Digit Span Tests Are More Sensitive than SDMT for Detecting Working Memory Impairment and Correlate with Metabolic Alterations in White Matter and Deep Gray Matter Nuclei in Multiple Sclerosis: A GABA-Edited Magnetic Resonance Spectroscopy Study
Abstract
1. Introduction
2. Results
2.1. Correlations of Brain Metabolites with Cognitive Tests Can Be Found in Table 2, Table 3 and Table 4
2.2. Evaluation of the Most Significant Predictors of Multiple Sclerosis
- DSB series (Fisher’s exact test p-value < 0.001, decreased in MSp);
- Caudate nucleus mIns/tNAA (Wilcoxon’s p-value < 0.001; increased in MSp);
- Caudate nucleus mIns/tCr (Wilcoxon’s p-value < 0.001; increase in MSp);
- Caudate nucleus tCho/tNAA (Wilcoxon’s p-value < 0.001; increased in MSp);
- SDMT (Wilcoxon’s p-value < 0.001; decreased in MSp);
- DSF series (Fisher’s exact test p-value = 0.001, decreased in MSp);
- Corpus callosum mIns/tNAA (Wilcoxon’s p-value = 0.001; increased in MSp);
- Caudate nucleus tNAA/tCr (Wilcoxon’s p-value = 0.016; decreased in MSp);
- Caudate nucleus GABA/tCr (Wilcoxon’s p-value = 0.001; decreased in MSp).
3. Discussion
3.1. SDMT
3.2. Digit Span Forward and Digit Span Backward Series
3.3. Limitations of the Study and Suggestions for Further Research
4. Methods
4.1. Patients
4.2. Mescher–Garwood GABA-Edited 1H-MRS
4.3. Statistical Analyses
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
MS | Multiple Sclerosis |
MSp | Multiple Sclerosis Patients |
DSF | Digit Span Forward |
DSB | Digit Span Backward |
SDMT | Single Digit Modality Test |
1H-MRS | 1-Proton Magnetic Resonance Spectroscopy |
WM | White Matter |
GM | Gray Matter |
Glx | Glutamine and Glutamate |
GABA | γ-Amino Butyric Acid |
CONs | Healthy Volunteers |
MEGA-edited | Mescher–Garwood-edited |
tNAA | N-Acetyl-Aspartate |
mIns | Myoinositol |
tCho | Choline |
tCr | Creatine |
ATP | Adenosine TriPhosphate |
EDSS | Expanded Disability Status State |
WAIS-IV | Wechsler Adult Intelligence Scale |
CSI | Chemical Shift Imaging |
fMRI | Functional Magnetic Resonance Imaging |
HIV | Human Immunodeficiency Virus |
7 T | 7 Tesla |
References
- Bobholz, J.; Rao, S. Cognitive dysfunction in multiple sclerosis: A review of recent developments. Curr. Opin. Neurol. 2003, 16, 283–288. [Google Scholar] [CrossRef]
- Thompson, A.J.; Banwell, B.L.; Barkhof, F.; Carroll, W.M.; Coetzee, T.; Comi, G.; Correale, J.; Fazekas, F.; Filippi, M.; Freedman, M.S.; et al. Diagnosis of multiple sclerosis: 2017 revisions of the McDonald criteria. Lancet Neurol. 2018, 17, 162–173. [Google Scholar] [CrossRef]
- Sumowski, J.F.; Benedict, R.; Enzinger, C.; Filippi, M.; Geurts, J.J.; Hamalainen, P.; Hulst, H.; Inglese, M.; Leavitt, V.M.; Rocca, M.A.; et al. Cognition in multiple sclerosis: State of the field and priorities for the future. Neurology 2018, 90, 278–288. [Google Scholar] [CrossRef]
