Pain and Sleep Biomarkers in Participants Undergoing Orthopedic Surgeries
Abstract
1. Introduction
2. Results
2.1. Sample Characteristics
2.2. Change in Patient-Reported Outcomes and Biomarkers
2.3. Association Between Patient-Reported Outcomes and Biomarkers
3. Discussion
4. Materials and Methods
4.1. Participants and Procedures
4.2. Variables of Interest
4.3. Statistical Analyses
4.4. Power Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ASA | American Society of Anesthesiologists |
PROMIS | Patient-Reported Outcome Measurement Information System |
CAT | Computer adaptive testing |
IRB | Institutional review board |
References
- Beetz, G.; Herrero Babiloni, A.; Jodoin, M.; Charlebois-Plante, C.; Lavigne, G.J.; De Beaumont, L. Relevance of Sleep Disturbances to Orthopaedic Surgery: A Current Concepts Narrative and Practical Review. J. Bone Jt. Surg. Am. 2021, 103, 2045–2056. [Google Scholar] [CrossRef] [PubMed]
- Gan, T.J. Poorly controlled postoperative pain: Prevalence, consequences, and prevention. J. Pain Res. 2017, 10, 2287–2298. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Martinez, R.; Reddy, N.; Mulligan, E.P.; Hynan, L.S.; Wells, J. Sleep quality and nocturnal pain in patients with hip osteoarthritis. Medicine 2019, 98, e17464. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Hoofwijk, D.M.; Fiddelers, A.A.; Peters, M.L.; Stessel, B.; Kessels, A.G.; Joosten, E.A.; Marcus, M.A.E.; Gramke, H.-F. Prevalence and Predictive Factors of Chronic Postsurgical Pain and Poor Global Recovery 1 Year After Outpatient Surgery. Clin. J. Pain 2015, 31, 1017–1025. [Google Scholar] [CrossRef] [PubMed]
- Finan, P.H.; Goodin, B.R.; Smith, M.T. The association of sleep and pain: An update and a path forward. J. Pain 2013, 14, 1539–1552. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Oliva, D.; Andersson, B.A.; Lewin, F.; Jensen, L.D. Opposing inflammatory biomarker responses to sleep disruption in cancer patients before and during oncological therapy. Front. Neurosci. 2022, 16, 945784. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Wei, L.; Zhu, X.; Zhao, Y.; Zou, Y.; Hu, T.; Huang, Q.; Chen, W.; Li, J.; Kong, G.; Pan, B.; et al. Dynamic changes in peripheral inflammation as a risk factor for perioperative sleep disturbances in elderly patients undergoing laparoscopic hepatobiliary surgery. Front. Neurol. 2025, 16, 1537780. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Hong, Y.; Li, Y.; Ye, M.; Yan, S.; Yang, W.; Jiang, C. Identifying an optimal machine learning model generated circulating biomarker to predict chronic postoperative pain in patients undergoing hepatectomy. Front. Surg. 2022, 9, 1068321. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Shu, B.; Xu, F.; Zheng, X.; Zhang, Y.; Liu, Q.; Li, S.; Chen, Y.; Chen, J.; Huang, H.; Duan, G. Change in perioperative neutrophil-lymphocyte ratio as a potential predictive biomarker for chronic postsurgical pain and quality of life: An ambispective observational cohort study. Front. Immunol. 2023, 14, 1177285. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Schuh-Hofer, S.; Wodarski, R.; Pfau, D.B.; Caspani, O.; Magerl, W.; Kennedy, J.D.; Treede, R.-D. One night of total sleep deprivation promotes a state of generalized hyperalgesia: A surrogate pain model to study the relationship of insomnia and pain. Pain 2013, 154, 1613–1621. [Google Scholar] [CrossRef] [PubMed]
