Uncovering Rare Structural Chromosomal Rearrangements: Insights from Molecular Cytogenetics
Abstract
1. Introduction
2. Results
2.1. Patient 1
2.1.1. GTG Banding
2.1.2. FISH
2.2. Patient 2
GTG Banding and FISH
2.3. Patient 3
2.3.1. GTG Banding
2.3.2. Array CGH
2.4. Patient 4
2.4.1. GTG Banding
2.4.2. SNP Array
3. Discussion
4. Materials and Methods
4.1. GTG Banding
4.2. FISH
4.3. Array CGH
4.4. SNP Array
4.5. Case Presentations
4.5.1. Patient 1
4.5.2. Patient 2
4.5.3. Patient 3
4.5.4. Patient 4
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
Abbreviations
CCR | complex chromosomal rearrangements |
array CGH | array comparative genomic hybridization |
FISH | fluorescence in situ hybridization |
GTG banding | Giemsa–Trypsin banding |
SNP array | single-nucleotide polymorphism probe-containing array |
WGS | whole-genome sequencing |
CMA | chromosomal microarray analysis |
OGM | optical genome mapping |
BFB | breakage–fusion–bridge cycle |
NHEJ | non-homologous end joining |
NAHR | non-allelic homologous recombination |
CNV | copy number variation |
FoSTeS | Fork Stalling and Template Switching |
MMBIR | Microhomology-Mediated Break-Induced Replication |
UCSC | University of California, Santa Cruz, Genome Browser database |
EEG | electroencephalography |
GRCh37 | Genome Reference Consortium Human Build 37 |
WCP | whole chromosome painting FISH probe |
References
- Giardino, D.; Corti, C.; Ballarati, L.; Colombo, D.; Sala, E.; Villa, N.; Piombo, G.; Pierluigi, M.; Faravelli, F.; Guerneri, S.; et al. De novo balanced chromosome rearrangements in prenatal diagnosis. Prenat. Diagn. 2009, 29, 257–265. [Google Scholar] [CrossRef] [PubMed]
- Mau-Holzmann, U.A. Somatic chromosomal abnormalities in infertile men and women. Cytogenet. Genome Res. 2005, 111, 317–336. [Google Scholar] [CrossRef] [PubMed]
- Liao, Y.P.; Wang, C.J.; Liang, M.; Hu, X.M.; Wu, Q. Analysis of genetic characteristics and reproductive risks of balanced complex chromosome rearrangement carriers in China. Yi Chuan 2017, 39, 396–412. [Google Scholar] [CrossRef] [PubMed]
- Pellestor, F.; Anahory, T.; Lefort, G.; Puechberty, J.; Liehr, T.; Hédon, B.; Sarda, P. Complex chromosomal rearrangements: Origin and meiotic behavior. Hum. Reprod. Update 2011, 17, 476–494. [Google Scholar] [CrossRef] [PubMed]
- Hu, Q.; Maurais, E.G.; Ly, P. Cellular and genomic approaches for exploring structural chromosomal rearrangements. Chromosome Res. 2020, 28, 19–30. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Eisfeldt, J.; Pettersson, M.; Vezzi, F.; Wincent, J.; Käller, M.; Gruselius, J.; Nilsson, D.; Syk Lundberg, E.; Carvalho, C.M.B.; Lindstrand, A. Comprehensive structural variation genome map of individuals carrying complex chromosomal rearrangements. PLoS Genet. 2019, 15, e1007858. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Eisfeldt, J.; Pettersson, M.; Petri, A.; Nilsson, D.; Feuk, L.; Lindstrand, A. Hybrid sequencing resolves two germline ultra-complex chromosomal rearrangements consisting of 137 breakpoint junctions in a single carrier. Hum. Genet. 2021, 140, 775–790. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Xing, L.; Shen, Y.; Wei, X.; Luo, Y.; Yang, Y.; Liu, H.; Liu, H. Long-read Oxford nanopore sequencing reveals a de novo case of complex chromosomal rearrangement involving chromosomes 2, 7, and 13. Mol. Genet. Genom. Med. 2022, 10, e2011. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Kausch, K.; Haaf, T.; Köhler, J.; Schmid, M. Complex chromosomal rearrangement in a woman with multiple miscarriages. Am. J. Med. Genet. 1988, 31, 415–420. [Google Scholar] [CrossRef] [PubMed]
- Balachandran, P.; Beck, C.R. Structural variant identification and characterization. Chromosome Res. 2020, 28, 31–47. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Zhang, S.; Pei, Z.; Lei, C.; Zhu, S.; Deng, K.; Zhou, J.; Yang, J.; Lu, D.; Sun, X.; Xu, C.; et al. Detection of cryptic balanced chromosomal rearrangements using high-resolution optical genome mapping. J. Med. Genet. 2023, 60, 274–284. [Google Scholar] [CrossRef] [PubMed]
