Plasma and Serum LC-MS Lipidomic Fingerprints of Bipolar Disorder and Schizophrenia
Abstract
1. Introduction
2. Materials and Methods
3. Serum and Plasma Lipidomics Fingerprints of Bipolar Disorder and Schizophrenia
3.1. Serum and Plasma Lipidomics Studies in Patients with BD
Overview of Alterations of Individual Lipid Classes and Species in Patients with BD Compared to Healthy Controls
3.2. Serum and Plasma Lipidomics Studies in Patients with SCH
3.2.1. Overview of Alterations in Individual Lipid Classes and Species in Patients with SCH Compared to Healthy Controls
Alterations in Serum and Plasma Profiles of Acyl-Carnitines in SCH Patients
Alterations in Serum and Plasma Glycerophospholipid Profiles in SCH Patients
Alterations of Serum and Plasma Triacylglycerol Profiles in SCH Patients
Alterations in Serum and Plasma Sphingolipids Profiles in SCH Patients
3.3. Comparison of Serum and Plasma Lipidomic Fingerprints of Bipolar Disorder and Schizophrenia Patients
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Morrissette, D.A.; Stahl, S.M. Affective symptoms in schizophrenia. Drug Discov. Today Ther. Strateg. 2011, 8, 3–9. [Google Scholar] [CrossRef]
- Fountoulakis, K.N.; Popovic, D.; Mosheva, M.; Siamouli, M.; Moutou, K.; Gonda, X. Mood symptoms in stabilized patients with schizophrenia: A bipolar type with predominant psychotic features? Psychiatr. Danub. 2017, 29, 148–154. [Google Scholar] [CrossRef]
- Berrettini, W.H. Are schizophrenic and bipolar disorders related? A review of family and molecular studies. Biol. Psychiatry 2000, 48, 531–538. [Google Scholar] [CrossRef]
- Sorella, S.; Lapomarda, G.; Messina, I.; Frederickson, J.J.; Siugzdaite, R.; Job, R.; Grecucci, A. Testing the expanded continuum hypothesis of schizophrenia and bipolar disorder. Neural and psychological evidence for shared and distinct mechanisms. Neuroimage Clin. 2019, 23, 101854. [Google Scholar] [CrossRef]
- Moreno-Küstner, B.; Martín, C.; Pastor, L. Prevalence of psychotic disorders and its association with methodological issues. A systematic review and meta-analyses. PLoS ONE 2018, 13, e0195687. [Google Scholar] [CrossRef]
- Fasseeh, A.; Németh, B.; Molnár, A.; Fricke, F.U.; Horváth, M.; Kóczián, K.; Götze, Á.; Kaló, Z. A systematic review of the indirect costs of schizophrenia in Europe. Eur. J. Public. Health 2018, 28, 1043–1049. [Google Scholar] [CrossRef]
- Desai, P.R.; Lawson, K.A.; Barner, J.C.; Rascati, K.L. Estimating the direct and indirect costs for community-dwelling patients with schizophrenia. J. Pharmac. Health Serv. Res. 2013, 4, 187–194. [Google Scholar] [CrossRef]
- Fajutrao, L.; Locklear, J.; Priaulx, J.; Heyes, A. A systematic review of the evidence of the burden of bipolar disorder in Europe. Clin. Pract. Epidemiol. Ment. Health 2009, 5, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Cloutier, M.; Greene, M.; Guerin, A.; Touya, M.; Wu, E. The economic burden of bipolar I disorder in the United States in 2015. J. Affect. Disord. 2018, 226, 45–51. [Google Scholar] [CrossRef]
- Barbosa, W.B.; Costa, J.O.; de Lemos, L.L.P.; Gomes, R.M.; de Oliveira, H.N.; Ruas, C.M.; Acurcio, F.A.; Barbui, C.; Bennie, M.; Godman, B., Jr.; et al. Costs in the treatment of schizophrenia in adults receiving atypical antipsychotics: An 11-year cohort in Brazil. Appl. Health Econ. Health Policy. 2018, 16, 697–709. [Google Scholar] [CrossRef]
- Zhu, B.; Ascher-Svanum, H.; Faries, D.E.; Peng, X.; Salkever, D.; Slade, E.P. Costs of treating patients with schizophrenia who have illness-related crisis events. BMC Psychiatry 2008, 8, 72. [Google Scholar] [CrossRef] [PubMed]
- Yang, R.; Zhao, Y.; Tan, Z.; Lai, J.; Chen, J.; Zhang, X.; Sun, J.; Chen, L.; Lu, K.; Cao, L.; et al. Differentiation between bipolar disorder and major depressive disorder in adolescents: From clinical to biological biomarkers. Front. Hum. Neurosci. 2023, 17, 1192544. [Google Scholar] [CrossRef] [PubMed]
- Oliva, V.; Fico, G.; De Prisco, M.; Gonda, X.; Rosa, A.R.; Vieta, E. Bipolar disorders: An update on critical aspects. Lancet Reg. Health Eur. 2024, 48, 101135. [Google Scholar] [CrossRef]
- World Health Organization. Mental Disorders. World Health Organization; 2024. Available online: https://www.who.int/news-room/fact-sheets/detail/mental-disorders (accessed on 18 January 2025).