- Vanini, G. Sleep Deprivation and Recovery Sleep Prior to a Noxious Inflammatory Insult Influence Characteristics and Duration of Pain. Sleep 2016, 39, 133–142. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Davis, K.D.; Aghaeepour, N.; Ahn, A.H.; Angst, M.S.; Borsook, D.; Brenton, A.; Kong, J.-T.; Mackey, S.; Wager, T.D.; Iadarola, M.J.; et al. Discovery and validation of biomarkers to aid the development of safe and effective pain therapeutics: Challenges and opportunities. Nat. Rev. Neurol. 2020, 16, 381–400. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Cho, C.H.; Kim, D.H.; Baek, E.H.; Kim, D.H. Serum Levels of TNF-Alpha Are Increased in Patients with Rotator Cuff Tear and Sleep Disturbance. Diagnostics 2021, 11, 2215. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Steel, J.L.; Terhorst, L.; Collins, K.P.; Geller, D.A.; Vodovotz, Y.; Kim, J.; Krane, A.; Antoni, M.; Marsh, J.W.; Burke, L.E.; et al. Prospective Analyses of Cytokine Mediation of Sleep and Survival in the Context of Advanced Cancer. Psychosom. Med. 2018, 80, 483–491. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Rhon, D.I.; Molloy, J.M.; Monnier, A.; Hando, B.R.; Newman, P.M. Much work remains to reach consensus on musculoskeletal injury risk in military service members: A systematic review with meta-analysis. Eur. J. Sport Sci. 2022, 22, 16–34. [Google Scholar] [CrossRef] [PubMed]
- Dowell, D.; Ragan, K.R.; Jones, C.M.; Baldwin, G.T.; Chou, R. CDC Clinical Practice Guideline for Prescribing Opioids for Pain—United States, 2022. MMWR Recomm. Rep. 2022, 71, 1–95. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Shi, G.X.; Tu, J.F.; Wang, T.Q.; Yang, J.W.; Wang, L.Q.; Lin, L.L.; Wang, Y.; Li, Y.-T.; Liu, C.-Z. Effect of Electro-Acupuncture (EA) and Manual Acupuncture (MA) on Markers of Inflammation in Knee Osteoarthritis. J. Pain Res. 2020, 13, 2171–2179. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Kedong, H.; Wang, D.; Sagaram, M.; An, H.S.; Chee, A. Anti-inflammatory effects of interleukin-4 on intervertebral disc cells. Spine J. 2020, 20, 60–68. [Google Scholar] [CrossRef] [PubMed]
- Hanaei, S.; Abdollahzade, S.; Sadr, M.; Mirbolouk, M.H.; Fattahi, E.; Khoshnevisan, A.; Rezaei, N. The role of interleukin 4 and IL-4RA in intervertebral disc degeneration: Investigation of single nucleotide polymorphisms in genes and a systematic review & meta-analysis of IL-4 expression level. Br. J. Neurosurg. 2020, 34, 66–71. [Google Scholar] [CrossRef] [PubMed]
- Iwaszko, M.; Bialy, S.; Bogunia-Kubik, K. Significance of Interleukin (IL)-4 and IL-13 in Inflammatory Arthritis. Cells 2021, 10, 3000. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Jiang, X.; Zhou, R.; Zhang, Y.; Zhu, T.; Li, Q.; Zhang, W. Interleukin-17 as a potential therapeutic target for chronic pain. Front. Immunol. 2022, 13, 999407. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Suyama, K.; Sakai, D.; Watanabe, M. The Role of IL-17-Mediated Inflammatory Processes in the Pathogenesis of Intervertebral Disc Degeneration and Herniation: A Comprehensive Review. Front. Cell Dev. Biol. 2022, 10, 857164. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Askari, A.; Ehrampoush, E.; Homayounfar, R.; Bahramali, E.; Farjam, M. Serum insulin in pathogenesis and treatment of osteoarthritis. Med. Hypotheses 2017, 99, 45–46. [Google Scholar] [CrossRef] [PubMed]
