Unveiling the Genome of the Diploid Wild Sugarcane Relative Narenga porphyrocoma (Hance) Bor
Abstract
1. Introduction
2. Results
2.1. Genome Assembly and Annotation
2.2. Repetitive Sequence Identification and Annotation
2.3. Gene Prediction and Annotation
2.4. Constructing Ancestral Karyotypes and Deducing Chromosome Change Trajectories
2.5. Evolutionary History of N. porphyrocoma (Hance) Bor GXN1
2.6. Gene Family Analysis Regarding Drought Stresses
3. Discussion
4. Materials and Methods
4.1. Sample Collection, DNA Extraction, and Sequencing
4.2. Genome Assembly and Assessment
4.3. Repeat Sequences and Gene Annotations
4.4. Annotation of Noncoding RNAs
4.5. Divergence Time Analysis
4.6. Fluorescent In Situ Hybridization (FISH) Analysis
4.7. Flow Cytometry
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Food and Agriculture Organization of the United Nations (2023)—With Major Processing by Our World in Data. “Sugar Cane Production—FAO” [Dataset]. Food and Agriculture Organization of the United Nations, “Production: Crops and Livestock Products” [Original Data]. Available online: https://ourworldindata.org/grapher/sugar-cane-production (accessed on 28 April 2025).
- Daniels, J.; Roach, B.T. Taxonomy and Evolution. Dev. Crop Sci. 1987, 11, 7–84. [Google Scholar] [CrossRef]
- Li, Y.R. Sugarcane germplasm resources and utilization. In Modern Sugarcane Science; Liu, X.H., Zhang, G.M., Eds.; China Agriculture Press: Beijing, China, 2010; pp. 103–115. [Google Scholar]
- Cai, Q.; Fan, Y.H.; Aitken, K.; Piperidis, G.; McIntyre, C.L.; Jackson, P. Assessment of the phylogenetic relationships within the “Saccharum Complex” using AFLP markers. Acta Agron. Sin. 2005, 31, 551–559. [Google Scholar]
- Julien, M.H.R.; Irvine, J.E.; Benda, G.T.A. Diseases of sugarcane: Major diseases. In Sugarcane Anatomy, Morphology and Physiology; Ricaud, C., Began, B.T., Gillaspie, A.G., Hughes, C.G., Eds.; Elsevier: New York, NY, USA, 1988; pp. 1–19. [Google Scholar]
- Berding, N.; Roach, B.T. Sugarcane improvement through breeding. In Germplasm Collection, Maintenance and Use; Heinz, D., Ed.; Elsevier: Amsterdam, The Netherlands, 1987; pp. 143–210. [Google Scholar]
- Moore, P.H. Integration of Sucrose Accumulation Processes across Hierarchical Scales: Towards Developing an Understanding of the Gene-to-Crop Continuum. Field Crops Res. 2005, 92, 119–135. [Google Scholar] [CrossRef]
- D’Hont, A.; Grivet, L.; Feldmann, P.; Rao, S.; Berding, N.; Glaszmann, J.C. Characterisation of the double genome structure of modern sugarcane cultivars (Saccharum spp.) by molecular cytogenetics. Mol. Gen. Genet. MGG 1996, 250, 405–413. [Google Scholar] [CrossRef] [PubMed]
- Yu, F.; Zhao, X.; Chai, J.; Ding, X.; Li, X.; Huang, Y.; Wang, X.; Wu, J.; Zhang, M.; Yang, Q.; et al. Chromosome-Specific Painting Unveils Chromosomal Fusions and Distinct Allopolyploid Species in the Saccharum Complex. New Phytol. 2022, 233, 1953–1965. [Google Scholar] [CrossRef] [PubMed]
- Cuadrado, A.; Acevedo, R.; Moreno Díaz De La Espina, S.; Jouve, N.; De La Torre, C. Genome Remodelling in Three Modern S. OfficinarumxS. Spontaneum Sugarcane Cultivars. J. Exp. Bot. 2004, 55, 847–854. [Google Scholar] [CrossRef]
