Immunohistochemical Assessment of Acute Myocardial Infarction: A Systematic Review
Abstract
1. Introduction
2. Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Marijon, E.; Narayanan, K.; Smith, K.; Barra, S.; Basso, C.; Blom, M.T.; Crotti, L.; D’Avila, A.; Deo, R.; Dumas, F.; et al. The Lancet Commission to reduce the global burden of sudden cardiac death: A call for multidisciplinary action. Lancet 2023, 402, 883–936. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Global Health Estimates 2020: Deaths by Cause, Age, Sex, by Country and by Region, 2000–2019; World Health Organization: Geneva, Switzerland, 2020.
- Virani, S.S.; Alonso, A.; Benjamin, E.J.; Bittencourt, M.S.; Callaway, C.W.; Carson, A.P.; Chamberlain, A.M.; Chang, A.R.; Cheng, S.; Delling, F.N.; et al. Heart disease and stroke statistics-2020 update: A report from the American Heart Association. Circulation 2020, 141, e139–e596. [Google Scholar] [CrossRef] [PubMed]
- Gallo, P.; D’Amati, G. Anatomia Patologica La sistematica, 1st ed.; UTET: Torino, Italy, 2007. [Google Scholar]
- Turillazzi, E.; Pomara, C.; Bello, S.; Neri, M.; Riezzo, I.; Fineschi, V. The meaning of different forms of structural myocardial injury, immune response and timing of infarct necrosis and cardiac repair. Curr. Vasc. Pharmacol. 2015, 13, 6–19. [Google Scholar] [CrossRef]
- Bertozzi, G.; Cafarelli, F.P.; Ferrara, M.; Di Fazio, N.; Guglielmi, G.; Cipolloni, L.; Manetti, F.; La Russa, R.; Fineschi, V. Sudden Cardiac Death and Ex-Situ Post-Mortem Cardiac Magnetic Resonance Imaging: A Morphological Study Based on Diagnostic Correlation Methodology. Diagnostics 2022, 12, 218. [Google Scholar] [CrossRef]
- Bertozzi, G.; Ferrara, M.; Maiese, A.; Di Fazio, A.; Morena, D.; Padovano, M.; Scopetti, M.; La Russa, R.; Fineschi, V. Post-mortem Cardiac MRI in Sudden Cardiac Death: The Interesting Intertwining of Radiology and Histology to Diagnose Arrhythmic Death or Myocardial Infarction. Curr. Med. Imaging 2025, 21, e15734056343601. [Google Scholar] [CrossRef]
- Adabag, A.S.; Luepker, R.V.; Roger, V.L.; Gersh, B.J. Sudden cardiac death: Epidemiology and risk factors. Nat. Rev. Cardiol. 2010, 7, 216–225. [Google Scholar] [CrossRef] [PubMed]
- Basso, C.; Aguilera, B.; Banner, J.; Cohle, S.; D’Amati, G.; de Gouveia, R.H.; Di Gioia, C.; Fabre, A.; Gallagher, P.J.; Leone, O.; et al. Guidelines for autopsy investigation of sudden cardiac death: 2017 update from the Association for European Cardiovascular Pathology. Virchows Arch. 2017, 471, 691–705. [Google Scholar] [CrossRef]
- Sessa, F.; Esposito, M.; Messina, G.; Di Mizio, G.; Di Nunno, N.; Salerno, M. Sudden death in adults: A practical flow chart for pathologist guidance. Healthcare 2021, 9, 870. [Google Scholar] [CrossRef]