- Goldberg, J.F. Complex combination pharmacotherapy for bipolar disorder: Knowing when less is more or more is better. Focus 2019, 17, 218–231. [Google Scholar] [CrossRef]
- Pillinger, T.; Howes, O.D.; Correll, C.U.; Leucht, S.; Huhn, M.; Schneider-Thoma, J.; Gaughran, F.; Jauhar, S.; McGuire, P.K.; Taylor, D.M.; et al. Antidepressant and antipsychotic side-effects and personalised prescribing: A systematic review and digital tool development. Lancet Psychiatry 2023, 10, 860–876. [Google Scholar] [CrossRef] [PubMed]
- Ganse-Dumrath, A.; Chohan, A.; Samuel, S.; Bretherton, P.; Haenschel, C.; Fett, A.K. Systematic review and meta-analysis of early visual processing, social cognition, and functional outcomes in schizophrenia spectrum disorders. Schizophr. Res. Cogn. 2025, 40, 100351. [Google Scholar] [CrossRef]
- Peritogiannis, V.; Ninou, A.; Samakouri, M. Mortality in schizophrenia-spectrum disorders: Recent advances in understanding and management. Healthcare 2022, 10, 2366. [Google Scholar] [CrossRef]
- Gogtay, N.; Vyas, N.S.; Testa, R.; Wood, S.J.; Pantelis, C. Age of onset of schizophrenia: Perspectives from structural neuroimaging studies. Schizophr. Bull. 2011, 37, 504–513. [Google Scholar] [CrossRef]
- Reyes-Lizaola, S.; Luna-Zarate, U.; Tendilla-Beltrán, H.; Morales-Medina, J.C.; Flores, G. Structural and biochemical alterations in dendritic spines as key mechanisms for severe mental illnesses. Prog. Neuropsychopharmacol. Biol. Psychiatry 2024, 129, 110876. [Google Scholar] [CrossRef]
- Lin, Z.; Long, F.; Kang, R.; Klionsky, D.J.; Yang, M.; Tang, D. The lipid basis of cell death and autophagy. Autophagy 2024, 20, 469–488. [Google Scholar] [CrossRef]
- Santos, A.L.; Preta, G. Lipids in the cell: Organisation regulates function. Cell Mol. Life Sci. 2018, 75, 1909–1927. [Google Scholar] [CrossRef]
- Liu, H.; Wang, S.; Wang, J.; Guo, X.; Song, Y.; Fu, K.; Gao, Z.; Liu, D.; He, W.; Yang, L.L. Energy metabolism in health and diseases. Signal Transduct. Target. Ther. 2025, 10, 69. [Google Scholar] [CrossRef]
- Andersen, C.J. Lipid metabolism in inflammation and immune function. Nutrients 2022, 14, 1414. [Google Scholar] [CrossRef]
- Qiu, S.; Cai, Y.; Yao, H.; Lin, C.; Xie, Y.; Tang, S.; Zhang, A. Small molecule metabolites: Discovery of biomarkers and therapeutic targets. Signal Transduct. Target. Ther. 2023, 8, 132. [Google Scholar] [CrossRef] [PubMed]
- Bhargava, S.; de la Puente-Secades, S.; Schurgers, L.; Jankowski, J. Lipids and lipoproteins in cardiovascular diseases: A classification. Trends Endocrinol. Metab. 2022, 33, 409–423. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Y.; Wan, F.; Liu, J.; Jia, Z.; Song, T. The critical role of lipid metabolism in health and diseases. Nutrients 2024, 16, 4414. [Google Scholar] [CrossRef]
- Zorkina, Y.; Ushakova, V.; Ochneva, A.; Tsurina, A.; Abramova, O.; Savenkova, V.; Goncharova, A.; Alekseenko, I.; Morozova, I.; Riabinina, D.; et al. Lipids in psychiatric disorders: Functional and potential diagnostic role as blood biomarkers. Metabolites 2024, 14, 80. [Google Scholar] [CrossRef]
- Osetrova, M.; Tkachev, A.; Mair, W.; Guijarro Larraz, P.; Efimova, O.; Kurochkin, I.; Stekolshchikova, E.; Anikanov, N.; Foo, J.C.; Cazenave-Gassiot, A.; et al. Lipidome atlas of the adult human brain. Nat. Commun. 2024, 15, 4455. [Google Scholar] [CrossRef]
- Delacrétaz, A.; Vandenberghe, F.; Gholam-Rezaee, M.; Saigi Morgui, N.; Glatard, A.; Thonney, J.; Solida-Tozzi, A.; Kolly, S.; Gallo, S.F.; Baumann, P.; et al. Early changes of blood lipid levels during psychotropic drug treatment as predictors of long-term lipid changes and of new onset dyslipidemia. J. Clin. Lipidol. 2018, 12, 219–229. [Google Scholar] [CrossRef]
- Network and Pathway Analysis Subgroup of Psychiatric Genomics Consortium. Psychiatric genome-wide association study analyses implicate neuronal, immune and histone pathways. Nat. Neurosci. 2015, 18, 199–209, Erratum in: Nat. Neurosci. 2015, 18, 926. Erratum in: Nat. Neurosci. 2015, 18, 1861. [Google Scholar] [CrossRef]
- Dickens, A.M.; Sen, P.; Kempton, M.J.; Barrantes-Vidal, N.; Iyegbe, C.; Nordentoft, M.; Pollak, T.; Riecher-Rössler, A.; Ruhrmann, S.; Sachs, G.; et al. Dysregulated lipid metabolism precedes onset of psychosis. Biol. Psychiatry 2021, 89, 288–297. [Google Scholar] [CrossRef] [PubMed]
- Ventriglio, A.; Bellomo, A.; Donato, F.; Iris, B.; Giovanna, V.; Dario, D.S.; Edwige, C.; Di Gioia, I.; Pettorruso, M.; Perna, G.; et al. Oxidative stress in the early stage of psychosis. Curr. Top. Med. Chem. 2021, 21, 1457–1470. [Google Scholar] [CrossRef]
- Vauzour, D.; Martinsen, A.; Layé, S. Neuroinflammatory processes in cognitive disorders: Is there a role for flavonoids and n-3 polyunsaturated fatty acids in counteracting their detrimental effects? Neurochem. Int. 2015, 89, 63–74. [Google Scholar] [CrossRef]
- Borsini, A.; Nicolaou, A.; Camacho-Muñoz, D.; Kendall, A.C.; Di Benedetto, M.G.; Giacobbe, J.; Su, K.P.; Pariante, C.M. Omega-3 polyunsaturated fatty acids protect against inflammation through production of LOX and CYP450 lipid mediators: Relevance for major depression and for human hippocampal neurogenesis. Mol. Psychiatry 2021, 26, 6773–6788. [Google Scholar] [CrossRef]
- Cobley, J.N.; Fiorello, M.L.; Bailey, D.M. 13 reasons why the brain is susceptible to oxidative stress. Redox Biol. 2018, 15, 490–503. [Google Scholar] [CrossRef]
- Salim, S. Oxidative stress and the central nervous system. J. Pharmacol. Exp. Ther. 2017, 360, 201–205. [Google Scholar] [CrossRef]