- Piperidis, G.; D’Hont, A. Chromosome composition analysis of various Saccharum interspecific hybrids by genomic in situ hybridization (GISH). In International Society of Sugar Cane Technologists. Proceedings of the XXIV Congress, Brisbane, Australia, 17–21 September 2001; Australian Society of Sugar Cane Technologists: Brisbane, Australia, 2001; Volume 2, pp. 565–566. [Google Scholar]
- D’Hont, A. Unraveling the genome structure of polyploids using FISH and GISH; examples of sugarcane and banana. Cytogenet. Genome Res. 2005, 109, 27–33. [Google Scholar] [CrossRef]
- Al-Janabi, S.M.; McClelland, M.; Petersen, C.; Sobral, B.W.S. Phylogenetic Analysis of Organellar DNA Sequences in the Andropogoneae: Saccharinae. Theor. Appl. Genet. 1994, 88, 933–944. [Google Scholar] [CrossRef]
- Garsmeur, O.; Charron, C.; Bocs, S.; Jouffe, V.; Samain, S.; Couloux, A.; Droc, G.; Zini, C.; Glaszmann, J.C.; Van Sluys, M.A.; et al. High Homologous Gene Conservation despite Extreme Autopolyploid Redundancy in Sugarcane. New Phytol. 2011, 189, 629–642. [Google Scholar] [CrossRef]
- Raghavan, T. Sugarcane × Bamboo Hybrids. Nature 1952, 170, 329–330. [Google Scholar] [CrossRef]
- Liu, X.; Zhang, R.; Ou, H.; Gui, Y.; Wei, J.; Zhou, H.; Tan, H.; Li, Y. Comprehensive Transcriptome Analysis Reveals Genes in Response to Water Deficit in the Leaves of Saccharum narenga (Nees Ex Steud.) Hack. BMC Plant Biol. 2018, 18, 250. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.H.; Zhang, R.H.; Zhou, H.; Song, H.Z.; Fang, W.K.; Ou, H.P.; Yang, L.T.; Li, Y.R. Genetic diversity and molecular identification card construction of Narenga porphyrocoma (Hance) Bor germplasm based on AFLP markers. J. Huazhong Agric. Univ. 2016, 35, 7–13. [Google Scholar]
- Duan, W.; Huang, Y.; Zhou, S.; Zhang, B.; Luo, T.; Yang, C.; Gao, Y.; Zhang, G. Transmission of parental chromosomes in F1, BC1 and BC2 progeny between Saccharum spp. and Narenga porphyrocoma (Hance) Bor. Chin. J. Trop. Crops 2017, 38, 2201–2205. [Google Scholar]
- Huang, J.; Liao, J.; Zhu, G. Intergeneric copulatality of Saccharum L. with Narenga porphyrocoma, Miscamthus floridulus and Erianthus kockii, The morphology and isozyme analysis of their hybrid F1 clones. Southwest China J. Agric. Sci. 1997, 3, 93–99. [Google Scholar]
- Liu, X.H.; Fang, F.X.; Zhang, R.H.; Song, H.Z.; Yang, R.Z.; Gao, Y.J.; Lei, J.C.; Luo, T.; Duan, W.X.; Zhang, G.M.; et al. Identification of progenies from sugarcane × Narenga porphyrocoma (Hance) Bor by SSR marker. Southwest China J. Agric. Sci 2012, 25, 38–42. [Google Scholar]
- Souza, G.M.; Van Sluys, M.A.; Lembke, C.G.; Lee, H.; Margarido, G.R.A.; Hotta, C.T.; Gaiarsa, J.W.; Diniz, A.L.; Oliveira, M.D.M.; Ferreira, S.D.S.; et al. Assembly of the 373k Gene Space of the Polyploid Sugarcane Genome Reveals Reservoirs of Functional Diversity in the World’s Leading Biomass Crop. Gigascience 2019, 8, giz129. [Google Scholar] [CrossRef]