- Öz, G.; Alger, J.R.; Barker, P.B.; Bartha, R.; Bizzi, A.; Boesch, C.; Bolan, P.J.; Brindle, K.M.; Cudalbu, C.; Dinçer, A.; et al. MRS Consensus Group. Clinical proton MR spectroscopy in central nervous system disorders. Radiology 2014, 270, 658–679. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Abreu, C.M.; Gama, L.; Krasemann, S.; Chesnut, M.; Odwin-Dacosta, S.; Hogberg, H.T.; Hartung, T.; Pamies, D. Microglia Increase Inflammatory Responses in iPSC-Derived Human BrainSpheres. Front. Microbiol. 2018, 9, 2766. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Cantero-Fortiz, Y.; Boada, M. The role of inflammation in neurological disorders: A brief overview of multiple sclerosis, Alzheimer’s, and Parkinson’s disease’. Front. Neurol. 2024, 15, 1439125. [Google Scholar] [CrossRef] [PubMed]
- Musella, A.; Gentile, A.; Rizzo, F.R.; De Vito, F.; Fresegna, D.; Bullitta, S.; Vanni, V.; Guadalupi, L.; Stampanoni Bassi, M.; Buttari, F.; et al. Interplay Between Age and Neuroinflammation in Multiple Sclerosis: Effects on Motor and Cognitive Functions. Front. Aging Neurosci. 2018, 10, 238. [Google Scholar] [CrossRef]
- Hnilicová, P.; Štrbák, O.; Kolisek, M.; Kurča, E.; Zeleňák, K.; Sivák, Š.; Kantorová, E. Current Methods of Magnetic Resonance for Noninvasive Assessment of Molecular Aspects of Pathoetiology in Multiple Sclerosis. Int. J. Mol. Sci. 2020, 21, 6117. [Google Scholar] [CrossRef]
- Bogner, W.; Gagoski, B.; Hess, A.T.; Bhat, H.; Tisdall, M.D.; van der Kouwe, A.J.; Strasser, B.; Marjańska, M.; Trattnig, S.; Grant, E.; et al. 3D GABA imaging with real-time motion correction, shim update and reacquisition of adiabatic spiral MRSI. Neuroimage 2014, 103, 290–302. [Google Scholar] [CrossRef]
- Hnilicová, P.; Považan, M.; Strasser, B.; Andronesi, O.C.; Gajdošík, M.; Dydak, U.; Ukropec, J.; Dobrota, D.; Trattnig, S.; Bogner, W. Spatial variability and reproducibility of GABA-edited MEGA-LASER 3D-MRSI in the brain at 3 T. NMR Biomed. 2016, 29, 1656–1665. [Google Scholar] [CrossRef]
- Rae, C.D. A guide to the metabolic pathways and function of metabolites observed in human brain 1H magnetic resonance spectra. Neurochem. Res. 2014, 39, 1–36. [Google Scholar] [CrossRef]
- Hnilicova, P.; Kantorova, E.; Sutovsky, S.; Grofik, M.; Zelenak, K.; Kurca, E.; Zilka, N.; Parvanovova, P.; Kolisek, M. Imaging Methods Applicable in the Diagnostics of Alzheimer’s Disease, Considering the Involvement of Insulin Resistance. Int. J. Mol. Sci. 2023, 24, 3325. [Google Scholar] [CrossRef] [PubMed]
- Benedict, R.H.; Cookfair, D.; Gavett, R.; Gunther, M.; Munschauer, F.; Garg, N.; Weinstock-Guttman, B. Validity of the minimal assessment of cognitive function in multiple sclerosis (MACFIMS). J. Int. Neuropsychol. Soc. 2006, 12, 549–558. [Google Scholar] [CrossRef] [PubMed]