- Wei, F.; Lamichhane, S.; Orešič, M.; Hyötyläinen, T. Lipidomes in health and disease: Analytical strategies and considerations. TrAC Trends Anal. Chem. 2019, 120, 115664. [Google Scholar] [CrossRef]
- Huang, Y.; Sulek, K.; Stinson, S.E.; Holm, L.A.; Kim, M.; Trost, K.; Hooshmand, K.; Lund, M.A.V.; Fonvig, C.E.; Juel, H.B.; et al. Lipid profiling identifies modifiable signatures of cardiometabolic risk in children and adolescents with obesity. Nat. Med. 2025, 31, 294–305. [Google Scholar] [CrossRef]
- Bellot, P.E.N.R.; Braga, E.S.; Omage, F.B.; da Silva Nunes, F.L.; Lima, S.C.V.C.; Lyra, C.O.; Marchioni, D.M.L.; Pedrosa, L.F.C.; Barbosa, F., Jr.; Tasic, L.; et al. Plasma lipid metabolites as potential biomarkers for identifying individuals at risk of obesity-induced metabolic complications. Sci. Rep. 2023, 13, 11729. [Google Scholar] [CrossRef] [PubMed]
- Costa, A.C.; Riça, L.B.; van de Bilt, M.; Zandonadi, F.S.; Gattaz, W.F.; Talib, L.L.; Sussulini, A. Application of lipidomics in psychiatry: Plasma-based potential biomarkers in schizophrenia and bipolar disorder. Metabolites 2023, 13, 600. [Google Scholar] [CrossRef]
- Sethi, S.; Hayashi, M.A.; Sussulini, A.; Tasic, L.; Brietzke, E. Analytical approaches for lipidomics and its potential applications in neuropsychiatric disorders. World J. Biol. Psychiatry 2017, 18, 506–520. [Google Scholar] [CrossRef] [PubMed]
- Yang, K.; Han, X. Lipidomics: Techniques, applications, and outcomes related to biomedical sciences. Trends Biochem. Sci. 2016, 41, 954–969. [Google Scholar] [CrossRef]
- Kim, D.H.; Kim, Y.S.; Son, N.I.; Kang, C.K.; Kim, A.R. Recent omics technologies and their emerging applications for personalised medicine. IET Syst. Biol. 2017, 11, 87–98. [Google Scholar] [CrossRef]
- Medina, J.; Goss, N.; Correia, G.D.S.; Borreggine, R.; Teav, T.; Kutalik, Z.; Vidal, P.M.; Gallart-Ayala, H.; Ivanisevic, J. Clinical lipidomics reveals high individuality and sex specificity of circulatory lipid signatures: A prospective healthy population study. J. Lipid Res. 2025, 66, 100780. [Google Scholar] [CrossRef] [PubMed]
- Züllig, T.; Trötzmüller, M.; Köfeler, H.C. Lipidomics from sample preparation to data analysis: A primer. Anal. Bioanal. Chem. 2020, 412, 2191–2209. [Google Scholar] [CrossRef] [PubMed]
- Quehenberger, O.; Armando, A.M.; Brown, A.H.; Milne, S.B.; Myers, D.S.; Merrill, A.H.; Bandyopadhyay, S.; Jones, K.N.; Kelly, S.; Shaner, R.L.; et al. Lipidomics reveals a remarkable diversity of lipids in human plasma. J. Lipid Res. 2010, 51, 3299–3305. [Google Scholar] [CrossRef]
- Wang, D.; Cheng, S.L.; Fei, Q.; Gu, H.; Raftery, D.; Cao, B.; Sun, X.; Yan, J.; Zhang, C.; Wang, J. Metabolic profiling identifies phospholipids as potential serum biomarkers for schizophrenia. Psychiatry Res. 2019, 272, 18–29. [Google Scholar] [CrossRef]
- Yan, L.; Zhou, J.; Wang, D.; Si, D.; Liu, Y.; Zhong, L.; Yin, Y. Unbiased lipidomic profiling reveals metabolomic changes during the onset and antipsychotics treatment of schizophrenia disease. Metabolomics 2018, 14, 80. [Google Scholar] [CrossRef]
- Tkachev, A.; Stekolshchikova, E.; Vanyushkina, A.; Zhang, H.; Morozova, A.; Zozulya, S.; Kurochkin, I.; Anikanov, N.; Egorova, A.; Yushina, E.; et al. Lipid alteration signature in the blood plasma of Individuals with schizophrenia, depression, and bipolar disorder. JAMA Psychiatry 2023, 80, 250–259. [Google Scholar] [CrossRef]
- Guo, L.; Zhang, T.; Li, R.; Cui, Z.Q.; Du, J.; Yang, J.B.; Xue, F.; Chen, Y.H.; Tan, Q.R.; Peng, Z.W. Alterations in the plasma lipidome of adult women with bipolar disorder: A mass spectrometry-based lipidomics research. Front. Psychiatry 2022, 13, 802710. [Google Scholar] [CrossRef]
- Hone, E.; Lim, F.; Martins, I.J. Neurodegeneration and Alzheimer’s Disease: The Role of Diabetes, Genetics, Hormones, and Lifestyle; Martins, R.N., Brennan, C.S., Binosha Fernando, W.M.A.D., Brennan, M.A., Fuller, S.J., Eds.; John Wiley and Sons Ltd.: New York, NY, USA, 2019; Chapter 7; pp. 189–231. [Google Scholar]
- Hsu, M.C.; Ouyang, W.C. A systematic review of effectiveness of omega-3 fatty acid supplementation on symptoms, social functions, and neurobiological variables in schizophrenia. Biol. Res. Nurs. 2021, 23, 723–737. [Google Scholar] [CrossRef]
- Goh, K.K.; Chen, C.Y.; Chen, C.H.; Lu, M.L. Effects of omega-3 polyunsaturated fatty acids supplements on psychopathology and metabolic parameters in schizophrenia: A meta-analysis of randomized controlled trials. J. Psychopharmacol. 2021, 35, 221–235. [Google Scholar] [CrossRef]
- Lv, S.; Luo, C. Ferroptosis in schizophrenia: Mechanisms and therapeutic potentials. Mol. Med. Rep. 2025, 31, 37. [Google Scholar] [CrossRef]
- Murray, A.J.; Rogers, J.C.; Katshu, M.Z.U.H.; Liddle, P.F.; Upthegrove, R. Oxidative stress and the pathophysiology and symptom profile of schizophrenia spectrum disorders. Front. Psychiatry 2021, 12, 703452. [Google Scholar] [CrossRef]
- Seabra, G.; Falvella, A.C.B.; Guest, P.C.; Martins-de-Souza, D.; de Almeida, V. Proteomics and lipidomics in the elucidation of endocannabinoid signaling in healthy and schizophrenia brains. Proteomics 2018, 18, e1700270. [Google Scholar] [CrossRef]
- Messinis, A.; Panteli, E.; Paraskevopoulou, A.; Zymarikopoulou, A.K.; Filiou, M.D. Altered lipidomics biosignatures in schizophrenia: A systematic review. Schizophr. Res. 2024, 271, 380–390. [Google Scholar] [CrossRef]
- Wu, S.; Panganiban, K.J.; Lee, J.; Li, D.; Smith, E.C.C.; Maksyutynska, K.; Humber, B.; Ahmed, T.; Agarwal, S.M.; Ward, K.; et al. Peripheral lipid signatures, metabolic dysfunction, and pathophysiology in schizophrenia spectrum disorders. Metabolites 2024, 14, 475. [Google Scholar] [CrossRef]