- Shearman, J.R.; Pootakham, W.; Sonthirod, C.; Naktang, C.; Yoocha, T.; Sangsrakru, D.; Jomchai, N.; Tongsima, S.; Piriyapongsa, J.; Ngamphiw, C.; et al. A Draft Chromosome-Scale Genome Assembly of a Commercial Sugarcane. Sci. Rep. 2022, 12, 20474. [Google Scholar] [CrossRef] [PubMed]
- Healey, A.L.; Garsmeur, O.; Lovell, J.T.; Shengquiang, S.; Sreedasyam, A.; Jenkins, J.; Plott, C.B.; Piperidis, N.; Pompidor, N.; Llaca, V.; et al. The Complex Polyploid Genome Architecture of Sugarcane. Nature 2024, 628, 804–810. [Google Scholar] [CrossRef]
- Bao, Y.; Zhang, Q.; Huang, J.; Zhang, S.; Yao, W.; Yu, Z.; Deng, Z.; Yu, J.; Kong, W.; Yu, X.; et al. A Chromosomal-Scale Genome Assembly of Modern Cultivated Hybrid Sugarcane Provides Insights into Origination and Evolution. Nat. Commun. 2024, 15, 3041. [Google Scholar] [CrossRef]
- Tarailo-Graovac, M.; Chen, N. Using RepeatMasker to Identify Repetitive Elements in Genomic Sequences. Curr. Protoc. Bioinform. 2009, 25, 1–14. [Google Scholar] [CrossRef]
- Flynn, J.M.; Hubley, R.; Goubert, C.; Rosen, J.; Clark, A.G.; Feschotte, C.; Smit, A.F. RepeatModeler2 for Automated Genomic Discovery of Transposable Element Families. Proc. Natl. Acad. Sci. USA 2020, 117, 9451–9457. [Google Scholar] [CrossRef] [PubMed]
- Ellinghaus, D.; Kurtz, S.; Willhoeft, U. LTRharvest, an Efficient and Flexible Software for de Novo Detection of LTR Retrotransposons. BMC Bioinform. 2008, 9, 18. [Google Scholar] [CrossRef] [PubMed]
- Benson, G. Tandem Repeats Finder: A Program to Analyze DNA Sequences. Nucleic Acids Res. 1999, 27, 573–580. [Google Scholar] [CrossRef] [PubMed]
- Kim, D.; Langmead, B.; Salzberg1, S.L. HISAT: A Fast Spliced Aligner with Low Memory Requirements Daehwan HHS Public Access. Nat. Methods 2015, 12, 357–360. [Google Scholar] [CrossRef]
- Pertea, M.; Kim, D.; Pertea, G.M.; Leek, J.T.; Salzberg, S.L. Transcript-level expression analysis of RNA-seq experiments with HISAT, StringTie and Ballgown. Nat. Protoc. 2016, 11, 1650–1667. [Google Scholar] [CrossRef]
- Keilwagen, J.; Hartung, F.; Grau, J. GeMoMa: Homology-Based Gene Prediction Utilizing Intron Position Conservation and RNA-seq Data. Methods Mol. Biol. 2019, 1962, 161–177. [Google Scholar] [CrossRef]
- Stanke, M.; Steinkamp, R.; Waack, S.; Morgenstern, B. AUGUSTUS: A Web Server for Gene Finding in Eukaryotes. Nucleic Acids Res. 2004, 32, 309–312. [Google Scholar] [CrossRef]
- Haas, B.J.; Salzberg, S.L.; Zhu, W.; Pertea, M.; Allen, J.E.; Orvis, J.; White, O.; Robin, C.R.; Wortman, J.R. Automated Eukaryotic Gene Structure Annotation Using EVidenceModeler and the Program to Assemble Spliced Alignments. Genome Biol. 2008, 9, R7. [Google Scholar] [CrossRef]
- Buchfink, B.; Xie, C.; Huson, D.H. Fast and sensitive protein alignment using DIAMOND. Nat. Methods 2015, 12, 59–60. [Google Scholar] [CrossRef]
- Zhang, G.; Ge, C.; Xu, P.; Wang, S.; Cheng, S.; Han, Y.; Wang, Y.; Zhuang, Y.; Hou, X.; Yu, T.; et al. The Reference Genome of Miscanthus Floridulus Illuminates the Evolution of Saccharinae. Nat. Plants 2021, 7, 608–618. [Google Scholar] [CrossRef]
- Scortecci, K.C.; Creste, S.; Calsa, T., Jr.; Xavier, M.A.; Landell, M.G.; Figueira, A.; Benedito, V.A. Challenges, opportunities and recent advances in sugarcane breeding. In Plant Breeding; Abdurakhmonov, A.Y., Ed.; InTech: Rijeka, Croatia, 2012; pp. 267–296. [Google Scholar]
