mCRP-Associated Vascular Pathophysiology in Progression and Outcome of Intracerebral Hemorrhage
Abstract
1. Introduction
2. Monomeric CRP as a Central Player in Stroke
Stroke Subtypes and Their Etiologies
3. Structural and Functional Aspects of CRP, from Pentamer to Monomer
3.1. CRP—A Marker of Inflammation
3.2. Transformation of Pentameric CRP to Monomeric CRP
3.3. Cellular Binding and Mechanism of Action
3.4. The Role of C-Reactive Protein in the Inflammatory Response
4. The Multifaceted Role of mCRP
4.1. mCRP in Cardiovascular Diseases and Stroke
4.2. Epidemiological Studies of CRP and ICH Risk
4.3. Anatomo-Pathological Study in ICH
4.4. The Role of mCRP in Hemorrhagic Stroke and Hypothalamic Inflammation
4.5. mCRP in Hemorrhagic Stroke: A Key Player in Neurodegeneration and Cognitive Decline
5. Therapeutic Strategies
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
AD | Alzheimer’s disease |
ALS | Amyotrophic lateral sclerosis |
APOE4 | Apolipoprotein E epsilon 4 allele |
APP | Amyloid precursor protein |
AQP4 | Aquaporin 4 |
Aβ | Amyloid-beta |
Aβ42 | Amyloid-β42 |
BACE-1 | Beta-site APP cleaving Enzyme 1 |
BBB | Blood–brain barrier |
bis(PC)-H | Bis-phosphocholine dimer 1,6-bis(phosphocholine)-hexane |
bisPC | Bis-phosphocholine hexane |
BSA | Bovine serum albumin |
C10M | Compound 10 monomeric |
CCL2 | Chemokine (C-C motif) ligand 2 |
CIRSC | Circulatory risk in communities study |
CNS | Central nervous system |
COX-2 | Cyclooxygenase-2 |
CRP | C-reactive protein |
CT | Computed tomography |
ECM | Extracellular matrix |
FcγRIII | Fc gamma receptor III |
GSK3 | Glycogen synthase kinase 3 |
HIF | 1 hypoxia-inducible factor-1 |
Hs-CRP | High-sensitivity C-reactive protein |
ICAM-1 | Intercellular adhesion molecule 1 |
ICH | Intracerebral hemorrhage |
IL-8 | Interleukin 8 |
iNOS | Inducible nitric oxide synthase |
lyso-PC | Lysophosphatidylcholine |
MAPK | Mitogen-activated protein kinase |
mCRP | Monomeric C-reactive protein |
MRI | Magnetic resonance imaging |
NF-κB | Nuclear factor kappa-B |
NLRP3 | NOD-like receptor family, pyrin domain containing 3 (inflammasome) |
OGD | Oxygen and glucose deprivation |
p38 MAPK | p38 Mitogen-activated protein kinase |
PC | Phosphocholine |
pCRP | Pentameric C-reactive protein |
p-ERKI1/2 | Phosphorylated extracellular signal-regulated kinases ½ |
PI3K/AKT | Phosphoinositide 3-kinase/protein kinase B pathway |
p-IRS-1 | Phosphorylated insulin receptor substrate 1 |
PLA2 | Phospholipase A2 |
p-Tau | Phosphorylated tau |
PTXs | Pentraxins |
SAP | Serum amyloid P |
VCAM-1 | Vascular cell adhesion molecule 1 |
VEGF | Vascular endothelial growth factor |
References
- Lui, F.; Hui, C.; Khan Suheb, M.Z.; Patti, L. Ischemic Stroke; StatPearls Publishing: Treasure Island, FL, USA, 2025. Available online: https://www.ncbi.nlm.nih.gov/books/NBK499997/ (accessed on 10 June 2025).
