The Interplay of Prolactin with Inflammatory Nutritional Markers and NT-proBNP in Chronic Kidney Disease
Abstract
1. Introduction
2. Results
2.1. Group Characteristics
2.2. Correlations and Multivariate Analysis on the Total Group
2.3. Significant Correlations by Subgroups
2.3.1. Correlations According to Diabetes
2.3.2. Correlations According to Sex
2.3.3. Correlations According to Obesity
2.3.4. Correlations According to Hypertension
3. Discussion
4. Materials and Methods
4.1. Patients
4.2. Laboratory Parameters
4.3. Statistical Method
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
CKD | Chronic kidney disease |
HD | Hemodialysis |
SBP | Systolic blood pressure |
DBP | Diastolic blood pressure |
PP | Pulse pressure |
BMI | Body mass index |
LTM | Lean tissue mass |
ATM | Adipose tissue mass |
eGFR | Estimated glomerular filtration rate |
LDL | Low-density lipo-protein |
HDL | High-density lipoproteins |
iPTH | Intact parathyroid hormone |
TNF-α | Tumor necrosis factor-alpha |
IL-6 | Interleukin 6 |
IL-1β | Interleukin-1 beta |
NT-proBNP | N-terminal pro-B-type natriuretic peptide |
SCC | Spearman correlation coefficient |
WBC | White blood cell |
CI | Confidence interval |
References
- Mahmoud, T.; Borgi, L. The Interplay Between Nutrition, Metabolic, and Endocrine Disorders in Chronic Kidney Disease. Semin. Nephrol. 2021, 41, 180–188. [Google Scholar] [CrossRef] [PubMed]
- Zhao, H.; Gong, S.; Shi, Y.; Luo, C.; Qiu, H.; He, J.; Sun, Y.; Huang, Y.; Wang, S.; Miao, Y.; et al. The role of prolactin/vasoinhibins in cardiovascular diseases. Anim. Model Exp. Med. 2023, 6, 81–91. [Google Scholar] [CrossRef]
- Al-Chalabi, M.; Bass, A.N.; Alsalman, I. Physiology, Prolactin. In StatPearls [Internet]; StatPearls Publishing: Treasure Island, FL, USA, 2025. Available online: https://www.ncbi.nlm.nih.gov/books/NBK507829/ (accessed on 11 May 2025).
- Tuzcu, A.; Bahceci, M.; Dursun, M.; Turgut, C.; Bahceci, S. Insulin sensitivity and hyperprolactinemia. J. Endocrinol. Investig. 2003, 26, 341–346. [Google Scholar] [CrossRef] [PubMed]
- Tzanakis, N.D.; Gregerson, K.A. Prolactin actions. J. Mol. Endocrinol. 2013, 52, 95–106. [Google Scholar] [CrossRef]
- Ben-Jonathan, N.; Hugo, E.R.; Brandebourg, T.D.; LaPensee, C.R. Focus on prolactin as a metabolic hormone. Trends Endocrin. Met. 2006, 17, 110–116. [Google Scholar] [CrossRef]
- Glezer, A.; Santana, M.R.; Bronstein, M.D.; Donato, J.; Jallad, R.S. The interplay between prolactin and cardiovascular disease. Front. Endocrinol. 2023, 13, 1018090. [Google Scholar] [CrossRef] [PubMed]
- Randi, A.M.; Smith, K.E.; Castaman, G. von Willebrand factor regulation of blood vessel formation. Blood 2018, 132, 132–140. [Google Scholar] [CrossRef]
- Corbacho, A.M.; Martínez De La Escalera, G.; Clapp, C. Roles of prolactin and related members of the prolactin/growth hormone/placental lactogen family in angiogenesis. J. Endocrinol. 2002, 173, 219–238. [Google Scholar] [CrossRef]
- Haring, R.; Friedrich, N.; Völzke, H.; Vasan, R.S.; Felix, S.B.; Dörr, M.; Meyer zu Schwabedissen, H.E.; Nauck, M.; Wallaschofski, H. Positive association of serum prolactin concentrations with all-cause and cardiovascular mortality. Eur. Heart J. 2014, 35, 1215–1221. [Google Scholar] [CrossRef]
- Krogh, J.; Selmer, C.; Torp-Pedersen, C.; Gislason, G.H.; Kistorp, C. Hyperprolactinemia and the Association with All-Cause Mortality and Cardiovascular Mortality. Horm. Metab. Res. 2017, 49, 411–417. [Google Scholar] [CrossRef]
- Zhu, R.R.; Chen, Q.; Liu, Z.B.; Ruan, H.G.; Wu, Q.C.; Zhou, X.-L. Inhibition of the Notch1 pathway induces peripartum cardiomyopathy. J. Cell. Mol. Med. 2020, 24, 7907–7914. [Google Scholar] [CrossRef]
- Triebel, J.; Bertsch, T.; Bollheimer, C.; Rios-Barrera, D.; Pearce, C.F.; Hüfner, M.; De La Escalera, G.M.; Clapp, C. Principles of the prolactin/vasoinhibin axis. Am. J. Physiol. Integr. Comp. Physiol. 2015, 309, R1193–R1203. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Meyer, K.; Friedl, A. STAT5 and prolactin participate in a positive autocrine feedback loop that promotes angiogenesis. J. Biol. Chem. 2013, 288, 21184–21196. [Google Scholar] [CrossRef]
