Special Issue “Research Advances on Cystic Fibrosis and CFTR Protein”
1. Introduction
2. Scope and Significance of This Special Issue
3. Overview of Contributions
3.1. Dissecting Acute CFTR Responses to VX-770, Cact-A1, and cAMP Elevation
3.2. CFTR Expression in Immune Cells: Rigorous Molecular Assessment Reveals Pitfalls and Challenges
3.3. The Activation of Cellular Senescence Pathways in CFTR-Defective Cells Is Reversed by SARS-CoV-2 Infection
3.4. Functional and Clinical Evaluation of CFTR Modulators in Organoids and Rectal Biopsies from a Patient with N1303K/Class I CFTR Variants
3.5. Mechanistic Insights into VX445 Binding to F508del CFTR
4. Future Perspectives and Concluding Remarks
Funding
Conflicts of Interest
References
- Welsh, M.; Ramsey, B.W.; Accurso, F.J.; Cutting, G.R. Cystic fibrosis. In The Metabolic and Molecular Basis of Inherited Disease, 8th ed.; Scriver, C.R., Beaudet, A.L., Sly, W.S., Valle, D., Childs, B., Vogelstein, B., Eds.; McGraw Hill: New York, NY, USA, 2001; pp. 5121–5188. [Google Scholar]
- Riordan, J.R.; Rommens, J.M.; Kerem, B.-S.; Alon, N.; Rozmahel, R.; Grzelczak, Z.; Zielenski, J.; Lok, S.; Plavsic, N.; Chou, J.-L.; et al. Identification of the cystic fibrosis gene: Cloning and characterization of complementary DNA. Science 1989, 245, 1066–1073, Erratum in Science 1989, 245, 1437. [Google Scholar] [CrossRef] [PubMed]
- Bergeron, C.; Cantin, A.M. Cystic Fibrosis: Pathophysiology of Lung Disease. Semin. Respir. Crit. Care Med. 2019, 40, 715–726. [Google Scholar] [CrossRef]
- Alahdab, Y.O.; Duman, D.G. Pancreatic involvement in cystic fibrosis. Minerva Med. 2016, 107, 427–436. [Google Scholar]
- Ratjen, F.; Bell, S.C.; Rowe, S.M.; Goss, C.H.; Quittner, A.L.; Bush, A. Cystic fibrosis. Nat. Rev. Dis. Primers. 2015, 1, 15010. [Google Scholar] [CrossRef]
- Farrell, P.M.; White, T.B.; Ren, C.L.; Hempstead, S.E.; Accurso, F.; Derichs, N.; Howenstine, M.; McColley, S.A.; Rock, M.; Rosenfeld, M.; et al. Diagnosis of Cystic Fibrosis: Consensus Guidelines from the Cystic Fibrosis Foundation. J. Pediatr. 2017, 181, S4–S15.e1, Erratum in J. Pediatr. 2017, 184, 243. [Google Scholar] [CrossRef]
- De Boeck, K. Cystic fibrosis in the year 2020: A disease with a new face. Acta Paediatr. 2020, 109, 893–899. [Google Scholar] [CrossRef]
- Férec, C.; Scotet, V. Genetics of cystic fibrosis: Basics. Arch. Pediatr. 2020, 27 (Suppl. 1), eS4–eS7. [Google Scholar] [CrossRef] [PubMed]
- Picci, L.; Cameran, M.; Marangon, O.; Marzenta, D.; Ferrari, S.; Frigo, A.C.; Scarpa, M. A 10-year large-scale cystic fibrosis carrier screening in the Italian population. J. Cyst. Fibros. 2010, 9, 29–35. [Google Scholar] [CrossRef] [PubMed]
- Farrell, P.M. The prevalence of cystic fibrosis in the European Union. J. Cyst. Fibros. 2008, 7, 450–453. [Google Scholar] [CrossRef]
- De Boeck, K.; Vermeulen, F.; Dupont, L. The diagnosis of cystic fibrosis. Presse Med. 2017, 46 Pt 2, e97–e108. [Google Scholar] [CrossRef]
- Castellani, C.; Picci, L.; Tamanini, A.; Girardi, P.; Rizzotti, P.; Assael, B.M. Association between carrier screening and incidence of cystic fibrosis. JAMA 2009, 302, 2573–2579. [Google Scholar] [CrossRef] [PubMed]
- Farrell, P.M.; Rock, M.J.; Baker, M.W. The Impact of the CFTR Gene Discovery on Cystic Fibrosis Diagnosis, Counseling, and Preventive Therapy. Genes 2020, 11, 401. [Google Scholar] [CrossRef] [PubMed]
- Regard, L.; Martin, C.; Da Silva, J.; Burgel, P.R. CFTR Modulators: Current Status and Evolving Knowledge. Semin. Respir. Crit. Care Med. 2023, 44, 186–195. [Google Scholar] [CrossRef]
- Baroni, D. Unraveling the Mechanism of Action, Binding Sites, and Therapeutic Advances of CFTR Modulators: A Narrative Review. Curr. Issues Mol. Biol. 2025, 47, 119. [Google Scholar] [CrossRef]
- Solomon, G.M.; Marshall, S.G.; Ramsey, B.W.; Rowe, S.M. Breakthrough therapies: Cystic fibrosis (CF) potentiators and correctors. Pediatr. Pulmonol. 2015, 50 (Suppl. 40), S3–S13. [Google Scholar] [CrossRef]
- Yeh, H.I.; Sohma, Y.; Conrath, K.; Hwang, T.C. A common mechanism for CFTR potentiators. J. Gen. Physiol. 2017, 149, 1105–1118. [Google Scholar] [CrossRef] [PubMed]
- Dwight, M.; Marshall, B. CFTR modulators: Transformative therapies for cystic fibrosis. J. Manag. Care Spec. Pharm. 2021, 27, 281–284. [Google Scholar] [CrossRef]
- Pedemonte, N.; Zegarra-Moran, O.; Galietta, L.J. High-throughput screening of libraries of compounds to identify CFTR modulators. Methods Mol. Biol. 2011, 741, 13–21. [Google Scholar] [CrossRef]
- U.S. Food and Drug Administration. Clinical Pharmacology and Biopharmaceutics Review(s): Kalydeco (Ivacaftor). NDA 203188. 2012. Available online: https://www.accessdata.fda.gov/drugsatfda_docs/nda/2012/203188Orig1s000StatR.pdf (accessed on 30 April 2025).