- Reikeras, O.; Borgen, P.; Reseland, J.E.; Lyngstadaas, S.P. Changes in serum cytokines in response to musculoskeletal surgical trauma. BMC Res. Notes 2014, 7, 128. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Vinet, J.; de Jong, E.K.; Boddeke, H.W.; Stanulovic, V.; Brouwer, N.; Granic, I.; Eisel, U.L.M.; Liem, R.S.B.; Biber, K. Expression of CXCL10 in cultured cortical neurons. J. Neurochem. 2010, 112, 703–714. [Google Scholar] [CrossRef] [PubMed]
- Llorian-Salvador, M.; Gonzalez-Rodriguez, S.; Lastra, A.; Fernandez-Garcia, M.T.; Hidalgo, A.; Menendez, L.; Baamonde, A. Involvement of CC Chemokine Receptor 1 and CCL3 in Acute and Chronic Inflammatory Pain in Mice. Basic Clin. Pharmacol. Toxicol. 2016, 119, 32–40. [Google Scholar] [CrossRef] [PubMed]
- Kong, Y.F.; Sha, W.L.; Wu, X.B.; Zhao, L.X.; Ma, L.J.; Gao, Y.J. CXCL10/CXCR3 Signaling in the DRG Exacerbates Neuropathic Pain in Mice. Neurosci. Bull. 2021, 37, 339–352. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Zhang, Y.L.; Li, B.; Zhou, Z.H. A cross-sectional study: Serum CCL3/MIP-1alpha levels may reflect lumbar intervertebral disk degeneration in Han Chinese people. J. Pain Res. 2018, 11, 497–503. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Garcia, J.J.; Cidoncha, A.; Bote, M.E.; Hinchado, M.D.; Ortega, E. Altered profile of chemokines in fibromyalgia patients. Ann. Clin. Biochem. 2014, 51 Pt 5, 576–581. [Google Scholar] [CrossRef] [PubMed]
- Esses, G.; Deiner, S.; Ko, F.; Khelemsky, Y. Chronic Post-Surgical Pain in the Frail Older Adult. Drugs Aging 2020, 37, 321–329. [Google Scholar] [CrossRef] [PubMed]
- Wang, K.; Bao, J.P.; Yang, S.; Hong, X.; Liu, L.; Xie, X.H.; Wu, X.-T. A cohort study comparing the serum levels of pro- or anti-inflammatory cytokines in patients with lumbar radicular pain and healthy subjects. Eur. Spine J. 2016, 25, 1428–1434. [Google Scholar] [CrossRef] [PubMed]
- Maness, D.L.; Khan, M. Nonpharmacologic Management of Chronic Insomnia. Am. Fam. Physician 2015, 92, 1058–1064. [Google Scholar] [PubMed]
- De Crescenzo, F.; D’Alo, G.L.; Ostinelli, E.G.; Ciabattini, M.; Di Franco, V.; Watanabe, N.; Kurtulmus, A.; Tomlinson, A.; Mitrova, Z.; Foti, F.; et al. Comparative effects of pharmacological interventions for the acute and long-term management of insomnia disorder in adults: A systematic review and network meta-analysis. Lancet 2022, 400, 170–184. [Google Scholar] [CrossRef] [PubMed]
- Uchino, E.; Sonoda, S.; Kinukawa, N.; Sakamoto, T. Alteration pattern of tear cytokines during the course of a day: Diurnal rhythm analyzed by multicytokine assay. Cytokine 2006, 33, 36–40. [Google Scholar] [CrossRef] [PubMed]
- Marsland, A.L.; Walsh, C.; Lockwood, K.; John-Henderson, N.A. The effects of acute psychological stress on circulating and stimulated inflammatory markers: A systematic review and meta-analysis. Brain Behav. Immun. 2017, 64, 208–219. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- 2022 Demographics Dashboards Interactive Profile of the Military Community. 2022. Available online: https://www.google.com/url?sa=t&source=web&rct=j&opi=89978449&url=https://download.militaryonesource.mil/12038/MOS/Reports/2022-demographics-report.pdf&ved=2ahUKEwi7ucCL0eCNAxU-UPUHHXoMJbEQFnoECBkQAQ&usg=AOvVaw0DwqbFbKI5Tnss0bfEDFan (accessed on 1 September 2024).