- Benedict, R.H.; DeLuca, J.; Phillips, G.; LaRocca, N.; Hudson, L.D.; Rudick, R.; Multiple Sclerosis Outcome Assessments Consortium. Validity of the Symbol Digit Modalities Test as a cognition performance outcome measure for multiple sclerosis. Mult. Scler. J. 2017, 23, 721–733. [Google Scholar] [CrossRef] [PubMed]
- Cagna, C.J.; Dobryakova, E.; Weber, E.; Maloku, D.; Chiaravalloti, N.D.; Genova, H.M.; Costa, S.L.; DeLuca, J. Trait fatigue impacts Symbol Digit Modalities Test (SDMT) performance in multiple sclerosis: The role of working memory. Mult. Scler. Relat. Disord. 2025, 96, 106369. [Google Scholar] [CrossRef]
- Dusankova, J.B.; Kalincik, T.; Havrdova, E.; Benedict, R.H. Cross cultural validation of the Minimal Assessment of Cognitive Function in Multiple Sclerosis (MACFIMS) and the Brief International Cognitive Assessment for Multiple Sclerosis (BICAMS). Clin. Neuropsychol. 2012, 26, 1186–1200. [Google Scholar] [CrossRef]
- Papadopoulou, A.; Müller-Lenke, N.; Naegelin, Y.; Kalt, G.; Bendfeldt, K.; Kuster, P.; Stoecklin, M.; Gass, A.; Sprenger, T.; Radue, E.W.; et al. Contribution of cortical and white matter lesions to cognitive impairment in multiple sclerosis. Mult. Scler. J. 2013, 19, 1290–1296. [Google Scholar] [CrossRef]
- Balsimelli, S.; Mendes, M.F.; Bertolucci, P.H.; Tilbery, C.P. Attention impairment associated with relapsing-remitting multiple sclerosis patients with mild incapacity. Arq. Neuropsiquiatr. 2007, 65, 262–267. [Google Scholar] [CrossRef]
- Baddeley, A. Working memory: Theories, models, and controversies. Annu. Rev. Psychol. 2012, 63, 1–29. [Google Scholar] [CrossRef]
- Beatty, W.W.; Paul, R.H.; Blanco, C.R.; Hames, K.A.; Wilbanks, S.L. Attention in multiple sclerosis: Correlates of impairment on the WAIS-R Digit Span Test. Appl. Neuropsychol. 1995, 2, 139–144. [Google Scholar] [CrossRef]
- Bisecco, A.; Stamenova, S.; Caiazzo, G.; d’Ambrosio, A.; Sacco, R.; Docimo, R.; Esposito, S.; Cirillo, M.; Esposito, F.; Bonavita, S.; et al. Attention and processing speed performance in multiple sclerosis is mostly related to thalamic volume. Brain Imaging Behav. 2018, 12, 20–28. [Google Scholar] [CrossRef]
- Bergsland, N.; Zivadinov, R.; Dwyer, M.G.; Weinstock-Guttman, B.; Benedict, R.H. Localized atrophy of the thalamus and slowed cognitive processing speed in MS patients. Mult. Scler. J. 2015, 22, 1327–1336. [Google Scholar] [CrossRef]
- Kantorova, E.; Hnilicova, P.; Bogner, W.; Grendar, M.; Grossmann, J.; Kováčová, S.; Hečková, E.; Strasser, B.; Čierny, D.; Zeleňák, K.; et al. Neurocognitive performance in relapsing-remitting multiple sclerosis patients is associated with metabolic abnormalities of the thalamus but not the hippocampus– GABA-edited 1H MRS study. Neurol. Res. 2022, 44, 57–64. [Google Scholar] [CrossRef] [PubMed]
- Lind, A.; Boraxbekk, C.J.; Petersen, E.T.; Paulson, O.B.; Siebner, H.R.; Marsman, A. Regional Myo-Inositol, Creatine, and Choline Levels Are Higher at Older Age and Scale Negatively with Visuospatial Working Memory: A Cross-Sectional Proton MR Spectroscopy Study at 7 Tesla on Normal Cognitive Ageing. J. Neurosci. 2020, 40, 8149–8159. [Google Scholar] [CrossRef] [PubMed]
