson, M.; Jonathan, E.; Ostrander, B.; Krishnan, K.; Luke, J.J. A phase 1 dose-escalation and expansion study of an intratumorally administered dual STING agonist (ONM-501) alone and in combination with cemiplimab in patients with advanced solid tumors and lymphomas. J. Clin. Oncol. 2024, 42, TPS2693. [Google Scholar] [CrossRef]
- Gao, X.; Lei, G.; Wang, B.; Deng, Z.; Karges, J.; Xiao, H.; Tan, D. Encapsulation of Platinum Prodrugs into PC7A Polymeric Nanoparticles Combined with Immune Checkpoint Inhibitors for Therapeutically Enhanced Multimodal Chemotherapy and Immunotherapy by Activation of the STING Pathway. Adv. Sci. 2023, 10, e2205241. [Google Scholar] [CrossRef]
- Li, S.; Wang, J.; Wilhelm, J.; Su, Q.; Bharadwaj, G.; Miller, J.; Li, W.; Torres, K.; Han, R.; Zhao, T.; et al. Abstract 4234: ONM-501: A polyvalent STING agonist for oncology immunotherapy. Cancer Res. 2022, 82, 4234. [Google Scholar] [CrossRef]
- Chen, Z.; Huang, G.; Torres, K.; Stavros, F.; Ahmed, A.; Miller, J.; Zhao, T.; Gao, J.; Han, R. Abstract LB245: ONM-501, a dual-activating polyvalent STING agonist, enhances tumor retention and demonstrates favorable preclinical safety profile. Cancer Res. 2023, 83, LB245. [Google Scholar] [CrossRef]
- Chen, Z.; Miller, J.; Li, W.; Torres, K.; Su, Q.; Huang, G.; Saud, O.; Albaroodi, Y.; Morsch, R.; McElvaney, T.; et al. 1155 ONM-501, a polyvalent STING agonist, exhibits anti-tumor efficacy with increased tumor T-cell infiltration in mice and is well tolerated in rats and non-human primates. J. Immunother. Cancer 2022, 10 (Suppl. 2), A1198. [Google Scholar] [CrossRef]
- Li, S.; Luo, M.; Wang, Z.; Feng, Q.; Wilhelm, J.; Wang, X.; Li, W.; Wang, J.; Su, Q.; Bharadwaj, G.; et al. Abstract P049: ONM-501—A synthetic polyvalent STING agonist for cancer immunotherapy. Cancer Immunol. Res. 2022, 10, P049. [Google Scholar] [CrossRef]
- Ager, C.R.; Di Francesco, M.E.; Jones, P.; Curran, M.A. Abstract A050: Intratumoral delivery of a novel STING agonist synergizes with checkpoint blockade to regress multifocal pancreatic cancer. Cancer Immunol. Res. 2019, 7, A050. [Google Scholar] [CrossRef]
- Huntoon, K.; Lee, D.; Lu, Y.; Jiang, W.; Curran, M.; Kim, B.Y.S. 467 Stimulator of Interferon Genes Protein (STING) Agonist Incited Sustained Antitumor Immunity in Murine Models of Glioblastoma. Neurosurgery 2023, 69, 98. [Google Scholar] [CrossRef]
- Lea, S.; Chen, C.-H.; Hartley, G.; Hsieh, R.C.-E.; Curran, M. 763 Intratumoral delivery of high potency STING agonists modulates the immunosuppressive myeloid compartment and induces curative responses in checkpoint-refractory glioblastoma models. J. Immunother. Cancer 2021, 9 (Suppl. 2), A798. [Google Scholar] [CrossRef]
- Lea, S.; Najem, H.; Chen, C.-H.; Wei, J.; William, I.; Tripathi, S.; Hurley, L.A.; Heimberger, A.; Curran, M.A. 1018 Leveraging innate immune sensors to generate durable anti-glioma adaptive immune responses. J. Immunother. Cancer 2024, 12 (Suppl. 2), A1139. [Google Scholar] [CrossRef]
- Lea, S.; Wei, J.; Chen, C.-H.; William, I.; Curran, M. 1115 A novel lioblastoma model resistant to both innate and adaptive immunotherapy. J. Immunother. Cancer 2023, 11 (Suppl. 1), A1228. [Google Scholar] [CrossRef]