- Maiese, A.; Spina, F.; Visi, G.; Del Duca, F.; De Matteis, A.; La Russa, R.; Di Paolo, M.; Frati, P.; Fineschi, V. The Expression of FOXO3a as a Forensic Diagnostic Tool in Cases of Traumatic Brain Injury: An Immunohistochemical Study. Int. J. Mol. Sci. 2023, 24, 2584. [Google Scholar] [CrossRef]
- Maiese, A.; Manetti, A.C.; Santoro, P.; Del Duca, F.; De Matteis, A.; Turillazzi, E.; Frati, P.; Fineschi, V. FOXO3 Depletion as a Marker of Compression-Induced Apoptosis in the Ligature Mark: An Immunohistochemical Study. Int. J. Mol. Sci. 2023, 24, 1396. [Google Scholar] [CrossRef]
- Magaki, S.; Hojat, S.A.; Wei, B.; So, A.; Yong, W.H. An Introduction to the Performance of Immunohistochemistry. Methods Mol. Biol. 2019, 1897, 289–298. [Google Scholar] [CrossRef]
- Mondello, C.; Cardia, L.; Ventura-Spagnolo, E. Immunohistochemical Detection of Early Myocardial Infarction: A Systematic Review. Int. J. Leg. Med. 2017, 131, 411–421. [Google Scholar] [CrossRef]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 Statement: An Updated Guideline for Reporting Systematic Reviews. BMJ 2021, 372, n71. [Google Scholar] [CrossRef] [PubMed]
- Aydin, S.; Kuloglu, T.; Aydin, S.; Kalayci, M.; Yilmaz, M.; Çakmak, T.; Eren, M.N. Elevated Adropin: A Candidate Diagnostic Marker for Myocardial Infarction in Conjunction with Troponin-I. Peptides 2014, 58, 91–97. [Google Scholar] [CrossRef] [PubMed]
- Bi, H.; Yang, Y.; Huang, J.; Li, Y.; Ma, C.; Cong, B. Immunohistochemical Detection of S100A1 in the Postmortem Diagnosis of Acute Myocardial Infarction. Diagn. Pathol. 2013, 8, 84. [Google Scholar] [CrossRef] [PubMed]
- Martínez Díaz, F.; Rodríguez-Morlensín, M.; Pérez-Cárceles, M.D.; Noguera, J.; Luna, A.; Osuna, E. Biochemical Analysis and Immunohistochemical Determination of Cardiac Troponin for the Postmortem Diagnosis of Myocardial Damage. Histol. Histopathol. 2005, 20, 475–481. [Google Scholar] [CrossRef]
- Brinkmann, B.; Sepulchre, M.A.; Fechner, G. The Application of Selected Histochemical and Immunohistochemical Markers and Procedures to the Diagnosis of Early Myocardial Damage. Int. J. Leg. Med. 1993, 106, 135–141. [Google Scholar] [CrossRef]
- Buğra, A.; Daş, T. The Role of Immunohistochemical Markers in the Diagnosis of Early Myocardial Infarction. Cureus 2022, 14, e22391. [Google Scholar] [CrossRef]
- Campobasso, C.P.; Dell’Erba, A.S.; Addante, A.; Zotti, F.; Marzullo, A.; Colonna, M.F. Sudden cardiac death and myocardial ischemia indicators: A comparative study of four immunohistochemical markers. Am. J. Forensic Med. Pathol. 2008, 29, 154–161. [Google Scholar] [CrossRef]
- Erel, O.; Gun, B.; Tataroğlu, C.; Dirlik, M. Evaluation of apoptosis in myocardial injury in cases of medicolegal death. Rom. J. Leg. Med. 2014, 22, 267–274. [Google Scholar] [CrossRef]