- Hiller, J.K.; Jangmo, A.; Tesli, M.S.; Jaholkowski, P.P.; Hoseth, E.Z.; Steen, N.E.; Haram, M. Lipid biomarker research in bipolar disorder: A scoping review of trends, challenges, and future directions. Biol. Psychiatry Glob. Open Sci. 2023, 3, 594–604. [Google Scholar] [CrossRef]
- Schwarz, E.; Prabakaran, S.; Whitfield, P.; Major, H.; Leweke, F.M.; Koethe, D.; McKenna, P.; Bahn, S. High throughput lipidomic profiling of schizophrenia and bipolar disorder brain tissue reveals alterations of free fatty acids, phosphatidylcholines, and ceramides. J. Proteome Res. 2008, 7, 4266–4277. [Google Scholar] [CrossRef]
- McNamara, R.K.; Rider, T.; Jandacek, R.; Tso, P. Abnormal fatty acid pattern in the superior temporal gyrus distinguishes bipolar disorder from major depression and schizophrenia and resembles multiple sclerosis. Psychiatry Res. 2014, 215, 560–567. [Google Scholar] [CrossRef]
- Ribeiro, H.C.; Klassen, A.; Pedrini, M.; Carvalho, M.S.; Rizzo, L.B.; Noto, M.N.; Zeni-Graiff, M.; Sethi, S.; Fonseca, F.A.H.; Tasic, L.; et al. A preliminary study of bipolar disorder type I by mass spectrometry-based serum lipidomics. Psychiatry Res. 2017, 258, 268–273. [Google Scholar] [CrossRef]
- Brunkhorst-Kanaan, N.; Klatt-Schreiner, K.; Hackel, J.; Schröter, K.; Trautmann, S.; Hahnefeld, L.; Wicker, S.; Reif, A.; Thomas, D.; Geisslinger, G.; et al. Targeted lipidomics reveal derangement of ceramides in major depression and bipolar disorder. Metabolism. 2019, 95, 65–76. [Google Scholar] [CrossRef]
- Zhang, T.; Guo, L.; Li, R.; Wang, F.; Yang, W.M.; Yang, J.B.; Cui, Z.Q.; Zhou, C.H.; Chen, Y.H.; Yu, H.; et al. Alterations of plasma lipids in adult women with major depressive disorder and bipolar depression. Front. Psychiatry 2022, 13, 927817. [Google Scholar] [CrossRef]
- Jadranin, M.; Avramović, N.; Miladinović, Z.; Gavrilović, A.; Tasic, L.; Tešević, V.; Mandić, B. Untargeted lipidomics study of bipolar disorder patients in Serbia. Int. J. Mol. Sci. 2023, 24, 16025. [Google Scholar] [CrossRef]
- Clegg, D. Minireview: The year in review of estrogen regulation of metabolism. Mol. Endocrin. 2012, 26, 1957–1960. [Google Scholar] [CrossRef]
- Gilroy, D.W.; Bishop-Bailey, D. Lipid mediators in immune regulation and resolution. Br. J. Pharmacol. 2019, 176, 1009–1023. [Google Scholar] [CrossRef]
- Alonso, N.; Zelzer, S.; Eibinger, G.; Herrmann, M. Vitamin D metabolites: Analytical challenges and clinical relevance. Calcif. Tissue Int. 2023, 112, 158–177. [Google Scholar] [CrossRef]
- İmre, O.; Karaağaç, M.; Caglayan, C. Does decreased vitamin D level trigger bipolar manic attacks? Behav. Sci. 2023, 13, 779. [Google Scholar] [CrossRef]
- Meinhard, N.; Kessing, L.V.; Vinberg, M. The role of estrogen in bipolar disorder, a review. Nord. J. Psychiatry 2014, 68, 81–87. [Google Scholar] [CrossRef]
- Gurvich, A.; Begemann, M.; Dahm, L.; Sargin, D.; Miskowiak, K.; Ehrenreich, H. A role for prostaglandins in rapid cycling suggested by episode-specific gene expression shifts in peripheral blood mononuclear cells: A preliminary report. Bipolar. Disord. 2014, 16, 881–888. [Google Scholar] [CrossRef]
- Hahn, C.G.; Friedman, E. Abnormalities in protein kinase C signaling and the pathophysiology of bipolar disorder. Bipolar Disord. 1999, 1, 81–86. [Google Scholar] [CrossRef]
- Knowles, E.E.; Meikle, P.J.; Huynh, K.; Göring, H.H.; Olvera, R.L.; Mathias, S.R.; Duggirala, R.; Almasy, L.; Blangero, J.; Curran, J.E.; et al. Serum phosphatidylinositol as a biomarker for bipolar disorder liability. Bipolar Disord. 2017, 19, 107–115. [Google Scholar] [CrossRef]
- Ju, S.; Greenberg, M.L. Valproate disrupts regulation of inositol responsive genes and alters regulation of phospholipid biosynthesis. Mol. Microbiol. 2003, 49, 1595–1603. [Google Scholar] [CrossRef]
- Chung, K.H.; Tsai, S.Y.; Lee, H.C. Mood symptoms and serum lipids in acute phase of bipolar disorder in Taiwan. Psychiatry Clin. Neurosci. 2007, 61, 428–433. [Google Scholar] [CrossRef]
- Wysokiński, A.; Strzelecki, D.; Kłoszewska, I. Levels of triglycerides, cholesterol, LDL, HDL and glucose in patients with schizophrenia, unipolar depression and bipolar disorder. Diabetes Metab. Syndr. 2015, 9, 168–176. [Google Scholar] [CrossRef]
- Kornhuber, J.; Tripal, P.; Reichel, M.; Mühle, C.; Rhein, C.; Muehlbacher, M.; Groemer, T.W.; Gulbins, E. Functional inhibitors of acid sphingomyelinase (FIASMAs): A novel pharmacological group of drugs with broad clinical applications. Cell Physiol. Biochem. 2010, 26, 9–20. [Google Scholar] [CrossRef]
- Gulbins, E.; Palmada, M.; Reichel, M.; Lüth, A.; Böhmer, C.; Amato, D.; Müller, C.P.; Tischbirek, C.H.; Groemer, T.W.; Tabatabai, G.; et al. Acid sphingomyelinase-ceramide system mediates effects of antidepressant drugs. Nat. Med. 2013, 19, 934–938. [Google Scholar] [CrossRef]
- Grassmé, H.; Jernigan, P.L.; Hoehn, R.S.; Wilker, B.; Soddemann, M.; Edwards, M.J.; Müller, C.P.; Kornhuber, J.; Gulbins, E. Inhibition of acid sphingomyelinase by antidepressants counteracts stress-induced activation of P38-kinase in major depression. Neurosignals 2015, 23, 84–92. [Google Scholar] [CrossRef]
- Rao, R.P.; Yuan, C.; Allegood, J.C.; Rawat, S.S.; Edwards, M.B.; Wang, X.; Merrill, A.H., Jr.; Acharya, U.; Acharya, J.K. Ceramide transfer protein function is essential for normal oxidative stress response and lifespan. Proc. Natl. Acad. Sci. USA 2007, 104, 11364–11369. [Google Scholar] [CrossRef]
- Mantovani, A.; Altomari, A.; Lunardi, G.; Bonapace, S.; Lippi, G.; Bonnet, F.; Targher, G. Association between specific plasma ceramides and high-sensitivity C-reactive protein levels in postmenopausal women with type 2 diabetes. Diabetes Metab. 2020, 46, 326–330. [Google Scholar] [CrossRef]