- Swanberg, K.M.; Landheer, K.; Pitt, D.; Juchem, C. Quantifying the Metabolic Signature of Multiple Sclerosis by in vivo Proton Magnetic Resonance Spectroscopy: Current Challenges and Future Outlook in the Translation from Proton Signal to Diagnostic Biomarker. Front. Neurol. 2019, 10, 1173. [Google Scholar] [CrossRef] [PubMed]
- Silva, P.H.R.D.; Spedo, C.T.; Baldassarini, C.R.; Benini, C.D.; Ferreira, D.A.; Barreira, A.A.; Leoni, R.F. Brain functional and effective connectivity underlying the information processing speed assessed by the Symbol Digit Modalities Test. Neuroimage 2019, 184, 761–770. [Google Scholar] [CrossRef] [PubMed]
- Gao, F.; Yin, X.; Edden, R.A.; Evans, A.C.; Xu, J.; Cao, G.; Li, H.; Li, M.; Zhao, B.; Wang, J.; et al. Altered hippocampal GABA and glutamate levels and uncoupling from functional connectivity in multiple sclerosis. Hippocampus 2018, 28, 813–823. [Google Scholar] [CrossRef]
- Cao, G.; Edden, R.A.; Gao, F.; Li, H.; Gong, T.; Chen, W.; Liu, X.; Wang, G.; Zhao, B. Reduced GABA levels correlate with cognitive impairment in patients with relapsing-remitting multiple sclerosis. Eur. Radiol. 2018, 28, 1140–1148. [Google Scholar] [CrossRef]
- Huiskamp, M.; Yaqub, M.; van Lingen, M.R.; Pouwels, P.J.; de Ruiter, L.R.; Killestein, J.; Schwarte, L.A.; Golla, S.S.; van Berckel, B.N.; Boellaard, R.; et al. Cognitive performance in multiple sclerosis: What is the role of the gamma-aminobutyric acid system? Brain Commun. 2023, 5, fcad140. [Google Scholar] [CrossRef]
- Ernst, T.; Chang, L.; Arnold, S. Increased glial metabolites predict increased working memory network activation in HIV brain injury. Neuroimage 2003, 19, 1686–1693. [Google Scholar] [CrossRef]
- Postle, B.R.; D’Esposito, M. Dissociation of human caudate nucleus activity in spatial and nonspatial working memory: An event-related fMRI study. Cogn. Brain Res. 1999, 8, 107–115. [Google Scholar] [CrossRef]
- Iaria, G.; Petrides, M.; Dagher, A.; Pike, B.; Bohbot, V.D. Cognitive strategies dependent on the hippocampus and caudate nucleus in human navigation: Variability and change with practice. J. Neurosci. 2003, 23, 5945–5952. [Google Scholar] [CrossRef]
- Grahn, J.A.; Parkinson, J.A.; Owen, A.M. The Cognitive Functions of the Caudate Nucleus. Prog. Neurobiol. 2007, 86, 141–155. [Google Scholar] [CrossRef] [PubMed]
- Monchi, O.; Petrides, M.; Strafella, A.; Worsley, K.; Doyon, J. Functional role of the basal ganglia in the planning and execution of actions. Ann. Neurol. 2006, 59, 257–264. [Google Scholar] [CrossRef] [PubMed]
- McGarrity, S.; Mason, R.; Fone, K.C.; Pezze, M.; Bast, T. Hippocampal Neural Disinhibition Causes Attentional and Memory Deficits. Cereb. Cortex 2017, 27, 4447–4462. [Google Scholar] [CrossRef] [PubMed]