- Falk, M.; Huhn, R.; Behmenburg, F.; Ritz-Timme, S.; Mayer, F. Biomechanical stress in myocardial infarctions: Can endothelin-1 and growth differentiation factor 15 serve as immunohistochemical markers? Int. J. Leg. Med. 2018, 132, 509–518. [Google Scholar] [CrossRef]
- Hansen, S.H.; Rossen, K. Evaluation of cardiac troponin I immunoreaction in autopsy hearts: A possible marker of early myocardial infarction. Forensic Sci. Int. 1999, 99, 189–196. [Google Scholar] [CrossRef] [PubMed]
- Hashmi, S.; Al-Salam, S. Loss of dystrophin staining in cardiomyocytes: A novel method for detection early myocardial infarction. Int. J. Clin. Exp. Pathol. 2013, 6, 249–257. [Google Scholar] [PubMed]
- Hiyamizu, S.; Ishida, Y.; Yasuda, H.; Kuninaka, Y.; Nosaka, M.; Ishigami, A.; Shimada, E.; Kimura, A.; Yamamoto, H.; Osako, M.; et al. Forensic significance of intracardiac expressions of Nrf2 in acute myocardial ischemia. Sci. Rep. 2024, 14, 4046. [Google Scholar] [CrossRef]
- Hu, B.J.; Chen, Y.C.; Zhu, J.Z. Immunohistochemical study of fibronectin for postmortem diagnosis of early myocardial infarction. Forensic Sci. Int. 1996, 78, 209–217. [Google Scholar] [CrossRef] [PubMed]
- Hu, B.J.; Zhu, J.Z. Sequence and time course of depletion of cardiac cellular proteins and accumulation of plasma proteins in rat early ischemic myocardium. Leg. Med. 2019, 38, 36–44. [Google Scholar] [CrossRef]
- Kawamoto, O.; Michiue, T.; Ishikawa, T.; Maeda, H. Immunohistochemistry of Connexin43 and Zonula Occludens-1 in the myocardium as markers of early ischemia in autopsy material. Histol. Histopathol. 2014, 29, 767–775. [Google Scholar]
- Jia, J.; Shen, Y.; Xue, A.; Zhao, Z. Immunohistochemical Analysis of Cardiac Troponin Inhibitor in an Experimental Model of Acute Myocardial Infarction Experimental Model and in Human Tissues. Pathol. Res. Pract. 2015, 211, 456–461. [Google Scholar] [CrossRef]
- Kondo, T.; Takahashi, M.; Yamasaki, G.; Sugimoto, M.; Kuse, A.; Morichika, M.; Nakagawa, K.; Sakurada, M.; Asano, M.; Ueno, Y. Immunohistochemical Analysis of CD31 Expression in Myocardial Tissues from Autopsies of Patients with Ischemic Heart Disease. Leg. Med. 2022, 59, 102127. [Google Scholar] [CrossRef]
- Kondo, T.; Takahashi, M.; Yamasaki, G.; Sugimoto, M.; Kuse, A.; Morichika, M.; Nakagawa, K.; Sakurada, M.; Asano, M.; Ueno, Y. Immunohistochemical Analysis of Thrombomodulin Expression in Myocardial Tissue from Autopsy Cases of Ischemic Heart Disease. Leg. Med. 2021, 51, 101897. [Google Scholar] [CrossRef]
- Kondo, T.; Takahashi, M.; Yamasaki, G.; Sugimoto, M.; Kuse, A.; Morichika, M.; Nakagawa, K.; Sakurada, M.; Asano, M.; Ueno, Y. Immunohistochemical Analysis of Vimentin Expression in Myocardial Tissue from Autopsy Cases of Ischemic Heart Disease. Leg. Med. 2022, 54, 102003. [Google Scholar] [CrossRef]