- Juchnicka, I.; Kuźmicki, M.; Zabielski, P.; Krętowski, A.; Błachnio-Zabielska, A.; Szamatowicz, J. Serum C18:1-Cer as a potential biomarker for early detection of gestational diabetes. J. Clin. Med. 2022, 11, 384. [Google Scholar] [CrossRef]
- Yu, B.; Hu, M.; Jiang, W.; Ma, Y.; Ye, J.; Wu, Q.; Guo, W.; Sun, Y.; Zhou, M.; Xu, Y.; et al. Ceramide d18:1/24:1 as a potential biomarker to differentiate obesity subtypes with unfavorable health outcomes. Lipids Health Dis. 2023, 22, 166. [Google Scholar] [CrossRef]
- Shu, H.; Peng, Y.; Hang, W.; Li, N.; Zhou, N.; Wang, D.W. Emerging roles of ceramide in cardiovascular diseases. Aging Dis. 2022, 13, 232–245. [Google Scholar] [CrossRef]
- Harris, E. First-line antidepressants tied to minor differences in weight gain. JAMA 2024, 332, 525. [Google Scholar] [CrossRef]
- Tomasik, J.; Harrison, S.J.; Rustogi, N.; Olmert, T.; Barton-Owen, G.; Han, S.Y.S.; Cooper, J.D.; Eljasz, P.; Farrag, L.P.; Friend, L.V.; et al. Metabolomic biomarker signatures for bipolar and unipolar depression. JAMA Psychiatry 2024, 81, 101–106. [Google Scholar] [CrossRef] [PubMed]
- Orešič, M.; Seppänen-Laakso, T.; Sun, D.; Tang, J.; Therman, S.; Viehman, R.; Mustonen, U.; van Erp, T.G.; Hyötyläinen, T.; Thompson, P.; et al. Phospholipids and insulin resistance in psychosis: A lipidomics study of twin pairs discordant for schizophrenia. Genome Med. 2012, 4, 1–11. [Google Scholar] [CrossRef]
- Orešič, M.; Tang, J.; Seppänen-Laakso, T.; Mattila, I.; Saarni, S.E.; Saarni, S.I.; Lönnqvist, J.; Sysi-Aho, M.; Hyötyläinen, T.; Perälä, J.; et al. Metabolome in schizophrenia and other psychotic disorders: A general population-based study. Genome Med. 2011, 3, 19. [Google Scholar] [CrossRef] [PubMed]
- Kaddurah-Daouk, R.; McEvoy, J.; Baillie, R.A.; Lee, D.; Yao, J.K.; Doraiswamy, P.M.; Krishnan, K.R. Metabolomic mapping of atypical antipsychotic effects in schizophrenia. Mol. Psychiatry 2007, 12, 934–945. [Google Scholar] [CrossRef]
- Kaddurah-Daouk, R.; McEvoy, J.; Baillie, R.; Zhu, H.; Yao, J.K.; Nimgaonkar, V.L.; Buckley, P.F.; Keshavan, M.S.; Georgiades, A.; Nasrallah, H.A. Impaired plasmalogens in patients with schizophrenia. Psychiatry Res. 2012, 198, 347–352. [Google Scholar] [CrossRef]
- McEvoy, J.; Baillie, R.A.; Zhu, H.; Buckley, P.; Keshavan, M.S.; Nasrallah, H.A.; Dougherty, G.G.; Yao, J.K.; Kaddurah-Daouk, R. Lipidomics reveals early metabolic changes in subjects with schizophrenia: Effects of atypical antipsychotics. PLoS ONE 2013, 8, e68717. [Google Scholar] [CrossRef] [PubMed]
- Wood, P.L.; Unfried, G.; Whitehead, W.; Phillipps, A.; Wood, J.A. Dysfunctional plasmalogen dynamics in the plasma and platelets of patients with schizophrenia. Schizophr. Res. 2015, 161, 506–510. [Google Scholar] [CrossRef]
- Hylén, U.; McGlinchey, A.; Orešič, M.; Bejerot, S.; Humble, M.B.; Särndahl, E.; Hyötyläinen, T.; Eklund, D. Potential transdiagnostic lipid mediators of inflammatory activity in individuals with serious mental illness. Front. Psychiatry 2021, 12, 778325. [Google Scholar] [CrossRef] [PubMed]
- Cao, B.; Wang, D.; Pan, Z.; Brietzke, E.; McIntyre, R.S.; Musial, N.; Mansur, R.B.; Subramanieapillai, M.; Zeng, J.; Huang, N.; et al. Characterizing acyl-carnitine biosignatures for schizophrenia: A longitudinal pre- and post-treatment study. Transl. Psychiatry 2019, 9, 19. [Google Scholar] [CrossRef]
- Leppik, L.; Parksepp, M.; Janno, S.; Koido, K.; Haring, L.; Vasar, E.; Zilmer, M. Profiling of lipidomics before and after antipsychotic treatment in first-episode psychosis. Eur. Arch. Psychiatry Clin. Neurosci. 2020, 270, 59–70. [Google Scholar] [CrossRef]
- Wang, D.; Sun, X.; Maziade, M.; Mao, W.; Zhang, C.; Wang, J.; Cao, B. Characterising phospholipids and free fatty acids in patients with schizophrenia: A case-control study. World J. Biol. Psychiatry 2021, 22, 161–174. [Google Scholar] [CrossRef] [PubMed]
- Wang, F.; Guo, L.; Zhang, T.; Cui, Z.; Wang, J.; Zhang, C.; Xue, F.; Zhou, C.; Li, B.; Tan, Q.; et al. Alterations in plasma lipidomic profiles in adult patients with schizophrenia and major depressive disorder. Medical 2022, 58, 1509. [Google Scholar] [CrossRef]
- Marković, S.; Jadranin, M.; Miladinović, Z.; Gavrilović, A.; Avramović, N.; Takić, M.; Tasic, L.; Tešević, V.; Mandić, B. LC-HRMS lipidomic fingerprints in Serbian cohort of schizophrenia patients. Int. J. Mol. Sci. 2024, 25, 10266. [Google Scholar] [CrossRef] [PubMed]
- Shi, M.; Du, X.; Jia, Y.; Zhang, Y.; Jia, Q.; Zhang, X.; Zhu, Z. The identification of novel schizophrenia-related metabolites using untargeted lipidomics. Cereb. Cortex. 2024, 34, bhae160. [Google Scholar] [CrossRef]
- Longo, N.; Frigeni, M.; Pasquali, M. Carnitine transport and fatty acid oxidation. Biochim. Biophys. Acta. 2016, 1863, 2422–2435. [Google Scholar] [CrossRef]
- Ferreira, G.C.; McKenna, M.C. L-carnitine and acetyl-L-carnitine roles and neuroprotection in developing brain. Neurochem. Res. 2017, 42, 1661–1675. [Google Scholar] [CrossRef]
- Steiber, A.; Kerner, J.; Hoppel, C.L. Carnitine: A nutritional, biosynthetic, and functional perspective. Mol. Asp. Med. 2004, 25, 455–473. [Google Scholar] [CrossRef] [PubMed]
- Jones, L.L.; McDonald, D.A.; Borum, P.R. Acylcarnitines: Role in brain. Prog. Lipid Res. 2010, 49, 61–75. [Google Scholar] [CrossRef] [PubMed]
- Zhao, L.; Liu, H.; Wang, W.; Wang, Y.; Xiu, M.; Li, S. Carnitine metabolites and cognitive improvement in patients with schizophrenia treated with olanzapine: A prospective longitudinal study. Front. Pharmacol. 2023, 14, 1255501. [Google Scholar] [CrossRef] [PubMed]