- Li, T.; Zhang, W.; Niu, M.; Wu, Y.; Deng, X.; Zhou, J. STING agonist inflames the cervical cancer immune microenvironment and overcomes anti-PD-1 therapy resistance. Front. Immunol. 2024, 15, 1342647. [Google Scholar] [CrossRef]
- Pan, B.-S.; Perera, S.A.; Piesvaux, J.A.; Presland, J.P.; Schroeder, G.K.; Cumming, J.N.; Trotter, B.W.; Altman, M.D.; Buevich, A.V.; Cash, B.; et al. An orally available non-nucleotide STING agonist with antitumor activity. Science 2020, 369. [Google Scholar] [CrossRef]
- Chin, E.N.; Yu, C.; Vartabedian, V.F.; Jia, Y.; Kumar, M.; Gamo, A.M.; Vernier, W.; Ali, S.H.; Kissai, M.; Lazar, D.C.; et al. Antitumor activity of a systemic STING-activating non-nucleotide cGAMP mimetic. Science 2020, 369, 993–999. [Google Scholar] [CrossRef]
- Wang, M.; Huang, X.; Zhang, C.; Wan, P.; Xu, T.; Zhai, X.; Yao, L. Preprint: HIF-PHI regulates the STING-TBK1-IRF3 signaling pathway and mediates macrophage polarization to alleviate renal interstitial fibrosis. Res. Sq. 2024. [Google Scholar] [CrossRef]
- Miao, Z.; Song, X.; Xu, A.; Yao, C.; Li, P.; Li, Y.; Yang, T.; Shen, G. Targeted Delivery of STING Agonist via Albumin Nanoreactor Boosts Immunotherapeutic Efficacy against Aggressive Cancers. Pharmaceutics 2024, 16, 1216. [Google Scholar] [CrossRef]
- Soomer-James, J.; Damelin, M.; Malli, N. Abstract 4423: XMT-2056, a HER2-targeted STING agonist antibody-drug conjugate, exhibits ADCC function that synergizes with STING pathway activation and contributes to anti-tumor responses. Cancer Res. 2023, 83, 4423. [Google Scholar] [CrossRef]
- Chen, H.; Sun, H.; You, F.; Sun, W.; Zhou, X.; Chen, L.; Yang, J.; Wang, Y.; Tang, H.; Guan, Y.; et al. Activation of STAT6 by STING is critical for antiviral innate immunity. Cell 2011, 147, 436–446. [Google Scholar] [CrossRef] [PubMed]
- Nie, C.; Ma, T.; Ye, J.; He, M.; Zhang, T.; Wei, K.; Jiang, J.; Chu, X. A STING agonist-loaded bispecific nanobioconjugate modulates macrophage immune responses to enhance antitumor immunotherapy. Chem. Eng. J. 2024, 485, 149901. [Google Scholar] [CrossRef]
- Smith, M.; Chin, D.; Chan, S.; Mahady, S.; Campion, L.; Morgan, C.; Patel, S.; Chu, G.; Hughes, A.; Bignan, G.; et al. Abstract 5567: In vivo administration of the STING agonist, JNJ-67544412, leads to complete regression of established murine subcutaneous tumors. Cancer Res. 2020, 80, 5567. [Google Scholar] [CrossRef]
- Appleman, V.; Matsuda, A.; Ganno, M.; Lopez, A.M.; Rosentrater, E.; Christensen, C.; Merrigan, S.; Lee, H.M.; Lee, M.Y.; Dong, L.; et al. 1153 Preclinical activity of C-C chemokine receptor 2 (CCR2)-targeted immune stimulating antibody conjugate (ISAC), motivating clinical testing of TAK-500. J. Immunother. Cancer 2022, 10, A1196. [Google Scholar] [CrossRef]
- Schalper, K.A.; Matsuda, A.; Ganno-Sherwood, M.; Maldonado-Lopez, A.E.; Rosentrater, E.; Porciuncula, A.; Zhang, D.M.; Christensen, C.L.; Merrigan, S.A.; Hatten, T.; et al. Abstract 1841: TAK-500 is a clinical stage immune-cell directed antibody drug conjugate (iADC) inducing STING activation in CCR2-expressing intratumor myeloid cells and favorable immunomodulation. Cancer Res. 2023, 83, 1841. [Google Scholar] [CrossRef]