- Kondo, T.; Takahashi, M.; Yamasaki, G.; Sugimoto, M.; Kuse, A.; Morichika, M.; Nakagawa, K.; Sakurada, M.; Asano, M.; Ueno, Y. Immunohistochemical Analysis of von Willebrand Factor Expression in Myocardial Tissues from Autopsies of Patients with Ischemic Heart Disease. Leg. Med. 2022, 54, 101997. [Google Scholar] [CrossRef]
- Kuloglu, T.; Aydin, S.; Eren, M.N.; Yilmaz, M.; Sahin, I.; Kalayci, M.; Sarman, E.; Kaya, N.; Yilmaz, O.F.; Turk, A.; et al. Irisin: A Potentially Candidate Marker for Myocardial Infarction. Peptides 2014, 55, 85–91. [Google Scholar] [CrossRef]
- Kuninaka, Y.; Ishida, Y.; Nosaka, M.; Ishigami, A.; Taruya, A.; Shimada, E.; Kimura, A.; Yamamoto, H.; Ozaki, M.; Furukawa, F.; et al. Forensic Significance of Intracardiac Heme Oxygenase-1 Expression in Acute Myocardial Ischemia. Sci. Rep. 2021, 11, 21828. [Google Scholar] [CrossRef] [PubMed]
- Mayer, F.; Falk, M.; Huhn, R.; Behmenburg, F.; Ritz-Timme, S. Dityrosine as a Marker of Acute Myocardial Infarction? Experiments with the Isolated Langendorff Heart. Int. J. Leg. Med. 2016, 130, 1053–1060. [Google Scholar] [CrossRef] [PubMed]
- Mayer, F.; Pröpper, S.; Ritz-Timme, S. Dityrosine, a Protein Product of Oxidative Stress, as a Possible Marker of Acute Myocardial Infarctions. Int. J. Leg. Med. 2014, 128, 787–794. [Google Scholar] [CrossRef] [PubMed]
- Meng, X.; Ming, M.; Wang, E. Heart Fatty Acid Binding Protein as a Marker for Postmortem Detection of Early Myocardial Damage. Forensic Sci. Int. 2006, 160, 11–16. [Google Scholar] [CrossRef]
- Mondello, C.; Cardia, L.; Ventura-Spagnolo, E. Immunohistochemical Study on Dystrophin Expression in CAD-Related Sudden Cardiac Death: A Marker of Early Myocardial Ischaemia. Int. J. Leg. Med. 2018, 132, 1333–1339. [Google Scholar] [CrossRef]
- Mondello, C.; Ventura-Spagnolo, E.; Bartoloni, G.; Alibrandi, A.; Cardia, L.; Sapienza, D.; Gualniera, P.; Asmundo, A. Dystrophin and Metalloproteinase 9 in Myocardial Ischemia: A Post-Mortem Immunohistochemical Study. Leg. Med. 2021, 53, 101948. [Google Scholar] [CrossRef]
- Ortmann, C.; Pfeiffer, H.; Brinkmann, B. A Comparative Study on the Immunohistochemical Detection of Early Myocardial Damage. Int. J. Leg. Med. 2000, 113, 215–220. [Google Scholar] [CrossRef]
- Ouyang, J.; Guzman, M.; Desoto-Lapaix, F.; Pincus, M.R.; Wieczorek, R. Utility of Desmin and a Masson’s Trichrome Method to Detect Early Acute Myocardial Infarction in Autopsy Tissues. Int. J. Clin. Exp. Pathol. 2009, 3, 98–105. [Google Scholar]
- Piercecchi-Marti, M.D.; Lepidi, H.; Leonetti, G.; Vire, O.; Cianfarani, F.; Pellissier, J.F. Immunostaining by Complement C9: A Tool for Early Diagnosis of Myocardial Infarction and Application in Forensic Medicine. J. Forensic Sci. 2001, 46, 328–334. [Google Scholar] [CrossRef]