- Jih, K.Y.; Hwang, T.C. Vx-770 potentiates CFTR function by promoting decoupling between the gating cycle and ATP hydrolysis cycle. Proc. Natl. Acad. Sci. USA 2013, 110, 4404–4409. [Google Scholar] [CrossRef]
- Hadida, S.; Van Goor, F.; Zhou, J.; Arumugam, V.; McCartney, J.; Hazlewood, A.; Decker, C.; Negulescu, P.; Grootenhuis, P.D. Discovery of N-(2,4-di-tert-butyl-5-hydroxyphenyl)-4-oxo-1,4-dihydroquinoline-3-carboxamide (VX-770, ivacaftor), a potent and orally bioavailable CFTR potentiator. J. Med. Chem. 2014, 57, 9776–9795. [Google Scholar] [CrossRef]
- Clancy, J.P.; Rowe, S.M.; Accurso, F.J.; Aitken, M.L.; Amin, R.S.; Ashlock, M.A.; Ballmann, M.; Boyle, M.P.; Bronsveld, I.; Campbell, P.W.; et al. Results of a phase IIa study of VX-809, an investigational CFTR corrector compound, in subjects with cystic fibrosis homozygous for the F508del-CFTR mutation. Thorax 2012, 67, 12–18. [Google Scholar] [CrossRef] [PubMed]
- Van Goor, F.; Hadida, S.; Grootenhuis, P.D.; Burton, B.; Stack, J.H.; Straley, K.S.; Decker, C.J.; Miller, M.; McCartney, J.; Olson, E.R.; et al. Correction of the F508del-CFTR protein processing defect in vitro by the investigational drug VX-809. Proc. Natl. Acad. Sci. USA 2011, 108, 18843–18848. [Google Scholar] [CrossRef] [PubMed]
- Taylor-Cousar, J.L.; Munck, A.; McKone, E.F.; van der Ent, C.K.; Moeller, A.; Simard, C.; Wang, L.T.; Ingenito, E.P.; McKee, C.; Lu, Y.; et al. Tezacaftor-Ivacaftor in Patients with Cystic Fibrosis Homozygous for Phe508del. N. Engl. J. Med. 2017, 377, 2013–2023. [Google Scholar] [CrossRef]
- Donaldson, S.H.; Pilewski, J.M.; Griese, M.; Cooke, J.; Viswanathan, L.; Tullis, E.; Davies, J.C.; Lekstrom-Himes, J.A.; Wang, L.T. VX11-661-101 Study Group Tezacaftor/Ivacaftor in Subjects with Cystic Fibrosis and F508del/F508del-CFTR or F508del/G551D-CFTR. Am. J. Respir. Crit. Care Med. 2018, 197, 214–224. [Google Scholar] [CrossRef]
- Boyle, M.P.; Bell, S.C.; Konstan, M.W.; McColley, S.A.; Rowe, S.M.; Rietschel, E.; Huang, X.; Waltz, D.; Patel, N.R.; Rodman, D. VX09-809-102 study group. A CFTR corrector (lumacaftor) and a CFTR potentiator (ivacaftor) for treatment of patients with cystic fibrosis who have a phe508del CFTR mutation: A phase 2 randomised controlled trial. Lancet Respir. Med. 2014, 2, 527–538. [Google Scholar] [CrossRef] [PubMed]
- Middleton, P.G.; Mall, M.A.; Dřevínek, P.; Lands, L.C.; McKone, E.F.; Polineni, D.; Ramsey, B.W.; Taylor-Cousar, J.L.; Tullis, E.; Vermeulen, F.; et al. VX17-445-102 Study Group. Elexacaftor-Tezacaftor-Ivacaftor for Cystic Fibrosis with a Single Phe508del Allele. N. Engl. J. Med. 2019, 381, 1809–1819. [Google Scholar] [CrossRef]
- U.S. Food and Drug Administration. Clinical Review: Trikafta (elexacaftor/tezacaftor/ivacaftor). NDA 212273. Retrieved from FDA Approval Package. 2019. Available online: https://www.fda.gov/drugs/drug-approvals-and-databases/drug-trials-snapshots-trikafta (accessed on 9 June 2025).