- Schooneman, M.G.; Vaz, F.M.; Houten, S.M.; Soeters, M.R. Acylcarnitines: Reflecting or inflicting insulin resistance? Diabetes. 2013, 62, 1–8. [Google Scholar] [CrossRef]
- Lheureux, P.E.; Penaloza, A.; Zahir, S.; Gris, M. Science review: Carnitine in the treatment of valproic acid-induced toxicity-what is the evidence? Crit. Care. 2005, 9, 431–440. [Google Scholar] [CrossRef]
- Bene, J.; Hadzsiev, K.; Melegh, B. Role of carnitine and its derivatives in the development and management of type 2 diabetes. Nutr. Diabetes 2018, 8, 8. [Google Scholar] [CrossRef]
- Wang, W.; Pan, D.; Liu, Q.; Chen, X.; Wang, S. L-carnitine in the treatment of psychiatric and neurological manifestations: A systematic review. Nutrients 2024, 16, 1232. [Google Scholar] [CrossRef] [PubMed]
- Berger, G.E.; Wood, S.J.; Pantelis, C.; Velakoulis, D.; Wellard, R.M.; McGorry, P.D. Implications of lipid biology for the pathogenesis of schizophrenia. Aust. N. Z. J. Psychiatry 2002, 36, 355–366. [Google Scholar] [CrossRef]
- Prabutzki, P.; Schiller, J.; Engel, K.M. Phospholipid-derived lysophospholipids in (patho)physiology. Atherosclerosis 2024, 398, 118569. [Google Scholar] [CrossRef]
- Stadler, J.T.; Bärnthaler, T.; Borenich, A.; Emrich, I.E.; Habisch, H.; Rani, A.; Holzer, M.; Madl, T.; Heine, G.H.; Marsche, G. Low LCAT activity is linked to acute decompensated heart failure and mortality in patients with CKD. J. Lipid Res. 2024, 65, 100624. [Google Scholar] [CrossRef]
- Knuplez, E.; Marsche, G. An updated review of pro- and anti-inflammatory properties of plasma lysophosphatidylcholines in the vascular system. Int. J. Mol. Sci. 2020, 21, 4501. [Google Scholar] [CrossRef] [PubMed]
- Hossain, M.S.; Mawatari, S.; Fujino, T. Biological functions of plasmalogens. Adv. Exp. Med. Biol. 2020, 1299, 171–193. [Google Scholar] [CrossRef] [PubMed]
- Udagawa, J.; Hino, K. Plasmalogen in the brain: Effects on cognitive functions and behaviors attributable to its properties. Brain Res. Bull. 2022, 188, 197–202. [Google Scholar] [CrossRef]
- Bozelli, J.C., Jr.; Azher, S.; Epand, R.M. Plasmalogens and chronic inflammatory diseases. Front. Physiol. 2021, 12, 730829. [Google Scholar] [CrossRef] [PubMed]
- Ferreri, C.; Ferocino, A.; Batani, G.; Chatgilialoglu, C.; Randi, V.; Riontino, M.V.; Vetica, F.; Sansone, A. Plasmalogens: Free radical reactivity and identification of trans isomers relevant to biological membranes. Biomolecules 2023, 13, 730. [Google Scholar] [CrossRef]
- Kriisa, K.; Leppik, L.; Balõtšev, R.; Ottas, A.; Soomets, U.; Koido, K.; Volke, V.; Innos, J.; Haring, L.; Vasar, E.; et al. Profiling of acylcarnitines in first episode psychosis before and after antipsychotic treatment. J. Proteome Res. 2017, 16, 3558–3566. [Google Scholar] [CrossRef]
- Lauer, A.A.; Griebsch, L.V.; Pilz, S.M.; Janitschke, D.; Theiss, E.L.; Reichrath, J.; Herr, C.; Beisswenger, C.; Bals, R.; Valencak, T.G.; et al. Impact of vitamin D3 deficiency on phosphatidylcholine-/ethanolamine, plasmalogen-, lyso-phosphatidylcholine-/ethanolamine, carnitine- and triacyl glyceride-homeostasis in neuroblastoma cells and murine brain. Biomolecules 2021, 11, 1699. [Google Scholar] [CrossRef]
- Sun, G.Y.; Xu, J.; Jensen, M.D.; Yu, S.; Wood, W.G.; González, F.A.; Simonyi, A.; Sun, A.Y.; Weisman, G.A. Phospholipase A2 in astrocytes: Responses to oxidative stress, inflammation, and G protein-coupled receptor agonists. Mol. Neurobiol. 2005, 31, 27–41. [Google Scholar] [CrossRef]
- Walther, A.; Cannistraci, C.V.; Simons, K.; Durán, C.; Gerl, M.J.; Wehrli, S.; Kirschbaum, C. Lipidomics in major depressive disorder. Front. Psychiatry 2018, 9, 459. [Google Scholar] [CrossRef]
- Decker, S.T.; Funai, K. Mitochondrial membrane lipids in the regulation of bioenergetic flux. Cell Metab. 2024, 36, 1963–1978. [Google Scholar] [CrossRef]
- Cole, L.K.; Vance, J.E.; Vance, D.E. Phosphatidylcholine biosynthesis and lipoprotein metabolism. Biochim. Biophys. Acta. 2012, 1821, 754–761. [Google Scholar] [CrossRef] [PubMed]
- Simić, K.; Miladinović, Z.; Todorović, N.; Trifunović, S.; Avramović, N.; Gavrilović, A.; Jovanović, S.; Gođevac, D.; Vujisić, L.; Tešević, V.; et al. Metabolomic profiling of bipolar disorder by 1H-NMR in Serbian patients. Metabolites 2023, 13, 607. [Google Scholar] [CrossRef] [PubMed]
- Simić, K.; Todorović, N.; Trifunović, S.; Miladinović, Z.; Gavrilović, A.; Jovanović, S.; Avramović, N.; Gođevac, D.; Vujisić, L.; Tešević, V.; et al. NMR metabolomics in serum fingerprinting of schizophrenia patients in a Serbian cohort. Metabolites 2022, 12, 707. [Google Scholar] [CrossRef]
- Tkachev, A.; Stekolshchikova, E.; Anikanov, N.; Zozulya, S.; Barkhatova, A.; Klyushnik, T.; Petrova, D. Shorter chain triglycerides are negatively associated with symptom improvement in schizophrenia. Biomolecules 2021, 11, 720. [Google Scholar] [CrossRef]
- Li, J.; Wang, F.; Xue, R.; Si, S.; Tang, F.; Xue, F. Effects of antipsychotics on triglyceride trajectories and its implications in CVD: A longitudinal cohort study. EBioMedicine 2022, 81, 104123. [Google Scholar] [CrossRef] [PubMed]
- Skrede, S.; Steen, V.M.; Fernø, J. Antipsychotic-induced increase in lipid biosynthesis: Activation through inhibition? J. Lipid Res. 2013, 54, 307–309. [Google Scholar] [CrossRef]
- Hanamatsu, H.; Ohnishi, S.; Sakai, S.; Yuyama, K.; Mitsutake, S.; Takeda, H.; Hashino, S.; Igarashi, Y. Altered levels of serum sphingomyelin and ceramide containing distinct acyl chains in young obese adults. Nutr. Diabetes. 2014, 4, e141. [Google Scholar] [CrossRef]