- Piro, F.R.; Di Gioia, C.R.; Gallo, P.; Giordano, C.; D’Amati, G. Is Apoptosis a Diagnostic Marker of Acute Myocardial Infarction? Arch. Pathol. Lab. Med. 2000, 124, 827–831. [Google Scholar] [CrossRef]
- Sabatasso, S.; Mangin, P.; Fracasso, T.; Moretti, M.; Docquier, M.; Djonov, V. Early Markers for Myocardial Ischemia and Sudden Cardiac Death. Int. J. Leg. Med. 2016, 130, 1265–1280. [Google Scholar] [CrossRef] [PubMed]
- Sabatasso, S.; Moretti, M.; Mangin, P.; Fracasso, T. Early Markers of Myocardial Ischemia: From the Experimental Model to Forensic Pathology Cases of Sudden Cardiac Death. Int. J. Leg. Med. 2018, 132, 197–203. [Google Scholar] [CrossRef] [PubMed]
- Scholl, K.; Huhn, R.; Ritz-Timme, S.; Mayer, F. The Impact of Sex and Myocardial Ischemic Preconditioning on Immunohistochemical Markers of Acute Myocardial Infarction. Int. J. Leg. Med. 2019, 133, 529–538. [Google Scholar] [CrossRef] [PubMed]
- Shabaiek, A.; Ismael, N.E.H.; Elsheikh, S.; Amin, H.A. Role of Cardiac Myocytes Heart Fatty Acid Binding Protein Depletion (H-FABP) in Early Myocardial Infarction in Human Heart (Autopsy Study). Open Access Maced. J. Med. Sci. 2016, 4, 17–21. [Google Scholar] [CrossRef]
- Turillazzi, E.; Di Paolo, M.; Neri, M.; Riezzo, I.; Fineschi, V. A Theoretical Timeline for Myocardial Infarction: Immunohistochemical Evaluation and Western Blot Quantification for Interleukin-15 and Monocyte Chemotactic Protein-1 as Very Early Markers. J. Transl. Med. 2014, 12, 188. [Google Scholar] [CrossRef]
- Watanabe, K.; Wakabayashi, H.; Veerkamp, J.H.; Ono, T.; Suzuki, T. Immunohistochemical Distribution of Heart-Type Fatty Acid-Binding Protein Immunoreactivity in Normal Human Tissues and in Acute Myocardial Infarct. J. Pathol. 1993, 170, 59–65. [Google Scholar] [CrossRef]
- Zhang, J.M.; Riddick, L. Cytoskeleton Immunohistochemical Study of Early Ischemic Myocardium. Forensic Sci. Int. 1996, 80, 229–238. [Google Scholar] [CrossRef]
- Moldovan, R.; Ichim, V.A.; Beliș, V. Recent Perspectives on the Early Expression Immunohistochemical Markers in Post-Mortem Recognition of Myocardial Infarction. Leg. Med. 2023, 64, 102293. [Google Scholar] [CrossRef]
- Barranco, R.; Ventura, F. Immunohistochemistry in the Detection of Early Myocardial Infarction: Systematic Review and Analysis of Limitations Because of Autolysis and Putrefaction. Appl. Immunohistochem. Mol. Morphol. 2020, 28, 95–102. [Google Scholar] [CrossRef]
- Salerno, M.; Cocimano, G.; Roccuzzo, S.; Russo, I.; Piombino-Mascali, D.; Márquez-Grant, N.; Zammit, C.; Esposito, M.; Sessa, F. New Trends in Immunohistochemical Methods to Estimate the Time since Death: A Review. Diagnostics 2022, 12, 2114. [Google Scholar] [CrossRef]