- Yong, V.W. Microglia in multiple sclerosis: Protectors turn destroyers. Neuron 2022, 21, 3534–3548. [Google Scholar] [CrossRef]
- Cawley, N.; Solanky, B.S.; Muhlert, N.; Tur, C.; Edden, R.A.; Wheeler-Kingshott, C.A.; Miller, D.H.; Thompson, A.J.; Ciccarelli, O. Reduced gamma-aminobutyric acid concentration is associated with physical disability in progressive multiple sclerosis. Brain 2015, 138, 2584–2595. [Google Scholar] [CrossRef]
- Schmidt-Wilcke, T.; Fuchs, E.; Funke, K.; Vlachos, A.; Müller-Dahlhaus, F.; Puts, N.A.J.; Harris, R.E.; Edden, R.A. GABA—From Inhibition to Cognition: Emerging Concepts. Neuroscientist 2017, 24, 501–515. [Google Scholar] [CrossRef]
- Averbeck, B.B.; Murray, E.A. Hypothalamic Interactions with Large-Scale Neural Circuits Underlying Reinforcement Learning and Motivated Behavior. Trends Neurosci. 2020, 43, 681–694. [Google Scholar] [CrossRef]
- Llufriu, S.; Kornak, J.; Ratiney, H.; Oh, J.; Brenneman, D.; Cree, B.A.; Sampat, M.; Hauser, S.L.; Nelson, S.J.; Pelletier, D. Magnetic resonance spectroscopy markers of disease progression in multiple sclerosis. JAMA Neurol. 2014, 71, 840–847. [Google Scholar] [CrossRef]
Characteristic | CON (N = 22; 15F) | MSp (N = 22; 13F) | Statistics: MSp vs. CONs | ||
---|---|---|---|---|---|
p-Value | q-Value | Median Diff. (95% CI) | |||
age (years; average, min–max) | 30.0 (25.0–34.0) | 34.0 (27.0–41.0) | 0.2 | 0.4 | −3.0 (−9.0, 2.0) |
EDSS (average, min–max) | na | 3.28 (1–5) | na | na | na |
ARR (years; average) | na | 0.25 | na | na | na |
disease duration (months; average, min–max) | na | 76.5 (10–162) | na | na | na |
MRI activity (newT2/Gd+ lesions) | na | 3/22 (13.6%) | na | na | na |
Disease-Modifying Treatment | na | NAT: 9/22 (40.9%) DMF: 3/22 (13.6%) GA: 3/22 (13.6%) FIN: 2/22 (9.0%) ALEM: 2/22 (9.0%) TERI: 1/22 (4.5%) none 2/22 (9.0%) | na | na | na |
SDMT (average, min–max) | 53.5 (47.0–60.5) | 43.0 (35.5–49.0) | <0.001 | 0.003 | 11 (6.0, 17) |
DSF | DSF 3: 0 (0%) DSF 4: 0 (0%) DSF 5: 1 (4.5%) DSF 6: 1 (4.5%) DSF 7: 5 (22.7%) DSF 8: 8 (36.3%) DSF 9: 7 (31.8%) DSF 10: 0 (0%) DSF 11: 0 (0%) | DSF 3: 1 (4.5%) DSF 4: 4 (18.1%) DSF 5: 6 (27.2%) DSF 6: 3 (13.6%) DSF 7: 4 (18.1%) DSF 8: 3 (13.6%) DSF 9: 0 (0%) DSF 10: 1 (4.5%) DSF 11: 1 (4.5%) | 0.001 | 0.010 | na |
DSB | DSB 3: 0 (0%) DSB 4: 1 (4.5%) DSB 5: 0 (0%) DSB 6: 4 (18.1%) DSB 7: 9 (40.9%) DSB 8: 6 (27.2%) DSB 9: 2 (9.0%) DSB 10: 0 (0%) | DSB 3: 2 (9.0%) DSB 4: 10 (45.4%) DSB 5: 3 (13.6%) DSB 6: 4 (18.1%) DSB 7: 2 (9.0%) DSB 8: 1 (4.5%) DSB 9: 0 (0%) DSB 10: 1 (4.5%) | <0.001 | 0.003 | na |
The Brain Area | 1H-MRS Metabolite Ratio | Correlation of SDMT with 1H-MRS Metabolite Ratios | |
---|---|---|---|
p-Value | Cor | ||
Thalamus R | tNAA/tCr | 0.040 | 0.430 |
Hypothalamus L | Glx/tCr | 0.032 | 0.447 |
Hippocampus L | mIns/tNAA | 0.014 | −0.507 |
CC_splenium | tCho/tNAA | 0.048 | −0.417 |
CC_rostral | GABA/tCr | 0.038 | 0.436 |