- Melnikov, I.; Kozlov, S.; Pogorelova, O.; Tripoten, M.; Khamchieva, L.; Saburova, O.; Avtaeva, Y.; Zvereva, M.; Matroze, E.; Kuznetsova, T.; et al. The monomeric C-reactive protein level is associated with the increase in carotid plaque number in patients with subclinical carotid atherosclerosis. Front. Cardiovasc. Med. 2022, 9, 968267. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Di Napoli, M.; Slevin, M.; Popa-Wagner, A.; Singh, P.; Lattanzi, S.; Divani, A.A. Monomeric C-Reactive Protein and Cerebral Hemorrhage: From Bench to Bedside. Front. Immunol. 2018, 9, 1921. [Google Scholar] [CrossRef]
- Murphy, S.J.; Werring, D.J. Stroke: Causes and Clinical Features. Medicine 2020, 48, 561–566. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Aronowski, J.; Hall, C.E. New Horizons for Primary Intracerebral Hemorrhage Treatment: Experience From Preclinical Studies. Neurol. Res. 2005, 27, 268–279. [Google Scholar] [CrossRef]
- Di Napoli, M.; Elkind, M.S.; Godoy, D.A.; Singh, P.; Papa, F.; Popa-Wagner, A. Role of C-Reactive Protein in Cerebrovascular Disease: A Critical Review. Expert Rev. Cardiovasc. Ther. 2011, 9, 1565–1584. [Google Scholar] [CrossRef] [PubMed]
- Di Napoli, M.; Parry-Jones, A.R.; Smith, C.J.; Hopkins, S.J.; Slevin, M.; Masotti, L.; Campi, V.; Singh, P.; Papa, F.; Popa-Wagner, A.; et al. C-Reactive Protein Predicts Hematoma Growth in Intracerebral Hemorrhage. Stroke 2014, 45, 59–65. [Google Scholar] [CrossRef] [PubMed]
- Alnaas, A.A.; Moon, C.L.; Alton, M.; Reed, S.M.; Knowles, M.K. Conformational Changes in C-Reactive Protein Affect Binding to Curved Membranes in a Lipid Bilayer Model of the Apoptotic Cell Surface. J. Phys. Chem. B 2017, 121, 2631–2639. [Google Scholar] [CrossRef] [PubMed]
- Rajab, I.M.; Hart, P.C.; Potempa, L.A. How C-Reactive Protein Structural Isoforms with Distinctive Bioactivities Affect Disease Progression. Front. Immunol. 2020, 11, 2126. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Fujita, M.; Takada, Y.K.; Izumiya, Y.; Takada, Y. The Binding of Monomeric C-Reactive Protein (mCRP) to Integrins αvβ3 and α4β1 Is Related to Its Pro-inflammatory Action. PLoS ONE 2014, 9, e93738. [Google Scholar] [CrossRef]
- Ji, S.-R.; Ma, L.; Bai, C.-J.; Shi, J.-M.; Li, H.-Y.; Potempa, L.A.; Filep, J.G.; Zhao, J.; Wu, Y. Monomeric C-Reactive Protein Activates Endothelial Cells via Interaction with Lipid Raft Microdomains. FASEB J. 2009, 23, 1806–1816. [Google Scholar] [CrossRef]
- Hammond, D.J.; Singh, S.K.; Thompson, J.A.; Beeler, B.W.; Rusiñol, A.E.; Pangburn, M.K.; Potempa, L.A.; Agrawal, A. Identification of Acidic pH-Dependent Ligands of Pentameric C-Reactive Protein. J. Biol. Chem. 2010, 285, 36235–36244. [Google Scholar] [CrossRef] [PubMed]
- Slevin, M.; Krupinski, J. A Role for Monomeric C-Reactive Protein in Regulation of Angiogenesis, Endothelial Cell Inflammation and Thrombus Formation in Cardiovascular/Cerebrovascular Disease? Histol. Histopathol. 2009, 24, 1473–1478. [Google Scholar] [CrossRef] [PubMed]
- Krupinski, J.; Turu, M.M.; Martinez-Gonzalez, J.; Carvajal, A.; Juan-Babot, J.O.; Iborra, E.; Slevin, M.; Rubio, F.; Badimon, L. Endogenous Expression of C-Reactive Protein Is Increased in Active (Ulcerated Noncomplicated) Human Carotid Artery Plaques. Stroke 2006, 37, 1200–1204. [Google Scholar] [CrossRef] [PubMed]