- La Russa, R.; Viola, R.V.; D’Errico, S.; Aromatario, M.; Maiese, A.; Anibaldi, P.; Napoli, C.; Frati, P.; Fineschi, V. Analysis of Inadequacies in Hospital Care through Medical Liability Litigation. Int. J. Environ. Res. Public Health 2021, 18, 3425. [Google Scholar] [CrossRef]
- Isailă, O.-M.; Ion, O.M.; Luta, R.; Catinas, R.; Ionita, A.; Haisan, D.; Hostiuc, S. Postmortem Immunohistochemical Findings in Early Acute Myocardial Infarction: A Systematic Review. Int. J. Mol. Sci. 2024, 25, 7625. [Google Scholar] [CrossRef] [PubMed]
- La Russa, R.; Catalano, C.; Di Sanzo, M.; Scopetti, M.; Gatto, V.; Santurro, A.; Viola, R.V.; Panebianco, V.; Frati, P.; Fineschi, V. Postmortem Computed Tomography Angiography (PMCTA) and Traditional Autopsy in Cases of Sudden Cardiac Death Due to Coronary Artery Disease: A Systematic Review and Meta-Analysis. Radiol. Med. 2019, 124, 109–117. [Google Scholar] [CrossRef]
- Aimo, A.; Castiglione, V.; Borrelli, C.; Saccaro, L.F.; Franzini, M.; Masi, S.; Emdin, M.; Giannoni, A. Oxidative Stress and Inflammation in the Evolution of Heart Failure: From Pathophysiology to Therapeutic Strategies. Eur. J. Prev. Cardiol. 2020, 27, 494–510. [Google Scholar] [CrossRef] [PubMed]
- Maiese, A.; Manetti, F.; La Russa, R.; Di Fazio, N.; De Matteis, A.; Frati, P.; Fineschi, V. Septic Myocardial Calcification: A Case Report. J. Forensic Leg. Med. 2019, 65, 45–47. [Google Scholar] [CrossRef] [PubMed]
- Shu, L.; Yuan, Z.; Li, F.; Cai, Z. Oxidative Stress and Valvular Endothelial Cells in Aortic Valve Calcification. Biomed. Pharmacother. 2023, 163, 114775. [Google Scholar] [CrossRef]
- Wang, H.; Zhang, Y.; Han, Q.; Xu, Y.; Hu, G.; Xing, H. The Inflammatory Injury of Heart Caused by Ammonia Is Realized by Oxidative Stress and Abnormal Energy Metabolism Activating Inflammatory Pathway. Sci. Total Environ. 2020, 742, 140532. [Google Scholar] [CrossRef]
Authors | Year | Sample | Marker | Time of Expression | Type of Expression | |
---|---|---|---|---|---|---|
1 | Aydin et al. [16] | 2014 | Rats | Adropin | ≤1 h | + |
2 | Bi et al. [17] | 2013 | Rats | S100A1 | ≥15 min | − |
Humans | <6 ore-NHS | |||||
3 | MartinezDiaz et al. [18] | 2005 | Humans | Cardiac troponin C (cTnC) and | NHS | + |
cardiac troponin T (cTnT) | + | |||||
4 | Brinkmann et al. [19] | 1993 | Humans | C5b-9 | NHS | + |
Desmin | − | |||||
Myoglobin | − | |||||
Fibrinogen | + | |||||
5 | Buğra et al. [20] | 2022 | Humans | CD59 | NHS | + |
Fibronectin | HS | + | ||||
Cathepsin S | HS | − | ||||
Desmin | NHS and HS | − | ||||
cTnT | NHS and HS | − | ||||
Myoglobin | NHS and HS | − | ||||
6 | Campobasso et al. [21] | 2008 | Humans | C5b-9 | NHS | + |
cTnI | NHS | − | ||||
Myoglobin | NHS | − | ||||
Fibronectin | NHS | + | ||||
7 | Erel et al. [22] | 2014 | Humans | Blc-2 | NHS | + |
Bax | + | |||||
Fas | + | |||||
8 | Falk et al. [23] | 2020 | Rats | GDF-15 | ≥15 min | + |
