Exploring Daptomycin Hypersensitivity in Enterococcus faecium: The Impact of LafB Mutation on Bacterial Virulence
Abstract
1. Introduction
2. Results
2.1. The W193R Mutation Reduces the Stability of EfLafB
2.2. Sequence and Structural in Silico Analysis
2.3. The W193R Mutant and Its Implication in the Structural Integrity of EfLafB
2.4. The Hypersusceptible Strain Grows More Slowly than the Wild-Type Strain
2.5. The Mutated Strain Forms Less Biofilm In Vitro
2.6. Mutation in LafB Impairs Virulence in In Vivo in the Galleria mellonella Model
3. Discussion
4. Materials and Methods
4.1. Cloning and Expression of E. faecium lafB Genes and Protein Purification
4.2. Size-Exclusion Chromatography Coupled with Multi-Angle Light Scattering (SEC-MALS)
4.3. Circular Dichroism
4.4. Bioinformatic Analysis of EfLafB
4.5. E. Faecium HBSJRP18 and HBSJRP18_2.7 Growth Curves
4.6. Biofilm Formation Ability
4.7. In Vivo Virulence Assessment
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- World Health Organization. WHO Bacterial Priority Pathogens List: Bacterial Pathogens of Public Health Importance to Guide Research, Development and Strategies to Prevent and Control Antimicrobial Resistance; WHO: Geneva, Switzerland, 2024; Licence: CC BY-NC-SA 3.0 IGO. [Google Scholar]
- Bender, J.K.; Cattoir, V.; Hegstad, K.; Sadowy, E.; Coque, T.M.; Westh, H.; Hammerum, A.M.; Schaffer, K.; Burns, K.; Murchan, S.; et al. Update on prevalence and mechanisms of resistance to linezolid, tigecycline and daptomycin in enterococci in Europe: Towards a common nomenclature. Drug Resist. Updates 2018, 40, 25–39. [Google Scholar] [CrossRef] [PubMed]
- Egan, S.A.; Shore, A.C.; O’Connell, B.; Brennan, G.I.; Coleman, D.C. Linezolid resistance in Enterococcus faecium and Enterococcus faecalis from hospitalized patients in Ireland: High prevalence of the MDR genes optrA and poxtA in isolates with diverse genetic backgrounds. J. Antimicrob. Chemother. 2020, 75, 1704–1711. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Yuan, Y.; Tang, M.; Liu, L.; Yang, K.; Liu, J. Phenotypic and genetic characteristics of vancomycin-resistant Enterococcus faecium. Microb. Pathog. 2019, 128, 131–135. [Google Scholar] [CrossRef]
- Mello, S.S.; Van Tyne, D.; Lebreton, F.; Silva, S.Q.; Nogueira, M.C.L.; Gilmore, M.S.; Camargo, I.L.B.C. A mutation in the glycosyltransferase gene lafB causes daptomycin hypersusceptibility in Enterococcus faecium. J. Antimicrob. Chemother. 2020, 75, 36–45. [Google Scholar] [CrossRef]
- Dabul, A.N.G.; Avaca-Crusca, J.S.; Navais, R.B.; Merlo, T.P.; Van Tyne, D.; Gilmore, M.S.; Camargo, I.L.B.D. Molecular basis for the emergence of a new hospital endemic tigecycline-resistant Enterococcus faecalis ST103 lineage. Infect. Genet. Evol. 2019, 67, 23–32. [Google Scholar] [CrossRef]
- Yi, M.; Zou, J.; Zhao, J.; Tang, Y.; Yuan, Y.; Yang, B.; Huang, J.; Xia, P.; Xia, Y. Emergence of optrA-Mediated Linezolid Resistance in Enterococcus faecium: A Molecular Investigation in a Tertiary Hospital of Southwest China from 2014–2018. Infect. Drug Resist. 2022, 15, 13–20. [Google Scholar] [CrossRef] [PubMed]
- Tyson, G.H.; Sabo, J.L.; Hoffmann, M.; Hsu, C.H.; Mukherjee, S.; Hernandez, J.; Tillman, G.; Wasilenko, J.L.; Haro, J.; Simmons, M.; et al. Novel linezolid resistance plasmids in Enterococcus from food animals in the USA. J. Antimicrob. Chemother. 2018, 73, 3254–3258. [Google Scholar] [CrossRef] [PubMed]