- Zhou, M. Conventional Sugarcane Breeding in South Africa: Progress and Future Prospects. Am. J. Plant Sci. 2013, 04, 189–197. [Google Scholar] [CrossRef]
- Butterfield, M.; D’Hont, A.; Berding, N. The Sugarcane Genome: A Synthesis of Current Understanding, and Lessons for Breeding and Biotechnology. In Proceedings of the Annual Congress of the South African Sugar Technologists’ Association (SASTA), Mount Edgecombe, South Africa, 8 November 2001; Volume 75, pp. 1–5. [Google Scholar]
- Sandoval-Velasco, M.; Dudchenko, O.; Rodríguez, J.A.; Pérez Estrada, C.; Dehasque, M.; Fontsere, C.; Mak, S.S.T.; Khan, R.; Contessoto, V.G.; Oliveira Junior, A.B.; et al. Three-Dimensional Genome Architecture Persists in a 52,000-Year-Old Woolly Mammoth Skin Sample. Cell 2024, 187, 3541–3562.e51. [Google Scholar] [CrossRef]
- Li, E.S.; Assmann, S.M. Genetic determinants of stomatal function. In Genes for Plant Abiotic Stress; Jenks, A.M., Wood, A.J., Eds.; Wiley-Blackwell: New York, NY, USA, 2010; pp. 5–33. [Google Scholar]
- Xu, S.; Wang, J.; Shang, H.; Huang, Y.; Yao, W.; Chen, B.; Zhang, M. Transcriptomic Characterization and Potential Marker Development of Contrasting Sugarcane Cultivars. Sci. Rep. 2018, 8, 1683. [Google Scholar] [CrossRef]
- Singh, D.; Laxmi, A. Transcriptional Regulation of Drought Response: A Tortuous Network of Transcriptional Factors. Front. Plant Sci. 2015, 6, 895. [Google Scholar] [CrossRef] [PubMed]
- Jalakas, P.; Huang, Y.C.; Yeh, Y.H.; Zimmerli, L.; Merilo, E.; Kollist, H.; Brosché, M. The Role of ENHANCED RESPONSES TO ABA1 (ERA1) in Arabidopsis Stomatal Responses Is beyond ABA Signaling. Plant Physiol. 2017, 174, 665–671. [Google Scholar] [CrossRef]
- Cheng, H.; Concepcion, G.T.; Feng, X.; Zhang, H.; Li, H. Haplotype-resolved de novo assembly using phased assembly graphs with hifiasm. Nat. Methods 2021, 18, 170–175. [Google Scholar] [CrossRef] [PubMed]
- Roach, M.J.; Schmidt, S.; Borneman, A.R. Purge Haplotigs: Synteny Reduction for Third-Gen Diploid Genome Assemblies. BMC Bioinform. 2018, 19, 460. [Google Scholar] [CrossRef]
- Chen, S.; Zhou, Y.; Chen, Y.; Gu, J. Fastp: An Ultra-Fast All-in-One FASTQ Preprocessor. Bioinformatics 2018, 34, i884–i890. [Google Scholar] [CrossRef]
- Dudchenko, O.; Batra, S.S.; Omer, A.D.; Nyquist, S.K.; Hoeger, M.; Durand, N.C.; Shamim, M.S.; Machol, I.; Lander, E.S.; Aiden, A.P.; et al. De novo assembly of the Aedes aegypti genome using Hi-C yields chromosome-length scaffolds. Science 2017, 356, 92–95. [Google Scholar] [CrossRef]
- Manni, M.; Berkeley, M.R.; Seppey, M.; Simão, F.A.; Zdobnov, E.M. BUSCO Update: Novel and Streamlined Workflows along with Broader and Deeper Phylogenetic Coverage for Scoring of Eukaryotic, Prokaryotic, and Viral Genomes. Mol. Biol. Evol. 2021, 38, 4647–4654. [Google Scholar] [CrossRef]
- Li, H. Minimap2: Pairwise Alignment for Nucleotide Sequences. Bioinformatics 2018, 34, 3094–3100. [Google Scholar] [CrossRef] [PubMed]