- Das, T.; Mandal, C. Variations in Binding Characteristics of Glycosylated Human C-Reactive Proteins in Different Pathological Conditions. Glycoconj. J. 2004, 20, 537–543. [Google Scholar] [CrossRef]
- Ullah, N.; Ma, F.-R.; Han, J.; Liu, X.-L.; Fu, Y.; Liu, Y.-T.; Liang, Y.-L.; Ouyang, H.; Li, H.-Y. Monomeric C-reactive protein regulates fibronectin mediated monocyte adhesion. Mol. Immunol. 2020, 117, 122–130, Erratum in: Mol Immunol. 2020, 125, 23. [Google Scholar] [CrossRef] [PubMed]
- Gao, N.; Yuan, P.; Tang, Z.-M.; Lei, J.-G.; Yang, Z.-R.; Ahmed, M.; Yao, Z.-Y.; Liang, D.; Wu, Y.; Li, H.-Y. Monomeric C-reactive protein is associated with severity and prognosis of decompensated hepatitis B cirrhosis. Front. Immunol. 2024, 15, 1407768. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Gao, N.; Yuan, P.; Tang, Z.-M.; Lei, J.-G.; Yang, Z.-R.; Ahmed, M.; Yao, Z.-Y.; Liang, D.; Wu, Y.; Li, H.-Y. C-Reactive Protein in Intracerebral Hemorrhage: Time Course, Tissue Localization, and Prognosis. Neurology 2012, 79, 690–699. [Google Scholar] [CrossRef]
- Gan, Q.; Wong, A.; Zhang, Z.; Na, H.; Tian, H.; Tao, Q.; Rajab, I.M.; Potempa, L.A.; Qiu, W.Q. Monomeric C-reactive protein induces the cellular pathology of Alzheimer’s disease. Alzheimer’s Dementia Transl. Res. Clin. Interv. 2022, 8, e12319. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Kuhlmann, C.R.; Librizzi, L.; Closhen, D.; Pflanzner, T.; Lessmann, V.; Pietrzik, C.U.; de Curtis, M.; Luhmann, H.J. Mechanisms of C-Reactive Protein-Induced Blood-Brain Barrier Disruption. Stroke 2009, 40, 1458–1466. [Google Scholar] [CrossRef]
- Agrawal, A.; Singh, P.P.; Bottazzi, B.; Garlanda, C.; Mantovani, A. Pattern Recognition by Pentraxins. Adv. Exp. Med. Biol. 2009, 653, 98–116. [Google Scholar] [CrossRef]
- Lu, J.; Marnell, L.L.; Marjon, K.D.; Mold, C.; Du Clos, T.W.; Sun, P.D. Structural Recognition and Functional Activation of FcγR by Innate Pentraxins. Nature 2008, 456, 989–992. [Google Scholar] [CrossRef]
- Wu, Y.; Potempa, L.A.; El Kebir, D.; Filep, J.G. C-Reactive Protein and Inflammation: Conformational Changes Affect Function. Biol. Chem. 2015, 396, 1181–1197. [Google Scholar] [CrossRef] [PubMed]
- Schwedler, S.B.; Amann, K.; Wernicke, K.; Krebs, A.; Nauck, M.; Wanner, C.; Potempa, L.A.; Galle, J. Native C-Reactive Protein Increases Whereas Modified C-Reactive Protein Reduces Atherosclerosis in Apolipoprotein E-Knockout Mice. Circulation 2005, 112, 1016–1023. [Google Scholar] [CrossRef] [PubMed]
- Strang, F.; Scheichl, A.; Chen, Y.C.; Wang, X.; Htun, N.M.; Bassler, N.; Eisenhardt, S.U.; Habersberger, J.; Peter, K. Amyloid Plaques Dissociate Pentameric to Monomeric C-Reactive Protein: A Novel Pathomechanism Driving Cortical Inflammation in Alzheimer’s Disease? Brain Pathol. 2012, 22, 337–346. [Google Scholar] [CrossRef]
- Marchesi, V.T. Alzheimer’s Dementia Begins as a Disease of Small Blood Vessels, Damaged by Oxidative-Induced Inflammation and Dysregulated Amyloid Metabolism: Implications for Early Detection and Therapeutic Targeting. Neurochem. Int. 2012, 60, 530–535. [Google Scholar] [CrossRef]