- Michaelson-Cohen, R.; Murik, O.; Zeligson, S.; Lobel, O.; Weiss, O.; Picard, E.; Mann, T.; Mor-Shaked, H.; Zeevi, D.A.; Segel, R. Combining cytogenetic and genomic technologies for deciphering challenging complex chromosomal rearrangements. Mol. Genet. Genom. 2022, 297, 925–933. [Google Scholar] [CrossRef] [PubMed]
- Walker, S.; Howard, P.J.; Hunter, D. Familial complex autosomal translocations involving chromosomes 7, 8, and 9 exhibiting male and female transmission with segregation and recombination. J. Med. Genet. 1985, 22, 484–491. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Cai, T.; Yu, P.; Tagle, D.A.; Lu, D.; Chen, Y.; Xia, J. A de novo complex chromosomal rearrangement with a translocation 7;9 and 8q insertion in a male carrier with no infertility. Hum. Reprod. 2001, 16, 59–62. [Google Scholar] [CrossRef] [PubMed]
- Karadeniz, N.; Mrasek, K.; Weise, A. Further delineation of complex chromosomal rearrangements in fertile male using multicolor banding. Mol. Cytogenet. 2008, 1, 17. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Priya, P.K.; Mishra, V.V.; Liehr, T.; Ziegler, M.; Tiwari, S.; Patel, A.; Chettiar, S.S.; Patel, H. Characterization of a complex chromosomal rearrangement involving chromosomes 1, 3, and 4 in a slightly affected male with bad obstetrics history. J. Assist. Reprod. Genet. 2018, 35, 721–725. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Burssed, B.; Zamariolli, M.; Bellucco, F.T.; Melaragno, M.I. Mechanisms of structural chromosomal rearrangement formation. Mol. Cytogenet. 2022, 15, 23. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Kato, T.; Inagaki, H.; Kogo, H.; Ohye, T.; Yamada, K.; Emanuel, B.S.; Kurahashi, H. Two different forms of palindrome resolution in the human genome: Deletion or translocation. Hum. Mol. Genet. 2008, 17, 1184–1191. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Weleber, R.G.; Verma, R.S.; Kimberling, W.J.; Fieger, H.G., Jr.; lubs, H.A. Duplication-deficiency of the short arm of chromosome 8 following artificial insemination. Ann. Genet. 1976, 19, 241–247. [Google Scholar] [PubMed][Green Version]
- Rowe, L.R.; Lee, J.Y.; Rector, L.; Kaminsky, E.B.; Brothman, A.R.; Martin, C.L.; South, S.T. U-type exchange is the most frequent mechanism for inverted duplication with terminal deletion rearrangements. J. Med. Genet. 2009, 46, 694–702. [Google Scholar] [CrossRef] [PubMed]
- Hermetz, K.E.; Newman, S.; Conneely, K.N.; Martin, C.L.; Ballif, B.C.; Shaffer, L.G.; Cody, J.D.; Rudd, M.K. Large inverted duplications in the human genome form via a fold-back mechanism. PLoS Genet. 2014, 10, e1004139. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Milosevic, J.; El Khattabi, L.; Roubergue, A.; Coussement, A.; Doummar, D.; Cuisset, L.; Le Tessier, D.; Flageul, B.; Viot, G.; Lebbar, A.; et al. Inverted duplication with deletion: First interstitial case suggesting a novel undescribed mechanism of formation. Am. J. Med. Genet. A 2014, 164A, 3180–3186. [Google Scholar] [CrossRef] [PubMed]
- Zuffardi, O.; Bonaglia, M.; Ciccone, R.; Giorda, R. Inverted duplications deletions: Underdiagnosed rearrangements? Clin. Genet. 2009, 75, 505–513. [Google Scholar] [CrossRef] [PubMed]
- Bonaglia, M.C.; Fichera, M.; Marelli, S.; Romaniello, R.; Zuffardi, O. Low-level complex mosaic with multiple cell lines affecting the 18q21.31q21.32 region in a patient with de novo 18q terminal deletion. Eur. J. Med. Genet. 2022, 65, 104596. [Google Scholar] [CrossRef] [PubMed]