- Friedrich, J.J.; Kyriazis, J.; Sonmez, A.; Tzanakis, I.; Qureshi, A.R.; Stenvinkel, P.; Saglam, M.; Stylianou, K.; Yaman, H.; Taslipinar, A.; et al. Prolactin levels, endothelial dysfunction, and the risk of cardiovascular events and mortality in patients with CKD. Clin. J. Am. Soc. Nephrol. 2012, 7, 207–215. [Google Scholar] [CrossRef]
- Adachi, N.; Lei, B.; Deshpande, G.; Seyfried, F.J.; Shimizu, I.; Nagaro, T.; Arai, T. Uraemia suppresses central dopaminergic metabolism and impairs motor activity in rats. Intensive Care Med. 2001, 27, 1655–1660. [Google Scholar] [CrossRef] [PubMed]
- Yavuz, D.; Topçu, G.; Ozener, C.; Akalin, S.; Sirikçi, O. Macroprolactin does not contribute to elevated levels of prolactin in patients on renal replacement therapy. Clin. Endocrinol. 2005, 63, 520–524. [Google Scholar] [CrossRef]
- Ros, S.; Carrero, J.J. Endocrine alterations and cardiovascular risk in CKD: Is there a link? Nefrologia 2013, 33, 181–187. [Google Scholar] [CrossRef]
- Dourado, M.; Cavalcanti, F.; Vilar, L.; Cantilino, A. Chronic Kidney Disease, and Cardiovascular Risk. Int. J. Endocrinol. 2020, 2020, 9524839. [Google Scholar] [CrossRef]
- Rojhani, E.; Rahmati, M.; Firouzi, F.; Ziaeefar, P.; Soudmand, S.A.; Azizi, F.; Tehrani, F.R.; Behboudi-Gandevani, S. Prolactin levels and chronic kidney disease and the subsequent risk of cardiovascular events: A long-term population-based cohort study. Sci. Rep. 2025, 15, 7198. [Google Scholar] [CrossRef]
- Borba, V.V.; Zandman-Goddard, G.; Shoenfeld, Y. Prolactin and autoimmunity. Front. Immunol. 2018, 9, 73. [Google Scholar] [CrossRef]
- Corbacho, A.M.; Nava, G.; Eiserich, J.P.; Noris, G.; Macotela, Y.; Struman, I.; Martinez de la Escalera, G.; Freeman, B.A.; Clapp, C. Proteolytic cleavage confers nitric oxide synthase inducing activity upon prolactin. J. Biol. Chem. 2000, 275, 13183–13186. [Google Scholar] [CrossRef] [PubMed]
- Bekić, S.; Šabanović, Š.; Šarlija, N.; Bosnić, Z.; Volarić, N.; Majnarić Trtica, L. Lack of Relationships Between Serum Prolactin Concentrations and Classical Cardiovascular Risk Factors in Eastern Croatian Older Adults. Med. Sci. Monit. 2018, 24, 6900–6909. [Google Scholar] [CrossRef] [PubMed]
- Parissis, J.T.; Farmakis, D.; Fountoulaki, K.; Rigas, A.; Nikolaou, M.; Paraskevaidis, I.A.; Bistola, V.; Venetsanou, K.; Ikonomidis, I.; Anastasiou-Nana, M.; et al. Clinical and neurohormonal correlates and prognostic value of serum prolactin levels in patients with chronic heart failure. Eur. J. Heart Fail. 2013, 15, 1122–1130. [Google Scholar] [CrossRef] [PubMed]
- Shen, Y.; Yang, Q.; Hu, T.; Wang, Y.; Chen, L.; Gao, F.; Zhu, W.; Hu, G.; Zhou, J.; Wang, C.; et al. Association of prolactin with all-cause and cardiovascular mortality among patients with type 2 diabetes: A real-world study. Eur. J. Prev. Cardiol. 2023, 30, 1439–1447. [Google Scholar] [CrossRef]
- Schettini, G.; Landolfi, E.; Grimaldi, M.; Meucci, O.; Postiglione, A.; Florio, T.; Ventra, C. Interleukin 1 beta inhibition of TRH-stimulated prolactin secretion and phosphoinositides metabolism. Biochem. Biophys. Res. Commun. 1989, 165, 496–505. [Google Scholar] [CrossRef]
- Rasmi, Y.; Jalali, L.; Khalid, S.; Shokati, A.; Tyagi, P.; Ozturk, A.; Nasimfar, A. The effects of prolactin on the immune system, its relationship with the severity of COVID-19, and its potential immunomodulatory therapeutic effect. Cytokine 2023, 169, 156253. [Google Scholar] [CrossRef]
- Montgomery, D. Prolactin production by immune cells. Lupus 2001, 10, 665–675. [Google Scholar] [CrossRef]
- Gerlo, S.; Verdood, P.; Hooghe-Peters, E.L.; Kooijman, R. Modulation of prolactin expression in human T lymphocytes by cytokines. J. Neuroimmunol. 2005, 162, 190–193. [Google Scholar] [CrossRef]
- Gerlo, S.; Verdood, P.; Kooijman, R. Tumor necrosis factor-α activates the extrapituitary PRL promoter in myeloid leukemic cells. J. Neuroimmunol. 2006, 172, 206–210. [Google Scholar] [CrossRef]