- Bulbarelli, A.; Lonati, E.; Brambilla, A.; Orlando, A.; Cazzaniga, E.; Piazza, F.; Ferrarese, C.; Masserini, M.; Sancini, G. Aβ42 Production in Brain Capillary Endothelial Cells after Oxygen and Glucose Deprivation. Mol. Cell Neurosci. 2012, 49, 415–422. [Google Scholar] [CrossRef] [PubMed]
- Slevin, M.; Matou-Nasri, S.; Turu, M.; Luque, A.; Rovira, N.; Badimon, L.; Boluda, S.; Potempa, L.; Sanfeliu, C.; de Vera, N.; et al. Modified C-Reactive Protein Is Expressed by Stroke Neovessels and Is a Potent Activator of Angiogenesis in Vitro. Brain Pathol. 2010, 20, 151–165. [Google Scholar] [CrossRef]
- Thiele, J.R.; Habersberger, J.; Braig, D.; Schmidt, Y.; Goerendt, K.; Maurer, V.; Bannasch, H.; Scheichl, A.; Woollard, K.J.; von Dobschutz, E.; et al. Dissociation of Pentameric to Monomeric C-Reactive Protein Localizes and Aggravates Inflammation: In Vivo Proof of a Powerful Proinflammatory Mechanism and a New Anti-Inflammatory Strategy. Circulation 2014, 130, 35–50. [Google Scholar] [CrossRef]
- Hyman, B.T.; Phelps, C.H.; Beach, T.G.; Bigo, E.H.; Cairns, N.J.; Carrillo, M.C.; Dickson, D.W.; Duyckaerts, C.; Frosch, M.P.; Masliah, E.; et al. National Institute on Aging-Alzheimer’s Association Guidelines for the Neuropathologic Assessment of Alzheimer’s Disease. Alzheimer’s Dement. 2012, 8, 1–13. [Google Scholar] [CrossRef]
- Slevin, M.; Matou, S.; Zeinolabediny, Y.; Corpas, R.; Weston, R.; Liu, D.; Boras, E.; Di Napoli, M.; Petcu, E.; Sarroca, S.; et al. Monomeric C-Reactive Protein—A Key Molecule Driving Development of Alzheimer’s Disease Associated with Brain Ischaemia? Sci. Rep. 2015, 5, 13281. [Google Scholar] [CrossRef]
- Feigin, V.L.; Lawes, C.M.; Bennett, D.A.; Anderson, C.S. Stroke Epidemiology: A Review of Population-Based Studies of Incidence, Prevalence, and Case-Fatality in the Late 20th Century. Lancet Neurol. 2003, 2, 43–53. [Google Scholar] [CrossRef] [PubMed]
- Ariesen, M.J.; Claus, S.P.; Rinkel, G.J.; Algra, A. Risk Factors for Intracerebral Hemorrhage in the General Population: A Systematic Review. Stroke 2003, 34, 2060–2065. [Google Scholar] [CrossRef] [PubMed]
- Guarner, V.; Rubio-Ruiz, M.E. Low-Grade Systemic Inflammation Connects Aging, Metabolic Syndrome, and Cardiovascular Disease. Interdiscip. Top. Gerontol. 2015, 40, 99–106. [Google Scholar] [CrossRef]
- Kaptoge, S.; Di Angelantonio, E.; Lowe, G.; Pepys, M.B.; Thompson, S.G.; Collins, R.; Danesh, J. C-Reactive Protein Concentration and Risk of Coronary Heart Disease, Stroke, and Mortality: An Individual Participant Meta-Analysis. Lancet 2010, 375, 132–140. [Google Scholar] [CrossRef]
- Bos, M.J.; Schipper, C.M.; Koudstaal, P.J.; Witteman, J.C.; Hofman, A.; Breteler, M.M. High Serum C-Reactive Protein Level Is Not an Independent Predictor for Stroke: The Rotterdam Study. Circulation 2006, 114, 1591–1598. [Google Scholar] [CrossRef] [PubMed]
- Chei, C.-L.; Yamagishi, K.; Kitamura, A.; Kiyama, M.; Imano, H.; Ohira, T.; Cui, R.; Tanigawa, T.; Sankai, T.; Ishikawa, Y.; et al. C-Reactive Protein Levels and Risk of Stroke and Its Subtype in Japanese: The Circulatory Risk in Communities Study (CIRCS). Atherosclerosis 2011, 217, 187–193. [Google Scholar] [CrossRef]