- Fertleman, M.; Pereira, C.; Dani, M.; Harris, B.H.L.; Di Giovannantonio, M.; Taylor-Robinson, S.D. Cytokine changes in cerebrospinal fluid and plasma after emergency orthopaedic surgery. Sci. Rep. 2022, 12, 2221. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Hirsch, J.; Vacas, S.; Terrando, N.; Yuan, M.; Sands, L.P.; Kramer, J.; Leung, J.M.; Bozic, K.; Maze, M.M. Perioperative cerebrospinal fluid and plasma inflammatory markers after orthopedic surgery. J. Neuroinflammation 2016, 13, 211. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Forrest, C.B.; Meltzer, L.J.; Marcus, C.L.; de la Motte, A.; Kratchman, A.; Buysse, D.J.; Pilkonis, P.A.; Becker, B.D.; Bevans, K.B. Development and validation of the PROMIS Pediatric Sleep Disturbance and Sleep-Related Impairment item banks. Sleep 2018, 41, zsy054. [Google Scholar] [CrossRef] [PubMed]
- Hung, M.; Clegg, D.O.; Greene, T.; Saltzman, C.L. Evaluation of the PROMIS physical function item bank in orthopaedic patients. J. Orthop. Res. 2011, 29, 947–953. [Google Scholar] [CrossRef] [PubMed]
- Ibaseta, A.; Rahman, R.; Andrade, N.S.; Skolasky, R.L.; Kebaish, K.M.; Sciubba, D.M.; Neuman, B.J. Determining validity, discriminant ability, responsiveness, and minimal clinically important differences for PROMIS in adult spinal deformity. J. Neurosurg. Spine 2021, 34, 725–733. [Google Scholar] [CrossRef] [PubMed]
- Purvis, T.E.; Andreou, E.; Neuman, B.J.; Riley, L.H., 3rd; Skolasky, R.L. Concurrent Validity and Responsiveness of PROMIS Health Domains Among Patients Presenting for Anterior Cervical Spine Surgery. Spine 2017, 42, E1357–E1365. [Google Scholar] [CrossRef] [PubMed]
- Polomano, R.C.; Galloway, K.T.; Kent, M.L.; Brandon-Edwards, H.; Kwon, K.N.; Morales, C.; Buckenmaier, C. Psychometric Testing of the Defense and Veterans Pain Rating Scale (DVPRS): A New Pain Scale for Military Population. Pain Med. 2016, 17, 1505–1519. [Google Scholar] [CrossRef] [PubMed]
- Smith, S.M.; Dworkin, R.H.; Turk, D.C.; McDermott, M.P.; Eccleston, C.; Farrar, J.T.; Rowbotham, M.C.; Bhagwagar, Z.; Burke, L.B.; Cowan, P.; et al. Interpretation of chronic pain clinical trial outcomes: IMMPACT recommended considerations. Pain 2020, 161, 2446–2461. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Ludwig, J.; Binder, A.; Steinmann, J.; Wasner, G.; Baron, R. Cytokine expression in serum and cerebrospinal fluid in non-inflammatory polyneuropathies. J. Neurol. Neurosurg. Psychiatry 2008, 79, 1268–1273. [Google Scholar] [CrossRef] [PubMed]
- Ditmer, M.; Gabryelska, A.; Turkiewicz, S.; Bialasiewicz, P.; Malecka-Wojciesko, E.; Sochal, M. Sleep Problems in Chronic Inflammatory Diseases: Prevalence, Treatment, and New Perspectives: A Narrative Review. J. Clin. Med. 2021, 11, 67. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Kalpachidou, T.; Riehl, L.; Schopf, C.L.; Ucar, B.; Kress, M. Proinflammatory cytokines and their receptors as druggable targets to alleviate pathological pain. Pain 2022, 163 (Suppl. 1), S79–S98. [Google Scholar] [CrossRef] [PubMed]
- rstatix. Pipe-Friendly Framework for Basic Statistical Tests. Available online: https://rpkgs.datanovia.com/rstatix/ (accessed on 1 September 2024).
- Yoav Benjamini, Y.H. Controlling the False Discovery Rate: A Practical and Powerful Approach to Multiple Testing. J. R. Stat. Soc. 1995, 57, 289–300. [Google Scholar] [CrossRef]
- Champely, S.; Dalgaard, P.; Weibelzahl, S.; Ford, C.; Volcic, R.; Ekstrom, C.; Gill, J.; Anandkumar, A.; De Rosario, H. Basic Functions for Power Analysis. 2022. Available online: https://nyuscholars.nyu.edu/en/publications/pwr-basic-functions-for-power-analysis (accessed on 1 September 2024).