- Friedrichsen, S.; Harper, C.V.; Semprini, S.; Wilding, M.; Adamson, A.D.; Spiller, D.G.; Nelson, G.; Mullins, J.J.; White, M.R.H.; Davis, J.R.E. Tumor Necrosis Factor-Alpha Activates the Human Prolactin Gene Promoter via Nuclear Factor-kappaB Signaling. Endocrinology 2006, 147, 773–781. [Google Scholar] [CrossRef]
- Kamperdijk, L.; Shkarpa, N.; Twickler, M.T.B. The contribution of prolactin in the occurrence of premature cardiovascular disease predominantly through modulating the inflammatory cascade. Eur. J. Clin. Investig. 2025, 00, e70042. [Google Scholar] [CrossRef] [PubMed]
- Goldhar, A.S.; Vonderhaar, B.K.; Trott, J.F.; Hovey, R.C. Prolactin-induced expression of vascular endothelial growth factor via Egr-1. Mol. Cell. Endocrinol. 2005, 232, 9–19. [Google Scholar] [CrossRef] [PubMed]
- Clapp, C.; Aranda, J.; Gonzalez, C.; Jeziorski, M.C.; Martinez de la Escalera, G. Vasoinhibins: Endogenous regulators of angiogenesis and vascular function. Trends Endocrinol. Metab. TEM 2006, 17, 301–307. [Google Scholar] [CrossRef] [PubMed]
- Bauersachs, J.; König, T.; van der Meer, P.; Petrie, M.C.; Hilfiker-Kleiner, D.; Mbakwem, A.; Hamdan, R.; Jackson, A.M.; Forsyth, P.; de Boer, R.A.; et al. Pathophysiology, diagnosis and management of peripartum cardiomyopathy: A position statement from the Heart Failure Association of the European Society of Cardiology Study Group on peripartum cardiomyopathy. Eur. J. Heart Fail. 2019, 21, 827–843. [Google Scholar] [CrossRef]
- Sauro, M.D.; Zorn, N.E. Prolactin induces proliferation of vascular smooth muscle cells through a protein kinase C-dependent mechanism. J. Cell Physiol. 1991, 148, 133–138. [Google Scholar] [CrossRef]
- Reuwer, A.Q.; van Eijk, M.; Houttuijn-Bloemendaal, F.M.; van der Loos, C.M.; Claessen, N.; Teeling, P.; Kastelein, J.J.P.; Hamann, J.; Goffin, V.; von der Thusen, J.H.; et al. The prolactin receptor is expressed in macrophages within human carotid atherosclerotic plaques: A role for prolactin in atherogenesis? J. Endocrinol. 2011, 208, 107–117. [Google Scholar] [CrossRef]
- Arslan, M.S.; Topaloglu, O.; Sahin, M.; Tutal, E.; Gungunes, A.; Cakir, E.; Ozturk, I.U.; Karbek, B.; Ucan, B.; Ginis, Z.; et al. Preclinical atherosclerosis in patients with prolactinoma. Endocr. Pract. 2014, 20, 447–451. [Google Scholar] [CrossRef]
- González, C.; Rosas-Hernández, H.; Jurado-Manzano, B.; Ramirez-Lee, M.A.; Salazar-García, S.; Martinez-Cuevas, P.P.; Velarde-Salcedo, A.J.; Morales-Loredo, H.; Espinosa-Tanguma, R.; Ali, S.F.; et al. The prolactin family hormones regulate vascular tone through NO and prostacyclin production in isolated rat aortic rings. Acta Pharmacol. Sin. 2015, 36, 572–586. [Google Scholar] [CrossRef]
- Hassan, B.F.; Obeid, S.F.; Hassan, N.S.; Abdulhasan, S. Study the relationship between NT-ProBNP and prolactin in sera of Iraqi patients with chronic renal failure. Int. J. Pharma. Res. 2020, 12, 397. [Google Scholar] [CrossRef]
- Neuen, B.L.; Vaduganathan, M.; Claggett, B.L.; Beldhuis, I.; Myhre, P.; Desai, A.S.; Skali, H.; Mc Causland, F.R.; McGrath, M.; Anand, I.; et al. Natriuretic Peptides, Kidney Function, and Clinical Outcomes in Heart Failure with Preserved Ejection Fraction. JACC Heart Fail. 2025, 13, 28–39. [Google Scholar] [CrossRef]
- Yang, W.-L.; Fahim, M.; Johnson, D.W. Pathophysiology and significance of natriuretic peptides in patients with end-stage kidney disease. Clin. Biochem. 2020, 83, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Nishi, H.; Nangaku, M.; Sofue, T.; Kagimura, T.; Narita, I. N-terminal pro-brain natriuretic peptide and cardiorenal outcome in patients with anaemia in chronic kidney disease. ESC Heart Fail. 2025, 12, 848–858. [Google Scholar] [CrossRef]
- Hayashida, H.; Haruyama, N.; Fukui, A.; Yoshitomi, R.; Fujisawa, H.; Nakayama, M. Plasma B-type natriuretic peptide is independently associated with cardiovascular events and mortality in patients with chronic kidney disease. Sci. Rep. 2024, 14, 16542. [Google Scholar] [CrossRef]
- Jiang, X.B.; Li, C.L.; He, D.S.; Mao, Z.G.; Liu, D.H.; Fan, X.; Hu, B.; Zhu, Y.H.; Wang, H.J. Increased carotid intima media thickness is associated with prolactin levels in subjects with untreated prolactinoma: A pilot study. Pituitary 2014, 17, 232–239. [Google Scholar] [CrossRef] [PubMed]