ET-1 | ≥15 min | + | ||||
9 | Hansen et al. [24] | 1999 | Humans | cTnI | NHS | − |
10 | Hashmi et al. [25] | 2013 | Rats | Dystrophin | ≥20 min | − |
11 | Hiyamizu et al. [26] | 2024 | Humans | factor erythroid 2-related factor (nrf2) | NHS | + |
Fibronectin | NHS | + | ||||
C5b-9 | NHS | + | ||||
12 | Hu et al. [27] | 1996 | Humans | Fibronectin | NHS | + |
13 | Hu et al. [28] | 2019 | Rats | Fibronectin | ≥15 min | + |
Fibrinogen | ≥ 3 h | + | ||||
C5 | ≥15 min | + | ||||
Myoglobin | ≥15 min | − | ||||
Actin hhf35 | ≥15 min | − | ||||
Desmin | ≥15 min | − | ||||
14 | Kawamoto et al. [29] | 2013 | Humans | npCX-43 | NHS | + |
CX-43 | NHS | − | ||||
15 | Jia et al. [30] | 2015 | Animals | CtnI | 0.5–1 h | + |
≥1 h | − | |||||
Humans | HS | − | ||||
16 | Kondo et al. [31] | 2022 | Humans | CD31 | HS | + |
Rats | ≥4 giorni | |||||
17 | Kondo et al. [32] | 2021 | Humans | Thrombomodulin | HS | + |
18 | Kondo et al. [33] | 2021 | Humans | Vimentin | HS | + |
19 | Kondo et al. [34] | 2021 | Humans | von Willebrand factor | HS | + |
20 | Kuloglu et al. [35] | 2014 | Rats | Irsin | ≥1 h | − |
21 | Kuninaka et al. [36] | 2021 | Humans | HO-1 | NHS | + |
22 | Mayer et al. [37] | 2016 | Rats | Dithyrosine | ≥5 min | + |
23 | Mayer et al. [38] | 2014 | Humans | Dithyrosine | ≥4 h | + |
24 | Meng et al. [39] | 2006 | Rats | H-FABP | ≥15 min | − |
Humans | NHS | |||||
25 | Mondello et al. [40] | 2018 | Humans | Dystrophin | NHS | − |
Fibronectin | NHS | + | ||||
C5b-9 | NHS | + | ||||
26 | Mondello et al. [41] | 2021 | Humans | Dystrophin | NHS | − |
C5b-9 | NHS | + | ||||
Fibronectin | NHS | + | ||||
MMP-9 | NHS | + | ||||
27 | Ortmann et al. [42] | 2000 | Humans | FABP | NHS | − |
cTnC | NHS | − | ||||
cTnT | NHS | − | ||||
Myoglobin | NHS | − | ||||
Desmin | NHS | − | ||||
CD59 | HS | + | ||||
C5b-9 | NHS | + | ||||
Fibrinogen | NHS | + | ||||
Fibronectin | NHS | + | ||||
28 | Ouyang et al. [43] | 2009 | Humans | Desmin | NHS | − |
29 | PIercecchi-Marti et al. [44] | 2001 | Humans | C9 | NHS | + |
30 | Piro et al. [45] | 2000 | Humans | P53 | NHS | − |
Bcl-2 | NHS | − | ||||
Cpp32 | NHS | − | ||||
FAS | NHS | − | ||||
FAS-L | NHS | − | ||||
Bax | NHS | − | ||||
31 | Sabatasso et al. [46] | 2016 | Rats | FIbronectin | ≥1 h | − |
C5b-9 | ≥1 h | + | ||||
cTnI | ≥1 h | − | ||||
cTnT | ≥1 h | − | ||||
JunB | ≥15 min | + | ||||
Myoglobin | ≥1 h | + | ||||
Cx43 | ≥15 min | + | ||||
32 | Sabatasso et al. [47] | 2018 | Rats | FIbronectin | ≤1 h | − |
C5b-9 | ≤2 h | + | ||||
cTnT | ≤1 h | − | ||||
cTnI | ≤1 h | + | ||||
JunB | ≤30 min | + | ||||
myoglobin | ≤1 h | + | ||||
Cx43 | ≤30 min | + | ||||
33 | Scholl et al. [48] | 2019 | Rats | cTnT | ≥5 min | − |
cTnI | ≥5 min | − | ||||
Dithyrosine | ≥5 min | + | ||||
Cx43 | ≥5 min | + | ||||