- Stanke, M.; Diekhans, M.; Baertsch, R.; Haussler, D. Using Native and Syntenically Mapped CDNA Alignments to Improve de Novo Gene Finding. Bioinformatics 2008, 24, 637–644. [Google Scholar] [CrossRef] [PubMed]
- Zdobnov, E.M.; Apweiler, R. InterProScan-an Integration Platform for the Signature-Recognition Methods in InterPro. Bioinformatics 2001, 17, 847–848. [Google Scholar] [CrossRef] [PubMed]
- Altschul, S.F.; Madden, T.L.; Schäffer, A.A.; Zhang, J.; Zhang, Z.; Miller, W.; Lipman, D.J. Gapped BLAST and PSI-BLAST: A New Generation of Protein Database Search Programs. Nucleic Acids Res. 1997, 25, 3389–3402. [Google Scholar] [CrossRef]
- Tatusov, R.L.; Fedorova, N.D.; Jackson, J.D.; Jacobs, A.R.; Kiryutin, B.; Koonin, E.V.; Krylov, D.M.; Mazumder, R.; Mekhedov, S.L.; Nikolskaya, A.N.; et al. The COG Database: An Updated Version Includes Eukaryotes. BMC Bioinform. 2003, 4, 41. [Google Scholar] [CrossRef]
- Kanehisa, M.; Goto, S. KEGG: Kyoto Encyclopedia of Genes and Genomes. Nucleic Acids Res. 2000, 28, 27–30. [Google Scholar] [CrossRef]
- Ashburner, M.; Ball, C.A.; Blake, J.A.; Botstein, D.; Butler, H.; Cherry, J.M.; Davis, A.P.; Dolinski, K.; Dwight, S.S.; Eppig, J.T.; et al. Gene Ontology: Tool for the Unification of Biology. Nat. Genet. 2000, 25, 25–29. [Google Scholar] [CrossRef]
- Nawrocki, E.P.; Eddy, S.R. Infernal 1.1: 100-Fold Faster RNA Homology Searches. Bioinformatics 2013, 29, 2933–2935. [Google Scholar] [CrossRef]
- Chan, P.P.; Lin, B.Y.; Mak, A.J.; Lowe, T.M. TRNAscan-SE 2.0: Improved Detection and Functional Classification of Transfer RNA Genes. Nucleic Acids Res. 2021, 49, 9077–9096. [Google Scholar] [CrossRef]
- Lagesen, K.; Hallin, P.; Rødland, E.A.; Stærfeldt, H.H.; Rognes, T.; Ussery, D.W. RNAmmer: Consistent and Rapid Annotation of Ribosomal RNA Genes. Nucleic Acids Res. 2007, 35, 3100–3108. [Google Scholar] [CrossRef]
- Zwaenepoel, A.; Van De Peer, Y. Wgd-Simple Command Line Tools for the Analysis of Ancient Whole-Genome Duplications. Bioinformatics 2019, 35, 2153–2155. [Google Scholar] [CrossRef] [PubMed]
Indicator | Scaffold | Contig | ||
---|---|---|---|---|
Length (bp) | Number | Length (bp) | Number | |
N50 | 128,807,855 | 6 | 81,578,857 | 9 |
N60 | 127,489,866 | 8 | 75,423,851 | 11 |
N70 | 110,254,084 | 9 | 66,681,031 | 14 |
N80 | 87,516,119 | 11 | 44,940,619 | 17 |
N90 | 85,681,588 | 13 | 24,489,615 | 22 |
Max length | 186,974,133 | 161,738,000 | ||
Total length | 1,822,969,591 | 1,822,906,591 | ||
Total numbers | - | 99 | - | 225 |
GC rate | 0.46 | - | 0.46 | - |
Gap length | 63,000 | - | - | |
Anchored to chromosomes | 1,818,483,892 | 15 | 1,818,420,892 | 141 |
BUSCO complete | 99.0% |
Type | Length (bp) | % of Genome | |
---|---|---|---|
Retrotransposons | LTR/Copia | 240,473,209 | 13.19 |
LTR/Gypsy | 563,894,532 | 30.93 | |
LTR/Other | 11,340,167 | 0.62 | |
SINE | 354,429 | 0.02 | |
LINE | 95,917,621 | 5.26 | |
Other | 0 | 0.00 | |
DNA transposons | EnSpm | 68,083,692 | 3.73 |
Harbinger | 20,544,229 | 1.13 | |
hAT | 19,054,911 | 1.05 | |
Helitron | 18,354,173 | 1.01 | |
Mariner | 1,110 | 0.00 | |
MuDR | 24,929,917 | 1.37 | |
P | 156,362 | 0.01 | |
Other | 17,404,240 | 0.95 | |