- Jurek, A.; Krzesiński, P.; Gielerak, G.; Uziębło-Życzkowska, B.; Witek, P.; Zieliński, G.; Kazimierczak, A.; Wierzbowski, R. Prolactinoma and cardiovascular diseases—An interdisciplinary problem. Pediatr. Med. Rodz. 2021, 17, 294–298. [Google Scholar] [CrossRef]
- Krysiak, R.; Okopień, B. Different effects of cabergoline and bromocriptine on metabolic and cardiovascular risk factors in patients with elevated prolactin levels. Basic Clin. Pharmacol. Toxicol. 2015, 116, 251–256. [Google Scholar] [CrossRef]
- Kabootari, M.; Shirmohammadli, H.; Golgiri, F.; Mosalamiaghili, S.; Khajavi, A.; Akbari, H. Metabolic effects of dopamine-agonists treatment among patients with prolactinomas. Endocrine 2023, 79, 537–544. [Google Scholar] [CrossRef] [PubMed]
- Chang, A.S.; Grant, R.; Tomita, H.; Kim, H.S.; Smithies, O.; Kakoki, M. Prolactin alters blood pressure by modulating the activity of endothelial nitric oxide synthase. Proc. Natl. Acad. Sci. USA 2016, 113, 12538–12543. [Google Scholar] [CrossRef]
- Louka, M. Sarcopenia in CKD: The effect of CKD on muscle mass. J. Res. Pract. Musculoskelet. Syst. 2022, 6, 106–110. [Google Scholar] [CrossRef]
- Hugo, E.R.; Borcherding, D.C.; Gersin, K.S.; Loftus, J.; Ben-Jonathan, N. Prolactin release by adipose explants, primary adipocytes, and LS14 adipocytes. J. Clin. Endocrinol. Metab. 2008, 93, 4006–4012. [Google Scholar] [CrossRef]
- Ben-Jonathan, N.; Mershon, J.L.; Allen, D.L.; Steinmetz, R.W. Extrapituitary prolactin: Distribution, regulation, functions, and clinical aspects. Endocr. Rev. 1996, 17, 639–669. [Google Scholar] [CrossRef] [PubMed]
- Muthina, R.A.; Koppara, N.K.; Kiranmayi, V.S.; Vaikkakara, S.; Vishnubotla, S. Gonadal functional status and its correlation with body composition in adult men with non-diabetic chronic kidney disease non-dialysis-dependent stage. J. Clin. Sci. Res. 2024, 13, 243–248. [Google Scholar] [CrossRef]
- Pala, N.A.; Laway, B.A.; Misgar, R.A.; Dar, R.A. Metabolic abnormalities in patients with prolactinoma: Response to treatment with cabergoline. Diabetol. Metab. Syndr. 2015, 7, 99. [Google Scholar] [CrossRef]
- Ling, C.; Svensson, L.; Odén, B.; Weijdegård, B.; Edén, B.; Edén, S.; Billig, H. Identification of functional prolactin (PRL) receptor gene expression: PRL inhibits lipoprotein lipase activity in human white adipose tissue. J. Clin. Endocrinol. Metab. 2003, 88, 1804–1808. [Google Scholar] [CrossRef]
- Brandebourg, T.; Hugo, E.; Ben-Jonathan, N. Adipocyte prolactin: Regulation of release and putative functions. Diabetes Obes. Metab. 2007, 9, 464–476. [Google Scholar] [CrossRef] [PubMed]
- Augustine, R.A.; Grattan, D.R. Induction of central leptin resistance in hyperphagic pseudopregnant rats by chronic prolactin infusion. Endocrinology 2008, 149, 1049–1055. [Google Scholar] [CrossRef]
- Sauvé, D.; Woodside, B. Neuroanatomical specificity of prolactininduced hyperphagia in virgin female rats. Brain Res. 2000, 868, 306–314. [Google Scholar] [CrossRef]
- Corona, G.; Rastrelli, G.; Comeglio, P.; Guaraldi, F.; Mazzatenta, D.; Sforza, A.; Vignozzi, L.; Maggi, M. The metabolic role of prolactin: Systematic review, meta-analysis and preclinical considerations. Expert. Rev. Endocrinol. Metab. 2022, 17, 533–545. [Google Scholar] [CrossRef] [PubMed]
- Bernabeu, I.; Casanueva, F.F. Metabolic syndrome associated with hyperprolactinemia: A new indication for dopamine agonist treatment? Endocrine 2013, 44, 273–274. [Google Scholar] [CrossRef]
- Bole-Feysot, C.; Goffin, V.; Edery, M.; Binart, N.; Kelly, P.A. Prolactin (PRL) and its receptor: Actions, signal transduction pathways and phenotypes observed in PRL receptor knockout mice. Endocr. Rev. 1998, 19, 225–268. [Google Scholar] [CrossRef]
- Pirchio, R.; Auriemma, R.S.; Solari, D.; Arnesi, M.; Pivonello, C.; Negri, M.; de Angelis, C.; Cavallo, L.M.; Cappabianca, P.; Colao, A.; et al. Effects of pituitary surgery and high-dose cabergoline therapy on metabolic profile in patients with prolactinoma resistant to conventional cabergoline treatment. Front. Endocrinol. 2021, 12, 769744. [Google Scholar] [CrossRef]