- Koshy, S.T.; Cheung, A.S.; Gu, L.; Graveline, A.R.; Mooney, D.J. Liposomal Delivery Enhances Immune Activation by STING Agonists for Cancer Immunotherapy. Adv. Biosyst. 2017, 1, 1600013. [Google Scholar] [CrossRef] [PubMed]
- Martin, G.R.; Salazar Arcila, C.; Hallihan, L.J.; Scheidl-Yee, T.; Jirik, F.R. Inducible generalized activation of hSTING-N154S expression in mice leads to lethal hypercytokinemia: A model for “cytokine storm”. J. Leukoc. Biol. 2023, 113, 326–333. [Google Scholar] [CrossRef]
- Barber, G.N. STING: Infection, inflammation and cancer. Nat. Rev. Immunol. 2015, 15, 760–770. [Google Scholar] [CrossRef] [PubMed]
- Gehrcken, L.; Deben, C.; Smits, E.; Van Audenaerde, J.R.M. STING Agonists and How to Reach Their Full Potential in Cancer Immunotherapy. Adv. Sci. (Weinh) 2025, 12, e2500296. [Google Scholar] [CrossRef]
- Shen, A.; Li, X.; Zhang, Y.; Ma, J.; Xiao, R.; Wang, X.; Song, Z.; Liu, Z.; Geng, M.; Zhang, A.; et al. Structure-Activity relationship study of benzothiophene oxobutanoic acid analogues leading to novel stimulator of interferon gene (STING) agonists. Eur. J. Med. Chem. 2022, 241, 114627. [Google Scholar] [CrossRef]
- Li, L.; Yin, Q.; Kuss, P.; Maliga, Z.; Millán, J.L.; Wu, H.; Mitchison, T.J. Hydrolysis of 2′3′-cGAMP by ENPP1 and design of nonhydrolyzable analogs. Nat. Chem. Biol. 2014, 10, 1043–1048. [Google Scholar] [CrossRef]
- Cheng, N.; Watkins-Schulz, R.; Junkins, R.D.; David, C.N.; Johnson, B.M.; Montgomery, S.A.; Peine, K.J.; Darr, D.B.; Yuan, H.; McKinnon, K.P.; et al. A nanoparticle-incorporated STING activator enhances antitumor immunity in PD-L1-insensitive models of triple-negative breast cancer. JCI Insight 2018, 3, e120638. [Google Scholar] [CrossRef]
- Dosta, P.; Cryer, A.M.; Dion, M.Z.; Shiraishi, T.; Langston, S.P.; Lok, D.; Wang, J.; Harrison, S.; Hatten, T.; Ganno, M.L.; et al. Investigation of the enhanced antitumour potency of STING agonist after conjugation to polymer nanoparticles. Nat. Nanotechnol. 2023, 18, 1351–1363. [Google Scholar] [CrossRef] [PubMed]
- Su, T.; Cheng, F.; Qi, J.; Zhang, Y.; Zhou, S.; Mei, L.; Fu, S.; Zhang, F.; Lin, S.; Zhu, G. Responsive Multivesicular Polymeric Nanovaccines that Codeliver STING Agonists and Neoantigens for Combination Tumor Immunotherapy. Adv. Sci. (Weinh) 2022, 9, e2201895. [Google Scholar] [CrossRef]
- Lu, X.; Miao, L.; Gao, W.; Chen, Z.; McHugh, K.J.; Sun, Y.; Tochka, Z.; Tomasic, S.; Sadtler, K.; Hyacinthe, A.; et al. Engineered PLGA microparticles for long-term, pulsatile release of STING agonist for cancer immunotherapy. Sci. Transl. Med. 2020, 12, eaaz6606. [Google Scholar] [CrossRef]
- Chen, X.; Meng, F.; Xu, Y.; Li, T.; Chen, X.; Wang, H. Chemically programmed STING-activating nano-liposomal vesicles improve anticancer immunity. Nat. Commun. 2023, 14, 4584. [Google Scholar] [CrossRef] [PubMed]
- Hussain, Z.; Gou, S.; Liu, X.; Li, M.; Zhang, H.; Ren, S.; Han, R.; Liu, F.; Zhou, X.; Qiu, L.; et al. Enhancing tumor immunotherapy with smart nanoparticles for reprogramming macrophages and blocking the CD47/Sirpalpha pathway. Mater. Today Bio 2025, 32, 101826. [Google Scholar] [CrossRef]