- Zepeda-Mendoza, C.J.; Morton, C.C. The Iceberg under Water: Unexplored Complexity of Chromoanagenesis in Congenital Disorders. Am. J. Hum. Genet. 2019, 104, 565–577. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Pellestor, F. Chromoanagenesis: Cataclysms behind complex chromosomal rearrangements. Mol. Cytogenet. 2019, 12, 6. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Liu, P.; Erez, A.; Nagamani, S.C.; Dhar, S.U.; Kołodziejska, K.E.; Dharmadhikari, A.V.; Cooper, M.L.; Wiszniewska, J.; Zhang, F.; Withers, M.A.; et al. Chromosome catastrophes involve replication mechanisms generating complex genomic rearrangements. Cell 2011, 146, 889–903. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Hattori, A.; Fukami, M. Established and Novel Mechanisms Leading to de novo Genomic Rearrangements in the Human Germline. Cytogenet. Genome Res. 2020, 160, 167–176. [Google Scholar] [CrossRef] [PubMed]
- Gu, W.; Zhang, F.; Lupski, J.R. Mechanisms for human genomic rearrangements. Pathogenetics 2008, 1, 4. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Carvalho, C.M.; Lupski, J.R. Mechanisms underlying structural variant formation in genomic disorders. Nat. Rev. Genet. 2016, 17, 224–238. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Ottaviani, D.; LeCain, M.; Sheer, D. The role of microhomology in genomic structural variation. Trends Genet. 2014, 30, 85–94. [Google Scholar] [CrossRef] [PubMed]
- Hastings, P.J.; Ira, G.; Lupski, J.R. A microhomology-mediated break-induced replication model for the origin of human copy number variation. PLoS Genet. 2009, 5, e1000327. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Holland, A.J.; Cleveland, D.W. Chromoanagenesis and cancer: Mechanisms and consequences of localized, complex chromosomal rearrangements. Nat. Med. 2012, 18, 1630–1638. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Pellestor, F.; Gatinois, V. Chromothripsis, a credible chromosomal mechanism in evolutionary process. Chromosoma 2019, 128, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Caspersson, T.; Zech, L.; Johansson, C.; Modest, E.J. Identification of human chromosomes by DNA-binding fluorescent agents. Chromosoma 1970, 30, 215–227. [Google Scholar] [CrossRef] [PubMed]
- Pinkel, D.; Landegent, J.; Collins, C.; Fuscoe, J.; Segraves, R.; Lucas, J.; Gray, J. Fluorescence in situ hybridization with human chromosome-specific libraries: Detection of trisomy 21 and translocations of chromosome 4. Proc. Natl. Acad. Sci. USA 1988, 85, 9138–9142. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Kallioniemi, A.; Kallioniemi, O.P.; Sudar, D.; Rutovitz, D.; Gray, J.W.; Waldman, F.; Pinkel, D. Comparative genomic hybridization for molecular cytogenetic analysis of solid tumors. Science 1992, 258, 818–821. [Google Scholar] [CrossRef] [PubMed]
- Madan, K.; Nieuwint, A.W.; van Bever, Y. Recombination in a balanced complex translocation of a mother leading to a balanced reciprocal translocation in the child. Review of 60 cases of balanced complex translocations. Hum. Genet. 1997, 99, 806–815. [Google Scholar] [CrossRef] [PubMed]
- Patsalis, P.C. Complex chromosomal rearrangements. Genet. Couns. 2007, 18, 57–69. [Google Scholar] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Czakó, M.; Szabó, A.; Till, Á.; Zsigmond, A.; Hadzsiev, K. Uncovering Rare Structural Chromosomal Rearrangements: Insights from Molecular Cytogenetics. Int. J. Mol. Sci. 2025, 26, 8886. https://doi.org/10.3390/ijms26188886
Czakó M, Szabó A, Till Á, Zsigmond A, Hadzsiev K. Uncovering Rare Structural Chromosomal Rearrangements: Insights from Molecular Cytogenetics. International Journal of Molecular Sciences. 2025; 26(18):8886. https://doi.org/10.3390/ijms26188886
Chicago/Turabian StyleCzakó, Márta, András Szabó, Ágnes Till, Anna Zsigmond, and Kinga Hadzsiev. 2025. "Uncovering Rare Structural Chromosomal Rearrangements: Insights from Molecular Cytogenetics" International Journal of Molecular Sciences 26, no. 18: 8886. https://doi.org/10.3390/ijms26188886
APA StyleCzakó, M., Szabó, A., Till, Á., Zsigmond, A., & Hadzsiev, K. (2025). Uncovering Rare Structural Chromosomal Rearrangements: Insights from Molecular Cytogenetics. International Journal of Molecular Sciences, 26(18), 8886. https://doi.org/10.3390/ijms26188886