- Krogh, J. Editorial: The metabolic effect of prolactin. Front. Endocrinol. 2023, 14, 1166172. [Google Scholar] [CrossRef]
- Biller, B.M.; Colao, A.; Petersenn, S.; Bonert, V.S.; Boscaro, M. Prolactinomas, cushing’s disease and acromegaly: Debating the role of medical therapy for secretory pituitary adenomas. BMC Endocr. Disord. 2010, 17, 10. [Google Scholar] [CrossRef] [PubMed]
- Wagner, R.; Heni, M.; Linder, K.; Ketterer, C.; Peter, A.; Böhm, A.; Hatziagelaki, E.; Stefan, N.; Staiger, H.; Häring, H.U.; et al. Age-dependent association of serum prolactin with glycaemia and insulin sensitivity in humans. Acta Diabetol. 2014, 51, 71–78. [Google Scholar] [CrossRef] [PubMed]
- Lo, J.C.; Beck, G.J.; Kaysen, G.A.; Chan, C.T.; Kliger, A.S.; Rocco, M.V.; Chertow, G.M.; FHN Study. Hyperprolactinemia in end-stage renal disease and effects of frequent hemodialysis. Hemodial. Int. 2017, 21, 190–196. [Google Scholar] [CrossRef] [PubMed]
- Yun, S.J.; Sang, H.; Park, S.Y.; Chin, S.O. Effect of Hyperprolactinemia on Bone Metabolism: Focusing on Osteopenia/Osteoporosis. Int. J. Mol. Sci. 2024, 25, 1474. [Google Scholar] [CrossRef] [PubMed]
- Bataille-Simoneau, N.; Gerland, K.; Chappard, D.; Basle, M.F.; Mercier, L. Expression of prolactin receptors in human osteosarcoma cells. Biochem. Biophys. Res. Commun. 1996, 229, 323–328. [Google Scholar] [CrossRef]
- Seriwatanachai, D.; Krishnamra, N.; van Leeuwen, J.P. Evidence for direct effects of prolactin on human osteoblasts: Inhibition of cell growth and mineralization. J. Cell Biochem. 2009, 107, 677–685. [Google Scholar] [CrossRef]
- Seriwatanachai, D.; Thongchote, K.; Charoenphandhu, N.; Pandaranandaka, J.; Tudpor, K.; Teerapornpuntakit, J.; Suthiphongchai, T.; Krishnamra, N. Prolactin directly enhances bone turnover by raising osteoblast-expressed receptor activator of nuclear factor kappaB ligand/osteoprotegerin ratio. Bone 2008, 42, 535–546. [Google Scholar] [CrossRef]
- Wongdee, K.; Tulalamba, W.; Thongbunchoo, J.; Krishnamra, N.; Charoenphandhu, N. Prolactin alters the mRNA expression of osteoblast-derived osteoclastogenic factors in osteoblast-like UMR106 cells. Mol. Cell Biochem. 2011, 349, 195–204. [Google Scholar] [CrossRef]
- Sahovic, V.; Sahovic, S.; Grosa, E.; Avdic, E.; Helac-Cvijetic, D.; Kukavica, N. Correlation between parathormone and sexual hormones in patients on haemodialysis. Med. Arch. 2012, 66, 177–180. [Google Scholar] [CrossRef]
- Takahashi, H.; Suzuki, N.; Takagi, C.; Ikegame, M.; Yamamoto, T.; Takahashi, A.; Moriyama, S.; Hattori, A.; Sakamoto, T.; Takahashi, H.; et al. Prolactin Inhibits Osteoclastic Activity in the Goldfish Scale: A Novel Direct Action of Prolactin in Teleosts. Zool. Sci. 2008, 25, 739–745. [Google Scholar] [CrossRef]
- Momani, M.S.; Al Tarawni, A.; Momani, Y.M.; Rahhal, S.; Elhaj, I.; Al-Halhouli, D.; Alhawari, H. Effect of Age, Gender, Food Intake, Obesity, and Smoking on Serum Levels of Prolactin in Healthy Adults. J. Pers. Med. 2024, 14, 905. [Google Scholar] [CrossRef]
- Iranmanesh, A.; Mulligan, T.; Veldhuis, J.D. Mechanisms subserving the physiological nocturnal relative hypoprolactinemia of healthy older men: Dual decline in prolactin secretory burst mass and basal release with preservation of pulse duration, frequency, and interpulse interval--a General Clinical Research Center study. J. Clin. Endocrinol. Metab. 1999, 84, 1083–1090. [Google Scholar]
- Roelfsema, F.; Pijl, H.; Keenan, D.M.; Veldhuis, J.D. Prolactin Secretion in Healthy Adults Is Determined by Gender, Age and Body Mass Index. PLoS ONE 2012, 7, e31305. [Google Scholar] [CrossRef] [PubMed]
- Vekemans, M.; Robyn, C. Influence of age on serum prolactin levels in women and men. Br. Med. J. 1975, 4, 738–739. [Google Scholar] [CrossRef] [PubMed]
- Greenspan, S.L.; Klibanski, A.; Rowe, J.W.; Elahi, D. Age alters pulsatile prolactin release: Influence of dopaminergic inhibition. Am. J. Physiol. 1990, 258, E799–E804. [Google Scholar] [CrossRef] [PubMed]