34 | Shabaiek et al. [49] | 2016 | Humans | H-FABP | NHS | − |
35 | Turillazzi et al. [50] | 2014 | Humans | CD-15 | ≤4–6 h | + |
IL-1β | ≤4–6 h | + | ||||
IL-6 | ≤4–6 h | + | ||||
TNF-α | ≤4–6 h | + | ||||
IL-15 | ≤4–6 h | + | ||||
IL-8 | ≤4–6 h | + | ||||
MCP-1 | ≤4–6 h | + | ||||
ICAM-1 | ≤4–6 h | + | ||||
CD18 | ≤4–6 h | + | ||||
tryptase | ≤4–6 h | + | ||||
36 | Watanabe et al. [51] | 1993 | Humans | FAB-P | NHS | − |
37 | Zhang et al. [52] | 1996 | Humans | Vinculin | NHS | − |
Desmin | NHS | − | ||||
α-actinin | NHS | − |
Marker | Specificity | Sample Type | Included Studies |
---|---|---|---|
C5b-9 (MAC) | 100% | Human | Mondello, 2018, 2021 [40,41]; Sabatasso, 2016 [46] |
Dystrophin | 100% | Human and animal | Mondello 2018, 2021[40,41]; Hashmi, 2013 [25] |
cTnT/cTnC | 100% | Human | Martinez-Diaz, 2005 [18]; Sabatasso, 2016 [46] |
cTnI | 100% | Human | Sabatasso, 2016 [46]; Jia, 2015 [12] |
Myoglobin | 100% | Human | Sabatasso, 2016 [46]; Meng, 2006 [39] |
H-FABP | 100% | Animal | Meng, 2006 [39]; Shabaiek, 2016 [49] |
S100A1 | 100% | Animal | Bi, 2013 [17] |
IL-15/MCP-1 | 100% | Human | Turillazzi, 2014 [50] |
ET-1 | 90% | Human | Falk, 2020 [23] |
Fibronectin | 87.85% | Human | Hu, 1996 [27]; Mondello, 2018, 2021 [40,41]; Sabatasso, 2016 [46] |
Dityrosine | 80% | Human | Mayer, 2014, 2016 [37,38] |
GDF-15 | 70% | Human | Falk, 2020 [23] |
JunB | 0% | Human | Sabatasso, 2016, 2018 [46,47] |
Cx43 | 0% | Human | Sabatasso, 2016, 2018 [46,47] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
D’Antonio, G.; Di Fazio, N.; Pellegrini, L.; Ghamlouch, A.; Del Duca, F.; La Russa, R.; Frati, P.; Maiese, A.; Volonnino, G. Immunohistochemical Assessment of Acute Myocardial Infarction: A Systematic Review. Int. J. Mol. Sci. 2025, 26, 8901. https://doi.org/10.3390/ijms26188901
D’Antonio G, Di Fazio N, Pellegrini L, Ghamlouch A, Del Duca F, La Russa R, Frati P, Maiese A, Volonnino G. Immunohistochemical Assessment of Acute Myocardial Infarction: A Systematic Review. International Journal of Molecular Sciences. 2025; 26(18):8901. https://doi.org/10.3390/ijms26188901
Chicago/Turabian StyleD’Antonio, Gianpiero, Nicola Di Fazio, Lavinia Pellegrini, Alessandro Ghamlouch, Fabio Del Duca, Raffaele La Russa, Paola Frati, Aniello Maiese, and Gianpietro Volonnino. 2025. "Immunohistochemical Assessment of Acute Myocardial Infarction: A Systematic Review" International Journal of Molecular Sciences 26, no. 18: 8901. https://doi.org/10.3390/ijms26188901
APA StyleD’Antonio, G., Di Fazio, N., Pellegrini, L., Ghamlouch, A., Del Duca, F., La Russa, R., Frati, P., Maiese, A., & Volonnino, G. (2025). Immunohistochemical Assessment of Acute Myocardial Infarction: A Systematic Review. International Journal of Molecular Sciences, 26(18), 8901. https://doi.org/10.3390/ijms26188901