- Turpin-Nolan, S.M.; Brüning, J.C. The role of ceramides in metabolic disorders: When size and localization matters. Nat. Rev. Endocrinol. 2020, 16, 224–233. [Google Scholar] [CrossRef]
- Subbaiah, P.V.; Jiang, X.C.; Belikova, N.A.; Aizezi, B.; Huang, Z.H.; Reardon, C.A. Regulation of plasma cholesterol esterification by sphingomyelin: Effect of physiological variations of plasma sphingomyelin on lecithin-cholesterol acyltransferase activity. Biochim. Biophys. Acta. 2012, 1821, 908–913. [Google Scholar] [CrossRef]
- Yang, F.; Chen, G. The nutritional functions of dietary sphingomyelin and its applications in food. Front. Nutr. 2022, 9, 1002574. [Google Scholar] [CrossRef]
- Gault, C.R.; Obeid, L.M.; Hannun, Y.A. An overview of sphingolipid metabolism: From synthesis to breakdown. Adv. Exp. Med. Biol. 2010, 688, 1–23. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez-Cuenca, S.; Pellegrinelli, V.; Campbell, M.; Oresic, M.; Vidal-Puig, A. Sphingolipids and glycerophospholipids-The “ying and yang” of lipotoxicity in metabolic diseases. Prog. Lipid Res. 2017, 66, 14–29. [Google Scholar] [CrossRef] [PubMed]
- Tao, S.; Zhang, Y.; Wang, Q.; Qiao, C.; Deng, W.; Liang, S.; Wei, J.; Wei, W.; Yu, H.; Li, X.; et al. Identifying transdiagnostic biological subtypes across schizophrenia, bipolar disorder, and major depressive disorder based on lipidomics profiles. Front. Cell Dev. Biol. 2022, 10, 969575. [Google Scholar] [CrossRef]
- Yu, L.; Long, Q.; Zhang, Y.; Liu, Y.; Guo, Z.; Cao, X.; Qin, F.; Xu, Y.; Qian, Q.; Gao, B.; et al. Bidirectional Mendelian randomization analysis of plasma lipidome and psychiatric disorders. J. Affect. Disord. 2024, 379, 871–883. [Google Scholar] [CrossRef]
- Bernal-Vega, S.; García-Juárez, M.; Camacho-Morales, A. Contribution of ceramides metabolism in psychiatric disorders. J. Neurochem. 2023, 164, 708–724. [Google Scholar] [CrossRef] [PubMed]
- Sfera, A.; Imran, H.; Sfera, D.O.; Anton, J.J.; Kozlakidis, Z.; Hazan, S. Novel Insights into psychosis and antipsychotic interventions: From managing symptoms to improving outcomes. Int. J. Mol. Sci. 2024, 25, 5904. [Google Scholar] [CrossRef]
- Ottensmann, L.; Tabassum, R.; Ruotsalainen, S.E.; Gerl, M.J.; Klose, C.; Widén, E.; FinnGen; Simons, K.; Ripatti, S.; Pirinen, M. Genome-wide association analysis of plasma lipidome identifies 495 genetic associations. Nat. Commun. 2023, 14, 6934. [Google Scholar] [CrossRef]
Reference | Analytical Tool | Number of Participants | Female (%) | Mean Age * | Lipid Classes | Main Findings—Individual Lipids | Main Findings—Lipid Classes |
---|---|---|---|---|---|---|---|
Ribeiro et al. (2017) [63] | UHPLC-MS | 14 BD 21 HC | 71 67 | 46 (9) 34 (13) | untargeted analysis, GL, GP, SP, ST, FFA | 121 differential lipids, a panel of potential biomarkers for distinguishing BD from HC: PI (40:3), PG (32:4(OH)), PA (48:8(OH)), PA (44:4), PE (42:5), and TG (42:3) | GL ↑, SP ↑, GP ↓ in BD compared to HC, lipid class PI was the most altered |
Brunkhorst-Kanaan et al. (2019) [64] | UHPL-MS | 67 BD and MDD HC 405 | 46 65 | not reported | targeted analysis: Cer, LPAs, endocannabinoids and pterins; untargeted, 220 lipids, TG, DG, CE, LPC, PI, PC, PE, FFA | C16Cer, C18Cer, C20Cer, C22Cer, C24Cer C24:1Cer; C24:1GluCer, C24LacCer | differences between unipolar or BP patients and the control group originate from ceramides and their hexosyl-metabolites |
Guo et al. (2022) [51] | UHPLC-MS/MS | 24 BD 30 HC | women | 32.5(27.00, 41.5) 29.00(25.00, 35.2) | untargeted, 884 lipids, 31 lipid classes | 55 differential lipids, a panel of potential biomarkers for distinguishing BD from HC: PS (42:9), DG (21:5), PC (36:6), PC (8:0/6:0), PS (16:1/22:4), TG (16:0/16:1/22:6), TG (16:0/20:4/22:5), TG (22:4/17:1/18:2), TG (18:0/8:0/20:4, 56:4) | WE ↓, acyl-CAR ↓, SM ↓, coenzyme Q10 ↓, MGDG ↓, PS ↓, PE ↓, PI ↑, LPC ↑, LPE ↑, LPI ↑, PIP ↑, PIP ↑2, Cer ↑, CerP ↑, GD2 ↑, GM2 ↑, TG ↑, MG ↑ in BD patients compared to HC |
Zhang et al. (2022) [65] | UHPLC-MS/MS | 28 MDD 22 BD HC 25 | women | 36.5 (30.25, 43.50) 34.00 (27.00, 42.0) 31.00 (26.50, 38.0) | untargeted, 884 lipids, 31 lipid classes | 172 differential lipids, a panel of potential biomarkers for distinguishing BD from HC: PC (36:6), PS (42:9), LPE (16:0), LPE (18:0), PC (38:8), PC (8:0/6:0), TG (22:4/17:1/18:2), TG (16:0/16:1/22:6) | WE ↓, acyl-CAR ↓, SM ↓, coenzyme Q10 ↓, MGDG ↓, PS ↓, PE ↓, phytosphingomyelin ↓, LPE ↑, PIP ↑, PIP2 ↑, GD2 ↑, GM2 ↑, TG ↑ in BD patients compared to HC |
Tkachev et al. (2023) [50] | UHPLC-MS | Ger/Aus cohort BD 148 HC 187 Russian cohort BD 36 HC 138 | 48 57 67 22 | 43.3 (13.4) 38.3 (16.2) 28.2 (9.1) 29.5 (8.3) | untargeted, 1361 features, 395 lipids, CAR, Cer, CE, DG, FFA, LPC, LPC(O-), LPC(P-), LPE, PC, PC(O-), PC(P-), PE, PE(P-), SM, TG | 47 differential features, 21 identified lipid molecules: CAR (10:1), (12:2), (13:1), Cer(d32:1), (d34:1), (d36:1), (d36:2), (d38:1), (d40:2), (d40:3), (d42:3), (d43:2), FFA (10:2), (12:3), (13:1), (23:0), (23:1), (25:1), (25:3),(8:0), SM(d36:1) | the characteristic acyl-CAR ↓, and PC(O-) ↓ and Cer ↑ shared by SCH, BD and MDD |
Costa et al. (2023) [41] | UHPLC-MS | SCH 30 BD 30 HC 30 | 46.6 63.3 50.0 | 26.5 (6.8) 26.6 (4.4) 26.5 (2.2) | untargeted, FFA, LPE, ST, LPS, PC, LPC, LPC(O-), LPA, LPS(O-), PE, PA, Cer, CE, SM, LPI, PA(O-), DG, PG, TG, acyl-CAR, PI(O-), PC(O-), PS | 119 differential lipids | most of the identified differential lipids were downregulated compared to control, included lipid classes of FFA, LPE, ST, LPS, PC, LPC, LPC(O-), LPA, LPS, LPI, Cer, CE, SM, PA, TG, DG, PE, PI(O-), PC(O-), PS, PI, PI(O-), PG(O-), acyl-CAR |