- Soto-Pedre, E.; Newey, P.J.; Bevan, J.S.; Leese, G.P. Morbidity and mortality in patients Morbidity and mortality in patients Morbidity and mortality in patients with hyperprolactinaemia: The PROLEARS study. Endocr. Connect. 2017, 6, 580–588. [Google Scholar] [CrossRef]
- Papazoglou, A.S.; Leite, A.R.; Moysidis, D.V.; Anastasiou, V.; Daios, S.; Borges-Canha, M.; Giannopoulos, G.; Neves, J.S.; Ziakas, A.; Giannakoulas, G. Serum Prolactin Levels and Mortality in Adults Without Prolactinoma: A Meta-Analysis. J. Clin. Endocrinol. Metab. 2024, 109, e1652–e1664. [Google Scholar] [CrossRef]
- Papazoglou, A.S.; Leite, A.R. Prolactin levels and cardiovascular disease: A complicate relationship or a confounding association? Eur. J. Prev. Cardiol. 2025, 32, 612–615. [Google Scholar] [CrossRef]
- Therkelsen, K.E.; Abraham, T.M.; Pedley, A.; Massaro, J.M.; Sutherland, P.; Hoffmann, U.; Fox, C.S. Association between Prolactin and Incidence of Cardiovascular Risk factors in the Framingham Heart Study. J. Am. Heart Assoc. 2016, 5, e002640. [Google Scholar] [CrossRef] [PubMed]
- Kutikuppala, L.V.S.; Sharma, S.; Chavan, M.; Rangari, G.; Misra, A.K.; Innamuri, S.R.; Vijayakumar, T.; Varshitha, G. Bromocriptine: Does this drug of Parkinson’s disease have a role in managing cardiovascular diseases? Ann. Med. Surg. 2023, 86, 926–929. [Google Scholar] [CrossRef] [PubMed]
- Kidney Disease: Improving Global Outcomes (KDIGO) CKD Work Group. KDIGO 2024 Clinical Practice Guideline for the Evaluation and Management of Chronic Kidney Disease. Kidney Int. 2024, 105, S117–S314. [Google Scholar] [CrossRef] [PubMed]
- Rusu, C.C.; Kacso, I.; Moldovan, D.; Potra, A.; Tirinescu, D.; Ticala, M.; Orasan, R.; Budurea, C.; Anton, F.; Valea, A.; et al. Leptin Is Associated with Testosterone, Nutritional Markers, and Vascular Muscular Dysfunction in Chronic Kidney Disease. Int. J. Mol. Sci. 2024, 25, 7646. [Google Scholar] [CrossRef]
- Levey, A.S.; Stevens, L.A.; Schmid, C.H.; Zhang, Y.L.; Castro, A.F.; Feldman, H.I.; Kusek, J.W.; Eggers, P.; Van Lente, F.; Greene, T.; et al. A new equation to estimate glomerular filtration rate. Ann. Intern. Med. 2009, 150, 604–612. [Google Scholar] [CrossRef]
- Onofriescu, M.; Mardare, N.G.; Segall, L.; Voroneanu, L.; Cuşai, C.; Hogaş, S.; Ardeleanu, S.; Nistor, I.; Prisadă, O.V.; Sascău, R.; et al. Randomized trial of bioelectrical impedance analysis versus clinical criteria for guiding ultrafiltration in hemodialysis patients: Effects on blood pressure, hydration status, and arterial stiffness. Int. Urol. Nephrol. 2012, 44, 583–591. [Google Scholar] [CrossRef]
Parameters | Total Group (n = 157) |
---|---|
Age (years) | 66 (56.5; 74) |
Male, no. (%) | 86 (54.8) |
Diabetes mellitus, no. (%) | 46 (29.3) |
Hypertension, no. (%) | 123 (78.3) |
SBP (mmHg) | 144.04 ± 21.65 |
DBP (mmHg) | 80 (70; 89) |
PP (mmHg) | 61 (50; 75) |
Body mass index (kg/m2) | 28.15 (24.46; 30.93) |
LTM (kg) | 32.32 (25.67; 42.05) |
ATM (kg) | 41.17 ± 15.96 |
Dialysis duration (months) | 65 (24; 87) |
eGFR (mL/min/1.73 m2) | 27.5 (15; 42) |
Kt/V | 1.54 ± 0.32 |
Triglycerides (mg/dL) | 130.5 (94.05; 176) |
LDL-cholesterol (mg/dL) | 100.73 ± 35.26 |
Total cholesterol (mg/dL) | 174.75 ± 39.2 |
HDL-cholesterol (mg/dL) | 40.66 (32; 48) |
Fasting glucose (mg/dL) | 97 (89; 121.73) |
Corrected Calcium (mg/dL) | 9 (8.45; 9.44) |
Phosphorus (mg/dL) | 4.4 (3.45; 5.5) |
Alkaline phosphatase (UI/L) | 78 (60; 96) |
iPTH (pg/mL) | 208.3 (108; 398.9) |
Hemoglobin (g/dL) | 11.8 (10.8; 13) |
Serum albumin (g/L) | 3.89 ± 0.37 |
Ferritin (ng/mL) | 383.8 (136; 682.2) |
hs-C reactive protein (mg/dL) | 0.53 (0.23; 1.25) |
White blood cells (n/mm3) | 6675 (5885; 8435) |
Parameters | Total Group (n = 157) | Dialysis Patients (n = 88) | Pre-Dialysis Patients (n = 69) | p * |
---|---|---|---|---|
Prolactin (ng/mL) | 12 (5.54; 27.16) | 19.46 (12.72; 36.16) | 4.83 (3.07; 7.74) | <0.001 |
TNF-α (pg/mL) | 226.9 (4.8; 293.86) | 283.24 (241.91; 359.83) | 4.4 (2.94; 6.47) | 0.001 |
IL-6 (pg/mL) | 196.46 (2.62; 285.51) | 272.45 (222.41; 342.71) | 2.38 (1.7; 3.27) | <0.001 |