Patient-Reported Outcome or Biomarker | Pre-Surgery Median [IQR] | Week 6 Follow-Up Median [IQR] | SMD of Change |
---|---|---|---|
Pain Intensity | 4 [3, 6] ** | 3 [2, 5] | 0.42 |
PROMIS Sleep Disturbance | 54.3 [47.63, 59.6] | 54.3 [50.4, 59.4] | 0.08 |
PROMIS Physical Function | 41.8 [36.8, 47.0] * | 38.8 [34.4, 44.7] | 0.29 |
Eotaxin (CCL-11) | 101.2 [52.6, 165.9] * | 82.8 [67.6, 108.2] | 0.24 |
Fibroblast Growth Factor 2 (FGF-2) | 0 [0, 7.0] * | 0 [0, 4.2] | 0.26 |
Granulocyte Colony-Stimulating Factor (CSF3) | 6.8 [0, 27.2] | 24.8 [0, 39.4] * | 0.30 |
IL-1 Receptor A | 240 [170, 318] * | 208 [158, 296] | 0.25 |
IL-6 | 5.6 [1.5, 16.0] * | 4.3 [2.1, 14.1] | 0.25 |
IL-13 | 6.7 [5.5, 10.3] | 13.0 [8.0, 17.2] ** | 0.38 |
IL-17A | 0 [0, 0] | 0 [0, 0.42] * | 0.34 |
Monocyte Chemotactic Protein-1 (MCP-1; CCL2) | 572 [454, 699] * | 522 [394, 692] | 0.26 |
Chemokine Ligand 9 (CXCL9) | 8.6 [0, 20.5] ** | 0 [0, 0] | 0.44 |
Macrophage Inflammatory Protein-1 (MIP-1) Alpha (C-C motif chemokine 3; CCL3) | 5.8 [0, 53.8] * | 14.6 [0, 45.7] | 0.25 |
Vascular Endothelial Growth Factor A (VEGF-A) | 2.6 [1.4, 4.0] ** | 2.3 [1.4, 3.2] | 0.37 |
Patient-Reported Outcome or Biomarker | Pre-Surgery | Post-Surgery | ||
---|---|---|---|---|
Sleep a | Pain b | Sleep a | Pain b | |
PROMIS Physical Function | −0.22 ** | −0.38 ** | −0.06 | −0.24 |
Hepatocyte Growth Factor (HGF) | 0.20 | 0.22 | 0.11 | 0.29 * |
Interleukin (IL)-1-Beta | 0.04 | 0.38 ** | 0.15 | 0.10 |
IL-2 Receptor | −0.12 | −0.01 | −0.24 | −0.42 *** |
IL-4 | −0.09 | 0.30 ** | −0.12 | 0.03 |
IL-13 | −0.07 | 0.24 * | −0.07 | 0.08 |
IL-15 | −0.03 | 0.14 | −0.02 | −0.05 |
IL-17A | −0.07 | 0.26 * | 0.10 | −0.12 |
Recombinant Human IP-10 (C-X-C motif chemokine 10; CXCL10) | 0.08 | 0.34 ** | 0.11 | 0.16 |
Monocyte Chemotactic Protein-1 (MCP-1; CCL2) | 0.01 | 0.23 | 0.14 | −0.04 |
Chemokine Ligand 9 (CXCL9) | 0.11 | 0.29 ** | 0.01 | −0.12 |
Macrophage Inflammatory Protein-1 (MIP-1) Alpha (C-C motif chemokine 3; CCL3) | 0.03 | 0.28 ** | −0.13 | 0.09 |
MIP-1 Beta (C-C motif chemokine 4; CCL4) | −0.02 | 0.31 ** | 0.05 | 0.14 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bhomia, M.; Giordano, N.A.; Highland, K.B.; Lee, K.; Van Shufflin, M.; Feng, Y.; Kane, A.; Kroma, R.B.; Knollmann-Ritschel, B. Pain and Sleep Biomarkers in Participants Undergoing Orthopedic Surgeries. Int. J. Mol. Sci. 2025, 26, 5959. https://doi.org/10.3390/ijms26135959
Bhomia M, Giordano NA, Highland KB, Lee K, Van Shufflin M, Feng Y, Kane A, Kroma RB, Knollmann-Ritschel B. Pain and Sleep Biomarkers in Participants Undergoing Orthopedic Surgeries. International Journal of Molecular Sciences. 2025; 26(13):5959. https://doi.org/10.3390/ijms26135959
Chicago/Turabian StyleBhomia, Manish, Nicholas A. Giordano, Krista B. Highland, Keren Lee, Matthew Van Shufflin, Yanru Feng, Alexandra Kane, Raymond B. Kroma, and Barbara Knollmann-Ritschel. 2025. "Pain and Sleep Biomarkers in Participants Undergoing Orthopedic Surgeries" International Journal of Molecular Sciences 26, no. 13: 5959. https://doi.org/10.3390/ijms26135959
APA StyleBhomia, M., Giordano, N. A., Highland, K. B., Lee, K., Van Shufflin, M., Feng, Y., Kane, A., Kroma, R. B., & Knollmann-Ritschel, B. (2025). Pain and Sleep Biomarkers in Participants Undergoing Orthopedic Surgeries. International Journal of Molecular Sciences, 26(13), 5959. https://doi.org/10.3390/ijms26135959