Jadranin et al. (2024) [66] | LC-HRMS | BD 31 HC 31 | 58 48.4 | not reported | untargeted, 201 features, LPC, FFA, PA, LPS, Cer, SM, PC, PC(O-), PS, DG, TG, CE | 56 differential lipids, 55 ↓, and Cer34:1 ↑ in BD The highest VIP scores PC (O-34:2), SM (42:1), and CE (18:2) | differential lipids belonged mostly to GP, and SP main lipid classes, and SM, PC(O-), PC, and TG sub-classes of main serum lipid classes |
Reference | Analytical Tool | Number of Participants | Female | Mean Age * | Lipid Classes | Main Findings—Individual Lipids | Main Findings—Lipid Classes |
---|---|---|---|---|---|---|---|
Wang et al. (2019) [48] | UPLC-MS/MS | 119 SCH training set 84 testing set 35 109 HC training set 77 testing set 32 | 66 66 | 29.13 (6.05) 27.93 (6.67) 30.61 (4.87) 30.5 (3.94) | untargeted metabolomics, 391 features, PC, LPC, PE, LPE, SM | 51 differential lipids, a biomarker panel LPC (18:0), LPC (20:0), PC (18:2/18:2), PC (O-16:0/18:2), LPE (20:4), and PE (P-18:0/18:2) | 151 differential metabolites/51 differential lipids, total PC ↔, LPC ↓, PE ↓, LPE ↑, and SM ↑ |
Yan et al. (2018) [49] | LC-DIA-MS | 20 SCH 29 HC | 45 38 | 32 (9) 32 (8) | untargeted, 445 lipids, 17 lipid classes | 47 differential lipids, antipsychotic treatment downregulated 50 lipid species | CE ↑, LPC ↑, SM ↑, TG ↑, p-PC ↓, p-PE ↓, PC ↓, LPC ↓, LPE ↓, acyl-CAR ↓, antipsychotic treatment downregulated CE, Cer, FFA, GlcCer, LPC, PC, p-PC, SM, TG |
Cao et al. (2019) [95] | UHPLC-MS | 225 SCH 175 HC | 60 69.1 | 37.31 (10.85) 39.44 (9.36) | targeted, 29 acyl-CAR | C4-OH ↑, C16:1 ↑, C3 ↓, C8 ↓, C10 ↓, C10:1 ↓, C10:2 ↓, C12 ↓, C14-OH ↓, C14:2 ↓, and C14:2-OH ↓ | |
Leppik et al. (2020) [96] | FIA-MS/MS and LC-MS/MS | 53 FEP 37 HC | 39.6 56.8 | 26.2 (6.0) 24.8 (5.3) | targeted analysis, 105 lipids, PC, LPC, SM | differential lipids LPC (20:4) ↑, 16 PCs (11aa-, 5ae-PC) ↓, SM (20:2) ↓ the strongest effect size PC-aa-molecules: PC (32:2), PC (34:3), PC (34:4), PC (36:2), and PC (36:3) | PC/LPC ↓ in SCH compared to HC |
Wang et al. (2021) [97] | UPLC-MS | 119 SCH 109HC | 56.3 66.1 | 29.0 (25.0, 33.3) 30.0 (26.0, 33.0) | 177 lipids, FFA, GP classes | 110 lipids upregulated 5 of 6 FFA (decreased FFA20:4), 2 of 23 LPC, 11 of 25 PC, 3 of 9 LPE, 5 of 7 PE, most lipids were downregulated, highest VIP values FFA (17:1), FFA (14:0), FFA (17:0), FFA (16:1) | LPC ↓, PC(P-) ↓, PE(P-) ↓ in SCH compared to HC |
Wang et al. (2022) [98] | LC-MS | SCH 31 MDD 35 HC 32 | 59.3 65.7 68.5 | 28 (24, 37) 34.5 (28.5, 38) 29 (25, 36.75) | untargeted lipidomics, 782 lipids, 30 lipid classes | 105 differential lipids 45 ↑, 58 ↓ 50 PC lipid species | acyl-CAR ↓, PE ↓, LPC ↑, LPE ↑, LPI ↑, PIP ↑, PIP2 ↑ in SCH compared to HC |
Tkachev et al. (2023) [50] | UHPLC-MS | Chinese SCH 170 HC 153 Ger/Aus SCH 184 HC 187 Russian SCH 82 HC 138 | 53 54 30 57 23 22 | 36.9 (11.6) 37.8 (11.3) 39.2 (12.8) 38.3 (16.2) 31.2 (8.4) 29.5 (8.3) | 1361 features, 395 identified lipid species, CAR, Cer, CE, DG, FFA, LPC, LPC(O-), LPC(P-), LPE, PC, PC(O-), PC(P-), PE, PE(P-), SM, TG | 12 acyl-CAR, CE (22:5), 10 Cer, DAG (36:2), FFA12:2, FFA13:1, LPC (22:4), LPC (O-26:1), nine PC, PC (O-34:0), six PC(P-), three PE, four PE(P-), five SM, 21 TG | the characteristic acyl-CAR ↓, and ether-PC ↓, and Cer ↑ shared by SCH, BD, and MDD |
Costa et al. (2023) [41] | UHPLC-MS | SCH 30 BD 30 HC 30 | 46.6 63.3 50.0 | 26.5 (6.8) 26.6 (4.4) 26.5 (2.2) | all main lipid classes GP, GL, SP, ST, FFA | 49 lipid species | most of the identified differential lipids were downregulated (↓) compared to controls, belonged to lipid classes LPE, ST, LPS, LPC, LPC(O-), LPA, LPS, Cer, CE, SM, PA, TG, PE, PI(O-), PGP-Me, PC(O-), PC, PS, FFA |
Marković et al. (2024) [99] | LC-HRMS | SCH 30 HC 31 | 50 48.4 | Between 24 and 74 years | untargeted analysis, 192 features, lipid classes PC, PC(O-), LPC, PS, PI, LPI, LPS(O-), PA, SM, Cer, DG, TG, MG, FFA, CE | differential lipids male 49, female 60 upregulated in both genders Cer(34:1), Cer(34:2), LPC(16:0), TG(48:2) | |
Shi et al. (2024) [100] | UPLC-MS/MS | SCH 96 HC 96 | male | 40.43 (9.60) 40.52 (9.46) | untargeted analysis, 1033 lipids, FFA, GL, GP, SP, ST, isopentols | 34 differential lipids, 21 downregulated, 13 upregulated, 10 lipid species were associated with cognition | PIs ↑, all PE(O-) ↓, all PE(P-) ↓ |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Takić, M.; Jovanović, V.; Marković, S.; Miladinović, Z.; Jadranin, M.; Krstić, G.; Miljević, Č.; Tešević, V.; Mandić, B. Plasma and Serum LC-MS Lipidomic Fingerprints of Bipolar Disorder and Schizophrenia. Int. J. Mol. Sci. 2025, 26, 6134. https://doi.org/10.3390/ijms26136134
Takić M, Jovanović V, Marković S, Miladinović Z, Jadranin M, Krstić G, Miljević Č, Tešević V, Mandić B. Plasma and Serum LC-MS Lipidomic Fingerprints of Bipolar Disorder and Schizophrenia. International Journal of Molecular Sciences. 2025; 26(13):6134. https://doi.org/10.3390/ijms26136134
Chicago/Turabian StyleTakić, Marija, Vesna Jovanović, Suzana Marković, Zoran Miladinović, Milka Jadranin, Gordana Krstić, Čedo Miljević, Vele Tešević, and Boris Mandić. 2025. "Plasma and Serum LC-MS Lipidomic Fingerprints of Bipolar Disorder and Schizophrenia" International Journal of Molecular Sciences 26, no. 13: 6134. https://doi.org/10.3390/ijms26136134
APA StyleTakić, M., Jovanović, V., Marković, S., Miladinović, Z., Jadranin, M., Krstić, G., Miljević, Č., Tešević, V., & Mandić, B. (2025). Plasma and Serum LC-MS Lipidomic Fingerprints of Bipolar Disorder and Schizophrenia. International Journal of Molecular Sciences, 26(13), 6134. https://doi.org/10.3390/ijms26136134