- De Wachter, E.; Thomas, M.; Wanyama, S.S.; Seneca, S.; Malfroot, A. What can the CF registry tell us about rare CFTR-mutations? A Belgian study. Orphanet J. Rare Dis. 2017, 12, 142. [Google Scholar] [CrossRef]
- Crawford, K.J.; Downey, D.G. Theratyping in cystic fibrosis. Curr. Opin. Pulm. Med. 2018, 24, 612–617. [Google Scholar] [CrossRef]
- Nick, H.J.; Christeson, S.E.; Bratcher, P.E. VX-770, Cact-A1, and Increased Intracellular cAMP Have Distinct Acute Impacts upon CFTR Activity. Int. J. Mol. Sci. 2025, 26, 471. [Google Scholar] [CrossRef]
- Schnell, A.; Tamm, S.; Hedtfeld, S.; Gonzalez, C.R.; Hoerning, A.; Lachmann, N.; Stanke, F.; Dittrich, A.-M.; Munder, A. Analysis of CFTR mRNA and Protein in Peripheral Blood Mononuclear Cells via Quantitative Real-Time PCR and Western Blot. Int. J. Mol. Sci. 2024, 25, 6367. [Google Scholar] [CrossRef]
- Merigo, F.; Lagni, A.; Boschi, F.; Bernardi, P.; Conti, A.; Plebani, R.; Romano, M.; Sorio, C.; Lotti, V.; Sbarbati, A. Loss of CFTR Reverses Senescence Hallmarks in SARS-CoV-2 Infected Bronchial Epithelial Cells. Int. J. Mol. Sci. 2024, 25, 6185. [Google Scholar] [CrossRef] [PubMed]
- Efremova, A.; Kashirskaya, N.; Krasovskiy, S.; Melyanovskaya, Y.; Krasnova, M.; Mokrousova, D.; Bulatenko, N.; Kondratyeva, E.; Makhnach, O.; Bukharova, T.; et al. Comprehensive Assessment of CFTR Modulators’ Therapeutic Efficiency for N1303K Variant. Int. J. Mol. Sci. 2024, 25, 2770. [Google Scholar] [CrossRef] [PubMed]
- Bongiorno, R.; Ludovico, A.; Moran, O.; Baroni, D. Elexacaftor Mediates the Rescue of F508del CFTR Functional Expression Interacting with MSD2. Int. J. Mol. Sci. 2023, 24, 12838. [Google Scholar] [CrossRef] [PubMed]
- Bell, S.C.; Mall, M.A.; Gutierrez, H.; Macek, M.; Madge, S.; Davies, J.C.; Burgel, P.R.; Tullis, E.; Castaños, C.; Castellani, C.; et al. The future of cystic fibrosis care: A global perspective. Lancet Respir. Med. 2020, 8, 65–124, Erratum in Lancet Respir. Med. 2019, 7, e40. [Google Scholar] [CrossRef]
- Cuevas-Ocaña, S.; Laselva, O.; Avolio, J.; Nenna, R. The era of CFTR modulators: Improvements made and remaining challenges. Breathe 2020, 16, 200016. [Google Scholar] [CrossRef]
- Guimbellot, J.; Sharma, J.; Rowe, S.M. Toward inclusive therapy with CFTR modulators: Progress and challenges. Pediatr. Pulmonol. 2017, 52, S4–S14. [Google Scholar] [CrossRef]
- Guo, J.; Wang, J.; Zhang, J.; Fortunak, J.; Hill, A. Current prices versus minimum costs of production for CFTR modulators. J. Cyst. Fibros. 2022, 21, 866–872. [Google Scholar] [CrossRef]
- Guo, J.; Hennessy, G.; Young, B.; Hill, A. Strategies used to access CFTR modulators in countries without reimbursement agreements. J. Cyst. Fibros. 2025, 24, 290–294. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Baroni, D. Special Issue “Research Advances on Cystic Fibrosis and CFTR Protein”. Int. J. Mol. Sci. 2025, 26, 6708. https://doi.org/10.3390/ijms26146708
Baroni D. Special Issue “Research Advances on Cystic Fibrosis and CFTR Protein”. International Journal of Molecular Sciences. 2025; 26(14):6708. https://doi.org/10.3390/ijms26146708
Chicago/Turabian StyleBaroni, Debora. 2025. "Special Issue “Research Advances on Cystic Fibrosis and CFTR Protein”" International Journal of Molecular Sciences 26, no. 14: 6708. https://doi.org/10.3390/ijms26146708
APA StyleBaroni, D. (2025). Special Issue “Research Advances on Cystic Fibrosis and CFTR Protein”. International Journal of Molecular Sciences, 26(14), 6708. https://doi.org/10.3390/ijms26146708