IL-1β (pg/mL) | 18.25 (6.92; 128) | 47.15 (16.01; 287.57) | 7.06 (6.38; 12.77) | <0.001 |
NT-proBNP (pg/mL) | 6795.8 (384.7; 9611.33) | 9557.23 (8684.94; 10,006.81) | 322.22 (219.11; 560.56) | <0.001 |
Parameters Prolactin | Total Group | Pre-Dialysis | Dialysis | ||||
---|---|---|---|---|---|---|---|
SCC | p | N | SCC | p | SCC | p | |
Age (years) | −0.32 | <0.001 | 156 | −0.21 | 0.079 | −0.04 | 0.687 |
LTM [kg] | −0.22 | 0.009 | 140 | −0.02 | 0.876 | −0.07 | 0.535 |
DBP (mmHg) | −0.25 | 0.002 | 156 | 0.03 | 0.818 | 0.26 | 0.014 |
PP(mmHg) | 0.16 | 0.041 | 156 | 0.10 | 0.408 | −0.03 | 0.769 |
Triglycerides (mg/dL) | −0.03 | 0.693 | 134 | 0.28 | 0.062 | −0.23 | 0.033 |
HDL-cholesterol (mg/dL) | 0.11 | 0.202 | 126 | 0.22 | 0.184 | 0.27 | 0.010 |
Fasting glucose (mg/dL) | −0.18 | 0.035 | 143 | −0.01 | 0.964 | −0.06 | 0.596 |
Corrected Calcium (mg/dL) | −0.22 | 0.006 | 151 | −0.24 | 0.059 | 0.05 | 0.627 |
Phosphorus (mg/dL) | 0.36 | <0.001 | 147 | 0.24 | 0.072 | 0.15 | 0.175 |
iPTH (pg/mL) | 0.36 | <0.001 | 141 | 0.21 | 0.124 | 0.01 | 0.897 |
Hemoglobin (g/dL) | −0.28 | <0.001 | 152 | −0.14 | 0.286 | −0.07 | 0.490 |
Ferritin (ng/mL) | 0.46 | <0.001 | 132 | 0.30 | 0.050 | 0.00 | 0.984 |
WBC (n/mm3) | −0.23 | 0.004 | 152 | 0.19 | 0.128 | −0.19 | 0.078 |
IL-1β (pg/mL) | 0.25 | 0.002 | 157 | −0.06 | 0.619 | −0.20 | 0.060 |
NT-proBNP | 0.61 | <0.001 | 157 | 0.11 | 0.357 | −0.01 | 0.941 |
TNF-α(pg/mL) | 0.65 | <0.001 | 157 | 0.21 | 0.078 | 0.15 | 0.168 |
IL-6 (pg/mL) | 0.66 | <0.001 | 157 | 0.26 | 0.033 | 0.16 | 0.130 |
eGFR (mL/min/1.73 m2) | −0.60 | <0.001 | 66 | −0.60 |
Parameters Prolactin | Total Group Patients | Pre-Dialysis Patients | Dialysis Patients | |||
---|---|---|---|---|---|---|
B, 95%CI * | p | B, 95%CI * | p | B, 95%CI * | p | |
LTM [kg] | −0.03 (−0.04; −0.01) | 0.003 | ||||
DBP (mmHg) | 0.014 (0.001; 0.027) | 0.029 | ||||
HDL-cholesterol (mg/dL) | 0.012 (0.001; 0.024) | 0.038 | ||||
IL-1β (pg/mL) | −0.001 (−0.001; −0.00003) | 0.037 | ||||
NT-proBNP (pg/mL) | 0.0001 (0.0001; 0.0001) | <0.001 |
Prolactin | With Diabetes (n = 46) | Without Diabetes (n = 108) | ||||||
---|---|---|---|---|---|---|---|---|
Bivariate | Multivariate * | Bivariate | Multivariate * | |||||
SCC | p | B, 95%CI | p | SCC | p | B, 95%CI | p | |
Age (years) | −0.27 | 0.076 | −0.28 | 0.003 | −0.019 (−0.035; −0.003) | 0.021 | ||
DBP (mmHg) | −0.32 | 0.031 | −0.13 | 0.176 | ||||
PP (mmHg) | 0.42 | 0.005 | 0.18 | 0.058 | ||||
LTM (kg) | −0.23 | 0.149 | −0.26 | 0.011 | −0.026 (−0.048; −0.004) | 0.022 | ||
eGFR (mL/min/1.73 m2) | −0.49 | 0.006 | −0.74 | <0.001 | ||||
Corrected Calcium (mg/dL) | −0.25 | 0.111 | −0.25 | 0.011 | ||||
Phosphorus (mg/dL) | 0.33 | 0.034 | 0.34 | <0.001 | ||||
iPTH (pg/mL) | 0.40 | 0.011 | 0.33 | 0.001 | ||||
Hemoglobin (g/dL) | −0.09 | 0.540 | −0.43 | <0.001 | ||||
hs-C reactive protein (mg/dL) | 0.43 | 0.004 | 0.03 | 0.759 | ||||
Ferritin (ng/mL) | 0.59 | <0.001 | 0.41 | <0.001 | ||||
WBC (no./mm3) | 0.06 | 0.711 | −0.22 | 0.027 | ||||
IL-1β (pg/mL) | 0.28 | 0.059 | 0.26 | 0.007 | ||||
TNF-α (pg/mL) | 0.65 | <0.001 | 0.61 | <0.001 | ||||
IL-6 (pg/mL) | 0.69 | <0.001 | 0.59 | <0.001 | ||||
NT-proBNP (pg/mL) | 0.68 | <0.001 | 0.0001 (0.00003; 0.0003) | 0.015 | 0.52 | <0.001 | 0.0001 (0.00001; 0.0001) | 0.028 |
Prolactin | Women (n = 71) | Men (n = 86) | ||||||
---|---|---|---|---|---|---|---|---|
Bivariate | Multivariate * | Bivariate | Multivariate * | |||||
SCC | p | B, 95%CI | p | SCC | p | B, 95%CI | p | |
Age (years) | −0.29 | 0.014 | −0.38 | <0.001 | ||||
Fasting glucose (mg/dL) | −0.40 | 0.001 | −0.01 (−0.02; −0.001) | 0.040 | −0.04 | 0.731 | ||
DBP (mmHg) | −0.14 | 0.233 | −0.31 | 0.004 | ||||
Corrected calcium (mg/dL) | −0.40 | 0.001 | −0.13 | 0.248 | ||||
Phosphorus (mg/dL) | 0.29 | 0.017 | 0.43 | <0.001 | ||||
iPTH (pg/mL) | 0.28 | 0.026 | 0.42 | <0.001 | ||||
Hemoglobin (g/dL) | −0.44 | <0.001 | −0.15 | 0.184 | ||||
Ferritin (ng/mL) | 0.41 | 0.002 | 0.47 | <0.001 | ||||
WBC (no./mm3) | −0.24 | 0.049 | −0.23 | 0.040 | ||||
IL-1β (pg/mL) | 0.21 | 0.076 | 0.29 | 0.006 | ||||
NT-proBNP (pg/mL) | 0.60 | <0.001 | 0.61 | <0.001 | 0.0001 (0.00003; 0.0002) | 0.006 | ||