CC_genu | tCho/tNAA | 0.021 | −0.479 |
The Brain Area | 1H-MRS Metabolite Ratio | Correlation of Digit Span Forward Series with 1H-MRS Metabolite Ratios | |
---|---|---|---|
p-Value | Cor | ||
Caudate R | mIns/tNAA | 0.022 | 0.474 |
Caudate R | mIns/tCr | 0.021 | 0.477 |
Hypothalamus R | Glx/tCr | 0.010 | −0.527 |
Hypothalamus R | tNAA/tCr | 0.040 | −0.432 |
Hypothalamus L | tCho/tNAA | 0.012 | −0.517 |
Hippocampus L | GABA/tNAA | 0.007 | 0.545 |
Hippocampus L | GABA/tCr | 0.026 | 0.464 |
CC_splenium | mIns/tCr | 0.041 | −0.429 |
CC_genu | tNAA/tCr | 0.021 | −0.479 |
The Brain Area | 1H-MRS Metabolite Ratio | Correlation of Digit Span Backward Series with 1H-MRS Metabolite Ratios | |
---|---|---|---|
p-Value | Cor | ||
Caudate R | tCho/tNAA | 0.033 | 0.446 |
Caudate R | mIns/tNAA | 0.014 | 0.505 |
Caudate R | mIns/tCr | 0.012 | 0.517 |
Hypothalamus R | tNAA/tCr | 0.03 | −0.453 |
CC_splenium | tNAA/tCr | 0.048 | −0.417 |
CC_splenium | mIns/tCr | 0.048 | −0.416 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Grossmann, J.; Grendár, M.; Hnilicová, P.; Kováčiková, N.; Kotul’ová, L.; Bogner, W.; Kurča, E.; Kantorová, E. Digit Span Tests Are More Sensitive than SDMT for Detecting Working Memory Impairment and Correlate with Metabolic Alterations in White Matter and Deep Gray Matter Nuclei in Multiple Sclerosis: A GABA-Edited Magnetic Resonance Spectroscopy Study. Int. J. Mol. Sci. 2025, 26, 8842. https://doi.org/10.3390/ijms26188842
Grossmann J, Grendár M, Hnilicová P, Kováčiková N, Kotul’ová L, Bogner W, Kurča E, Kantorová E. Digit Span Tests Are More Sensitive than SDMT for Detecting Working Memory Impairment and Correlate with Metabolic Alterations in White Matter and Deep Gray Matter Nuclei in Multiple Sclerosis: A GABA-Edited Magnetic Resonance Spectroscopy Study. International Journal of Molecular Sciences. 2025; 26(18):8842. https://doi.org/10.3390/ijms26188842
Chicago/Turabian StyleGrossmann, Ján, Marián Grendár, Petra Hnilicová, Nina Kováčiková, Lucia Kotul’ová, Wolfgang Bogner, Egon Kurča, and Ema Kantorová. 2025. "Digit Span Tests Are More Sensitive than SDMT for Detecting Working Memory Impairment and Correlate with Metabolic Alterations in White Matter and Deep Gray Matter Nuclei in Multiple Sclerosis: A GABA-Edited Magnetic Resonance Spectroscopy Study" International Journal of Molecular Sciences 26, no. 18: 8842. https://doi.org/10.3390/ijms26188842
APA StyleGrossmann, J., Grendár, M., Hnilicová, P., Kováčiková, N., Kotul’ová, L., Bogner, W., Kurča, E., & Kantorová, E. (2025). Digit Span Tests Are More Sensitive than SDMT for Detecting Working Memory Impairment and Correlate with Metabolic Alterations in White Matter and Deep Gray Matter Nuclei in Multiple Sclerosis: A GABA-Edited Magnetic Resonance Spectroscopy Study. International Journal of Molecular Sciences, 26(18), 8842. https://doi.org/10.3390/ijms26188842