- Al-Baradie, R.S.; Abdel-Hadi, A.M.; Ahmad, F.; Alsagaby, S.A.; Slevin, M.; Alturaiki, W.; Madkhali, Y.; Aljarallah, B.M.; Alqahtani, M.; Miraj, M.; et al. Association of Monomeric C-Reactive Protein (m-CRP) with Hypothalamic Neurons After CRP Hippocampal Administration in a Model of Dementia. Eur. Rev. Med. Pharmacol. Sci. 2022, 26, 8713–8718. [Google Scholar] [CrossRef]
- Khreiss, T.; József, L.; Potempa, L.A.; Filep, J.G. Conformational rearrangement in C-reactive protein is required for proinflammatory actions on human endothelial cells. Circulation 2004, 109, 2016–2022. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Cao, H. Monomeric C-reactive protein affects cell injury and apoptosis through activation of p38 mitogen-activated protein kinase in human coronary artery endothelial cells. J. Basic Med Sci. 2020, 20, 487–494. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Fang, L.; Yujie, J. Cortical Infarction of the Right Parietal Lobe and Neurogenic Heart Disease: A Report of Three Cases. Neural. Regen. Res. 2012, 7, 943–947. [Google Scholar] [CrossRef]
- Martini, S.; Testai, F.D.; Woo, D.; Elkind, M.S.V. Systemic Inflammatory Response Syndrome, Infection, and Outcome in Intracerebral Hemorrhage. Neurol. Neuroimmunol. Neuroinflamm. 2017, 5, e428. [Google Scholar] [CrossRef]
- Biffi, A.; Bailey, D.; Anderson, C.D.; Gurol, E.M.; Greenberg, S.M.; Rosand, J.; Viswanathan, A. Risk Factors Associated with Early vs. Delayed Dementia after Intracerebral Hemorrhage. JAMA Neurol. 2016, 73, 969–976. [Google Scholar] [CrossRef] [PubMed]
- Rasmussen, M.K.; Mestre, H.; Nedergaard, M. The Glymphatic Pathway in Neurological Disorders. Lancet Neurol. 2018, 17, 1016–1024. [Google Scholar] [CrossRef]
- Slevin, M.; Liu, D.; Ferris, G.; Al-Hsinawi, M.; Al-Baradie, R.; Krupinski, J. Expression of Monomeric C-Reactive Protein in Infarcted Brain Tissue from Patients with Alzheimer’s Disease. Turk. J. Pathol. 2017, 33, 25–29. [Google Scholar] [CrossRef]
- McFadyen, J.D.; Zeller, J.; Potempa, L.A.; Pietersz, G.A.; Eisenhardt, S.U.; Peter, K. C-Reactive Protein and Its Structural Isoforms: An Evolutionary Conserved Marker and Central Player in Inflammatory Diseases and Beyond. Subcell. Biochem. 2020, 94, 499–520. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Tang, B.; Liu, X.; Wu, X.; Wang, H.; Xu, D.; Guo, Y. Increased Monomeric CRP Levels in Acute Myocardial Infarction: A Possible New and Specific Biomarker for Diagnosis and Severity Assessment of Disease. Atherosclerosis 2015, 239, 343–349. [Google Scholar] [CrossRef]
- Dunn, A. The HPA Axis and the Immune System: A Perspective. NeuroImmun. Biol. 2008, 7, 3–15. [Google Scholar] [CrossRef]
- Fujita, C.; Sakurai, Y.; Yasuda, Y.; Takada, Y.; Huang, C.-L.; Fujita, M. Anti-Monomeric C-Reactive Protein Antibody Ameliorates Arthritis and Nephritis in Mice. J. Immunol. 2021, 207, 1755–1762. [Google Scholar] [CrossRef]
- Kayser, S.; Brunner, P.; Althaus, K.; Dorst, J.; Sheriff, A. Selective apheresis of C-reactive protein for treatment of indications with elevated CRP concentrations. J. Clin. Med. 2020, 9, 2947. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Pepys, M.B.; Hirschfield, G.M.; Tennent, G.A.; Gallimore, J.R.; Kahan, M.C.; Bellotti, V.; Hawkins, P.N.; Myers, R.M.; Smith, M.D.; Polara, A.; et al. Targeting C-Reactive Protein for the Treatment of Cardiovascular Disease. Nature 2006, 440, 1217–1221. [Google Scholar] [CrossRef]