- Wang, F.; Su, H.; Xu, D.; Dai, W.; Zhang, W.; Wang, Z.; Anderson, C.F.; Zheng, M.; Oh, R.; Wan, F.; et al. Tumour sensitization via the extended intratumoural release of a STING agonist and camptothecin from a self-assembled hydrogel. Nat. Biomed. Eng. 2020, 4, 1090–1101. [Google Scholar] [CrossRef] [PubMed]
- Delitto, D.; Zabransky, D.J.; Chen, F.; Thompson, E.D.; Zimmerman, J.W.; Armstrong, T.D.; Leatherman, J.M.; Suri, R.; Lopez-Vidal, T.Y.; Huff, A.L.; et al. Implantation of a neoantigen-targeted hydrogel vaccine prevents recurrence of pancreatic adenocarcinoma after incomplete resection. Oncoimmunology 2021, 10, 2001159. [Google Scholar] [CrossRef]
- Wang, J.; Falchook, G.; Nabhan, S.; Kulkarni, M.; Sandy, P.; Dosunmu, O.; Gardner, H.; Bendell, J.; Johnson, M. 495 Trial of SNX281, a systemically delivered small molecule STING agonist, in solid tumors and lymphomas. J. Immunother. Cancer 2021, 9 (Suppl. 2), A527. [Google Scholar] [CrossRef]
Agent 1 and Therapy | Route 2 | Phase | SAE in Clinical Trials 3 | Type of Cancer 4 | NTC Code | Start | Status/Completion 5 | |
---|---|---|---|---|---|---|---|---|
IMSA101 (GB492) | Mono- therapy or +ICI/OC | IT | 1/2a | Asthenia (5%), Acute respiratory failure (2.5%), Sepsis (2.5%), Pneumonia (2.5%), Angina pectoris (2.4%), Hepatorenal syndrome (2.4%) | Advanced solid tumors | NCT 04020185 | 23.09.2019 | Completed 15.09.2023 |
+PULSAR-ICI | IT | 2 | NSCLC or renal cell carcinoma | NCT 05846646 | 28.06.2023 | Terminated 16.09.2024 | ||
+PULSAR-ICI | IT | 2 | Solid tumors | NCT 05846659 | 07.07.2023 | Terminated 20.11.2024 | ||
+PULSAR | IT | 2 | Renal cell carcinoma | NCT 06601296 | 01.04.2025 | Recruiting | ||
+ICI | IT | 1 | Advanced solid tumors | NCT 06026254 | 15.09.2023 | Ongoing | ||
ADU-S100 (MIW 815) | Mono- therapy or +Ipilimumab | IT | 1 | CRS (6.2%), Localized oedema (6.2%), Colitis (6.2%), Sepsis (6.2%), Acute kidney injury (6.2%), Pneumonia aspiration (6.2%) | Advanced/ metastatic solid tumors or lymphomas | NCT 02675439 | 28.04.2016 | Terminated 06.08.2020 |
+PDR001 | IT | 1 | Solid tumors and lymphomas | NCT 03172936 | 08.09.2017 | Terminated 18.12.2020 | ||
+Pembrolizumab | IT | 2 | Head and neck cancers | NCT 03937141 | 28.08.2019 | Terminated 10.06.2021 | ||
SB 11285 | Mono- therapy or +Atezolizumab | IV | 1 | n/a | Advanced solid tumors | NCT 04096638 | 23.09.2019 | Completed 16.07.2024 |
TAK-676 (Dazo-stinag) | Mono- therapy or +Carboplatin/5-FU/Paclitaxel | IT | Early 1 | n/a | SCCHN | NCT 06062602 | 26.07.2021 | Completed 15.11.2022 |
+Pembrolizumab after Radiotherapy | IV | 1 | NSCLC, TNBC or SCCHN | NCT 04879849 | 09.09.2021 | Completed 30.04.2024 | ||
Mono- therapy or +Pembrolizumab | IV | 1/2 | Advanced/ metastatic solid tumors | NCT 04420884 | 22.07.2020 | Recruiting | ||
E7766 | Mono- therapy | IT | 1/1b | Upper gastrointestinal hemorrhage (4.2%), Vomiting (4.2%), Localized oedema (4.2%), Cerebral venous sinus thrombosis (4.2%), Hypertension (4.2%), Hypotension (4.2%) | Advanced solid tumors or lymphomas | NCT 04144140 | 24.02.2020 | Terminated 26.07.2022 |
Mono- therapy | Intra-vesical | 1/1b | Non-muscle invasive bladder cancer | NCT 04109092 | 13.02.2020 | Withdrawn 29.09.2022 | ||