Other | - | 2,278,224 | 0.12 |
Unknown | - | 413,260,571 | 22.67 |
Total | - | 1,259,966,694 | 69.12 |
Gene Set | Number | Average Gene Length (bp) | Average CDS Length (bp) | Average Exon per Gene | Average Exon Length (bp) | Average Intron Length (bp) | |
---|---|---|---|---|---|---|---|
De novo | Augustus | 81,024 | 2603.39 | 997.29 | 4.06 | 245.8 | 525.34 |
Homolog | Zea mays B37 | 58,728 | 3926.02 | 1332.11 | 5.19 | 256.77 | 619.38 |
Brachypodium stacei | 60,574 | 3981.24 | 1276.12 | 5.04 | 252.95 | 668.78 | |
Erianthus rufipilus | 81,108 | 4539.46 | 1361.4 | 4.81 | 283.29 | 835.08 | |
Oryza sativa | 65,992 | 4162.14 | 1273.88 | 4.84 | 262.96 | 751.29 | |
Saccharum spontaneum Np-X | 107,325 | 4896.47 | 1226.1 | 4.51 | 271.95 | 1046.11 | |
Setaria italica | 68,011 | 3906.05 | 1252.65 | 4.86 | 257.57 | 686.81 | |
Sorghum bicolor | 74,180 | 3692.05 | 1195 | 4.67 | 255.96 | 680.62 | |
RNA-seq | RNAseq | 42,824 | 6212.9 | 1177.96 | 5.61 | 209.84 | 1091.34 |
Final | EVidenceModeler | 70,680 | 3362.29 | 1136.92 | 4.67 | 243.27 | 605.79 |
Species_Species | Ks | Time (Mya) |
---|---|---|
N. porphyrocoma vs. N. porphyrocoma | 0.002 | 0.15 |
E. rufipilus vs. S. spontaneum Np-X | 0.020 | 1.54 |
N. porphyrocoma vs. E. rufipilus | 0.021 | 1.62 |
N. porphyrocoma vs. S. spontaneum Np-X | 0.025 | 1.92 |
N. porphyrocoma vs. M. sinensis | 0.052 | 4.00 |
N. porphyrocoma vs. Sorghum. bicolor | 0.078 | 6.00 |
Species | Ploidy | Genes from Each Genome | |||
---|---|---|---|---|---|
LEA | MPK | PP2C | PYL | ||
R570 | Haplotype | 1 | 8 | 5 | 1 |
CC-01-1940 | 1x = 10 | 1 | 15 | 7 | 4 |
N. porphyrocoma (Hance) Bor | 2n = 2x = 30 | 2 | 22 | 4 | 4 |
Erufipilus | 2n = 2x = 20 | 1 | 10 | 4 | 2 |
AP85-441 | 2n = 4x = 32 | 3 | 43 | 13 | 12 |
Np-X | 2n = 4x = 40 | 2 | 42 | 11 | 8 |
LA-Purple | 2n = 8x = 80 | 3 | 69 | 27 | 14 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, H.; Gui, Y.; Wei, J.; Zhu, K.; Zhou, H.; Zhang, R.; Huang, D.; Huang, S.; Li, S.; Zhang, J.; et al. Unveiling the Genome of the Diploid Wild Sugarcane Relative Narenga porphyrocoma (Hance) Bor. Int. J. Mol. Sci. 2025, 26, 6124. https://doi.org/10.3390/ijms26136124
Li H, Gui Y, Wei J, Zhu K, Zhou H, Zhang R, Huang D, Huang S, Li S, Zhang J, et al. Unveiling the Genome of the Diploid Wild Sugarcane Relative Narenga porphyrocoma (Hance) Bor. International Journal of Molecular Sciences. 2025; 26(13):6124. https://doi.org/10.3390/ijms26136124
Chicago/Turabian StyleLi, Haibi, Yiyun Gui, Jinju Wei, Kai Zhu, Hui Zhou, Ronghua Zhang, Dongliang Huang, Sijie Huang, Shuangcai Li, Jisen Zhang, and et al. 2025. "Unveiling the Genome of the Diploid Wild Sugarcane Relative Narenga porphyrocoma (Hance) Bor" International Journal of Molecular Sciences 26, no. 13: 6124. https://doi.org/10.3390/ijms26136124
APA StyleLi, H., Gui, Y., Wei, J., Zhu, K., Zhou, H., Zhang, R., Huang, D., Huang, S., Li, S., Zhang, J., Li, Y., & Liu, X. (2025). Unveiling the Genome of the Diploid Wild Sugarcane Relative Narenga porphyrocoma (Hance) Bor. International Journal of Molecular Sciences, 26(13), 6124. https://doi.org/10.3390/ijms26136124