TNF-α (pg/mL) | 0.60 | <0.001 | 0.73 | <0.001 | ||||
IL-6 (pg/mL) | 0.62 | <0.001 | 0.002 (0.0001; 0.003) | 0.042 | 0.71 | <0.001 | ||
eGFR (mL/min/1.73 m2) | −0.73 | <0.001 | −0.46 | 0.006 |
Prolactin | BMI ≥ 30 (n = 51) | BMI < 30 (n = 103) | ||||||
---|---|---|---|---|---|---|---|---|
Bivariate | Multivariate * | Bivariate | Multivariate * | |||||
SCC | p | B, 95%CI | p | SCC | p | B, 95%CI | p | |
Age (years) | −0.15 | 0.283 | −0.35 | <0.001 | ||||
Body mass index (kg/m2) | 0.21 | 0.130 | −0.26 | 0.007 | ||||
LTM (kg) | −0.36 | 0.014 | −0.17 | 0.111 | ||||
DBP (mmHg) | −0.42 | 0.002 | −0.20 | 0.044 | ||||
PP (mmHg) | 0.32 | 0.022 | 0.10 | 0.299 | ||||
HDL-cholesterol (mg/dL) | −0.40 | 0.009 | 0.33 | 0.003 | 0.02 (0.006; 0.04) | 0.008 | ||
Fasting glucose (mg/dL) | −0.33 | 0.021 | −0.07 | 0.486 | ||||
Corrected calcium (mg/dL) | −0.22 | 0.121 | −0.22 | 0.031 | ||||
Phosphorus (mg/dL) | 0.46 | 0.001 | 0.28 | 0.006 | ||||
iPTH (pg/mL) | 0.60 | <0.001 | 0.24 | 0.023 | ||||
Hemoglobin (g/dL) | −0.31 | 0.028 | −0.25 | 0.011 | ||||
Ferritin (ng/mL) | 0.43 | 0.004 | 0.51 | <0.001 | ||||
WBC (no./mm3) | −0.27 | 0.057 | −0.23 | 0.022 | ||||
IL-1β (pg/mL) | 0.27 | 0.057 | 0.23 | 0.017 | ||||
NT-proBNP (pg/mL) | 0.71 | <0.001 | 0.56 | <0.001 | 0.0001 (0.00003; 0.0002) | 0.003 | ||
TNF-α (pg/mL) | 0.78 | <0.001 | 0.59 | <0.001 | ||||
IL-6 (pg/mL) | 0.72 | <0.001 | 0.62 | <0.001 | ||||
eGFR (mL/min/1.73 m2) | −0.54 | 0.010 | −0.63 | <0.001 |
Prolactin | With Hypertension (n = 123) | Without Hypertension (n = 33) | ||||||
---|---|---|---|---|---|---|---|---|
Bivariate | Multivariate * | Bivariate | Multivariate * | |||||
SCC | p | B, 95%CI | p | SCC | p | B, 95%CI | p | |
Age (years) | −0.32 | <0.001 | −0.34 | 0.053 | ||||
LTM (kg) | −0.21 | 0.028 | −0.11 | 0.550 | ||||
DBP (mmHg) | −0.32 | <0.001 | 0.27 | 0.129 | ||||
Corrected calcium (mg/dL) | −0.24 | 0.008 | 0.05 | 0.788 | ||||
Phosphorus (mg/dL) | 0.42 | <0.001 | 0.20 | 0.294 | ||||
iPTH (pg/mL) | 0.37 | <0.001 | 0.11 | 0.594 | ||||
Fasting glucose (mg/dL) | −0.04 | 0.689 | −0.47 | 0.007 | ||||
Ferritin (ng/mL) | 0.55 | <0.001 | 0.36 | 0.062 | ||||
WBC (no./mm3) | −0.18 | 0.047 | 0.00 | 0.979 | ||||
Hemoglobin (g/dL) | −0.26 | 0.004 | −0.27 | 0.136 | ||||
Bicarbonate level (mEq/L) | 0.24 | 0.033 | −0.18 | 0.364 | ||||
IL-1β (pg/mL) | 0.30 | 0.001 | 0.01 | 0.971 | ||||
NT-proBNP (pg/mL) | 0.61 | <0.001 | 0.0001 (0.00005; 0.0002) | 0.001 | 0.56 | 0.001 | 0.0001 (0.00003; 0.0002) | 0.012 |
TNF-α (pg/mL) | 0.70 | <0.001 | 0.33 | 0.062 | ||||
IL-6 (pg/mL) | 0.68 | <0.001 | 0.46 | 0.007 | ||||
eGFR (mL/min/1.73 m2) | −0.53 | <0.001 | −0.94 | 0.005 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rusu, C.C.; Moldovan, D.; Potra, A.; Tirinescu, D.; Ticala, M.; Maslyennikov, Y.; Barar, A.; Urs, A.; Bondor, C.I.; Valea, A.; et al. The Interplay of Prolactin with Inflammatory Nutritional Markers and NT-proBNP in Chronic Kidney Disease. Int. J. Mol. Sci. 2025, 26, 6347. https://doi.org/10.3390/ijms26136347
Rusu CC, Moldovan D, Potra A, Tirinescu D, Ticala M, Maslyennikov Y, Barar A, Urs A, Bondor CI, Valea A, et al. The Interplay of Prolactin with Inflammatory Nutritional Markers and NT-proBNP in Chronic Kidney Disease. International Journal of Molecular Sciences. 2025; 26(13):6347. https://doi.org/10.3390/ijms26136347
Chicago/Turabian StyleRusu, Crina Claudia, Diana Moldovan, Alina Potra, Dacian Tirinescu, Maria Ticala, Yuriy Maslyennikov, Andrada Barar, Alexandra Urs, Cosmina Ioana Bondor, Ana Valea, and et al. 2025. "The Interplay of Prolactin with Inflammatory Nutritional Markers and NT-proBNP in Chronic Kidney Disease" International Journal of Molecular Sciences 26, no. 13: 6347. https://doi.org/10.3390/ijms26136347
APA StyleRusu, C. C., Moldovan, D., Potra, A., Tirinescu, D., Ticala, M., Maslyennikov, Y., Barar, A., Urs, A., Bondor, C. I., Valea, A., & Kacso, I. (2025). The Interplay of Prolactin with Inflammatory Nutritional Markers and NT-proBNP in Chronic Kidney Disease. International Journal of Molecular Sciences, 26(13), 6347. https://doi.org/10.3390/ijms26136347