SYNB1891 | Mono- therapy or +Atezolizumab | IV, IT | 1 | CRS (15.6%), Sepsis (3.1%), Tracheal hemorrhage (3.1%), Transient ischaemic attack (3.1%), Hypoxia (3.1%), Pulmonary embolism (3.1%) | Advanced/ metastatic solid tumors or lymphomas | NCT 04167137 | 12.12.2019 | Terminated 09.12.2021 |
CDK-002 (exo-STING) | Mono- therapy | IT | 1/2 | Grade 2 CRS (8.7%), Grade 1 pyrexia (4.4%) | Advanced/ metastatic solid tumors | NCT 04592484 | 15.09.2020 | Completed 23.12.2022 |
ONM-501 | Mono- therapy or +Cemiplimab | IT | 1 | n/a | Advanced solid tumors or lymphomas | NCT 06022029 | 13.10.2023 | Recruiting |
CD8+ T Cells | NK Cells | M1-like | M2-like | DCs | TH1 Cells | B Cells | Tregs | |
---|---|---|---|---|---|---|---|---|
IMSA101 (GB492) | ↑ | ↑ | ↑ | - | - | - | - | - |
ADU-S100 (MIW 815) | ↑ | - | ↑ | ↓ | ↑ | - | - | - |
SB 11285 | ↑ | ↑ | ↑ | - | - | - | - | ↓ |
TAK-676 (Dazostinag) | ↑ | ↑ | ↑ | - | - | - | - | - |
E7766 | ↑ | ↑ | ↑ | ↓ | ↑ | - | ↑ | - |
SYNB1891 | ↑ | - | - | - | - | - | - | |
CDK-002 (exoSTING) | - | - | ↑ | ↓ | - | ↑ | - | - |
ONM-501 | ↑ | ↑ | ↑ | - | - | - | - | - |
IACS-8803/ IMGS-203 | ↑ | ↑ | ↑ | ↓ | ↑ | - | - | - |
MSA-2 | ↑ | ↑ | ↑ | - | - | - | - | - |
SR-717 | ↑ | ↑ | ↑ | - | - | - | - | - |
IFNα | IFNβ | IFNγ | TNFα | IL-6 | IL-1β | IL-18 | CXCL10 | GM-CSF | TGFβ | IL-10 | |
---|---|---|---|---|---|---|---|---|---|---|---|
IMSA101 (GB492) | - | - | - | - | - | - | ↑ | - | - | ↓ | ↓ |
ADU-S100 (MIW 815) | ↑ | ↑ | ↑ | ↑ | |||||||
SB 11285 | ↑ | ↑ | - | ↑ | - | - | - | - | - | - | - |
TAK-676 (Dazostinag) | ↑ | - | ↑ | ↑ | ↑ | - | - | ↑ | - | - | - |
E7766 | - | ↑ | - | ↑ | ↑ | - | - | ↑ | - | - | - |
SYNB1891 | ↑ | ↑ | ↑ | ↑ | ↑ | ↑ | - | - | ↑ | - | - |
CDK-002 (exoSTING) | - | ↑ | - | - | - | - | - | ↑ | - | - | - |
ONM-501 | - | ↑ | - | - | - | - | - | ↑ | - | - | - |
IACS-8803/ IMGS-203 | - | - | - | - | ↑ | - | - | - | - | ↓ | - |
MSA-2 | - | ↑ | - | ↑ | ↑ | - | - | ↑ | - | - | - |
SR-717 | - | ↑ | - | ↑ | ↑ | - | - | ↑ | - | - | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nerdinger, Y.G.; Binder, A.K.; Bremm, F.; Feuchter, N.; Schaft, N.; Dörrie, J. STINGing Cancer: Development, Clinical Application, and Targeted Delivery of STING Agonists. Int. J. Mol. Sci. 2025, 26, 9008. https://doi.org/10.3390/ijms26189008
Nerdinger YG, Binder AK, Bremm F, Feuchter N, Schaft N, Dörrie J. STINGing Cancer: Development, Clinical Application, and Targeted Delivery of STING Agonists. International Journal of Molecular Sciences. 2025; 26(18):9008. https://doi.org/10.3390/ijms26189008
Chicago/Turabian StyleNerdinger, Yannick Gabriel, Amanda Katharina Binder, Franziska Bremm, Niklas Feuchter, Niels Schaft, and Jan Dörrie. 2025. "STINGing Cancer: Development, Clinical Application, and Targeted Delivery of STING Agonists" International Journal of Molecular Sciences 26, no. 18: 9008. https://doi.org/10.3390/ijms26189008
APA StyleNerdinger, Y. G., Binder, A. K., Bremm, F., Feuchter, N., Schaft, N., & Dörrie, J. (2025). STINGing Cancer: Development, Clinical Application, and Targeted Delivery of STING Agonists. International Journal of Molecular Sciences, 26(18), 9008. https://doi.org/10.3390/ijms26189008