- Caprio, V.; Badimon, L.; Di Napoli, M.; Fang, W.H.; Ferris, G.R.; Guo, B.; Iemma, R.S.; Liu, D.; Zeinolabediny, Y.; Slevin, M. pCRP-mCRP Dissociation Mechanisms as Potential Targets for the Development of Small-Molecule Anti-Inflammatory Chemotherapeutics. Front. Immunol. 2018, 9, 1089. [Google Scholar] [CrossRef] [PubMed]
- Zeller, J.; Cheung Tung Shing, K.S.; Nero, T.L.; McFadyen, J.D.; Krippner, G.; Bogner, B.; Kreuzaler, S.; Kiefer, J.; Horner, V.K.; Braig, D.; et al. A novel phosphocholine-mimetic inhibits a pro-inflammatory conformational change in C-reactive protein. EMBO Mol. Med. 2023, 15, e16236. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- McFadyen, J.D.; Kiefer, J.; Braig, D.; Loseff-Silver, J.; Potempa, L.A.; Eisenhardt, S.U.; Peter, K. Dissociation of C-Reactive Protein Localizes and Amplifies Inflammation: Evidence for a Direct Biological Role of C-Reactive Protein and Its Conformational Changes. Front. Immunol. 2018, 9, 1351. [Google Scholar] [CrossRef] [PubMed]
- Torzewski, J.; Brunner, P.; Ries, W.; Garlichs, C.D.; Kayser, S.; Heigl, F.; Sheriff, A. Targeting C-Reactive Protein by Selective Apheresis in Humans: Pros and Cons. J. Clin. Med. 2022, 11, 1771. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
Domain | Implication |
---|---|
Prognosis | mCRP levels may predict lesion progression, microbleeds, and cognitive decline |
Diagnosis | Co-localization with inflammatory markers could serve as a tissue-level biomarker |
Therapeutics | Blocking pCRP to mCRP conversion could reduce neuroinflammation and protect brain tissue |
Imaging and biomarkers | Detection of mCRP deposition might assist in identifying penumbra and high-risk brain regions |
Cognitive impact | mCRP may contribute to early- and late-onset post-ICH dementia |
Stroke heterogeneity | mCRP involvement may vary by ethnicity, sex, genetic background |
Glymphatic clearance research | Potential new area for exploring clearance of mCRP and neurotoxic proteins |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Șalari, G.; Slevin, M. mCRP-Associated Vascular Pathophysiology in Progression and Outcome of Intracerebral Hemorrhage. Int. J. Mol. Sci. 2025, 26, 6195. https://doi.org/10.3390/ijms26136195
Șalari G, Slevin M. mCRP-Associated Vascular Pathophysiology in Progression and Outcome of Intracerebral Hemorrhage. International Journal of Molecular Sciences. 2025; 26(13):6195. https://doi.org/10.3390/ijms26136195
Chicago/Turabian StyleȘalari, Gabriela, and Mark Slevin. 2025. "mCRP-Associated Vascular Pathophysiology in Progression and Outcome of Intracerebral Hemorrhage" International Journal of Molecular Sciences 26, no. 13: 6195. https://doi.org/10.3390/ijms26136195
APA StyleȘalari, G., & Slevin, M. (2025). mCRP-Associated Vascular Pathophysiology in Progression and Outcome of Intracerebral Hemorrhage. International Journal of Molecular Sciences, 26(13), 6195. https://doi.org/10.3390/ijms26136195