- Fiedler, S.; Bender, J.K.; Klare, I.; Halbedel, S.; Grohmann, E.; Szewzyk, U.; Werner, G. Tigecycline resistance in clinical isolates of Enterococcus faecium is mediated by an upregulation of plasmid-encoded tetracycline determinants tet(L) and tet(M). J. Antimicrob. Chemother. 2016, 71, 871–881. [Google Scholar] [CrossRef]
- Montero, C.I.; Stock, F.; Murray, P.R. Mechanisms of resistance to daptomycin in Enterococcus faecium. Antimicrob. Agents Chemother. 2008, 52, 1167–1170. [Google Scholar] [CrossRef]
- Patel, S.; Saw, S. Daptomycin; StatPearls Publishing: Treasure Island, FL, USA, 2022. [Google Scholar]
- Clinical and Laboratory Standards Institute. Performance Standards for Antimicrobial Susceptibility Testing CLSI Supplement M100, 28th ed.; CLSI: Malvern, PA, USA, 2018. [Google Scholar]
- Foolad, F.; Taylor, B.D.; Shelburne, S.A.; Arias, C.A.; Aitken, S.L. Association of daptomycin dosing regimen and mortality in patients with VRE bacteraemia: A review. J. Antimicrob. Chemother. 2018, 73, 2277–2283. [Google Scholar] [CrossRef]
- Narayanan, N.; Rai, R.; Vaidya, P.; Desai, A.; Bhowmick, T.; Weinstein, M.P. Comparison of linezolid and daptomycin for the treatment of vancomycin-resistant enterococcal bacteremia. Ther. Adv. Infect. Dis. 2019, 6, 2049936119828964. [Google Scholar] [CrossRef] [PubMed]
- Turnidge, J.; Kahlmeter, G.; Cantón, R.; MacGowan, A.; Giske, C.G. Daptomycin in the treatment of enterococcal bloodstream infections and endocarditis: A EUCAST position paper. Clin. Microbiol. Infect. 2020, 26, 1039–1043. [Google Scholar] [CrossRef] [PubMed]
- Streit, J.M.; Jones, R.N.; Sader, H.S. Daptomycin activity and spectrum: A worldwide sample of 6737 clinical Gram-positive organisms. J. Antimicrob. Chemother. 2004, 53, 669–674. [Google Scholar] [CrossRef] [PubMed]
- Theilacker, C.; Sanchez-Carballo, P.; Toma, I.; Fabretti, F.; Sava, I.; Kropec, A.; Holst, O.; Huebner, J. Glycolipids are involved in biofilm accumulation and prolonged bacteraemia in Enterococcus faecalis. Mol. Microbiol. 2009, 71, 1055–1069. [Google Scholar] [CrossRef] [PubMed]
- Theilacker, C.; Sava, I.; Sanchez-Carballo, P.; Bao, Y.; Kropec, A.; Grohmann, E.; Holst, O.; Huebner, J. Deletion of the glycosyltransferase bgsB of Enterococcus faecalis leads to a complete loss of glycolipids from the cell membrane and to impaired biofilm formation. BMC Microbiol. 2011, 11, 67. [Google Scholar] [CrossRef]
- Webb, A.J.; Karatsa-Dodgson, M.; Gründling, A. Two-enzyme systems for glycolipid and polyglycerolphosphate lipoteichoic acid synthesis in Listeria monocytogenes. Mol. Microbiol. 2009, 74, 299–314. [Google Scholar] [CrossRef]
- Jeong, G.J.; Khan, F.; Tabassum, N.; Cho, K.J.; Kim, Y.M. Controlling biofilm and virulence properties of Gram-positive bacteria by targeting wall teichoic acid and lipoteichoic acid. Int. J. Antimicrob. Agents 2023, 62, 106941. [Google Scholar] [CrossRef]
- Swoboda, J.G.; Campbell, J.; Meredith, T.C.; Walker, S. Wall teichoic acid function, biosynthesis, and inhibition. ChemBioChem 2010, 11, 35–45. [Google Scholar] [CrossRef]
- Altschul, S.F.; Madden, T.L.; Schäffer, A.A.; Zhang, J.; Zhang, Z.; Miller, W.; Lipman, D.J. Gapped BLAST and PSI-BLAST: A new generation of protein database search programs. Nucleic Acids Res. 1997, 25, 3389–3402. [Google Scholar] [CrossRef]
- Lairson, L.L.; Henrissat, B.; Davies, G.J.; Withers, S.G. Glycosyltransferases: Structures, functions, and mechanisms. Annu. Rev. Biochem. 2008, 77, 521–555. [Google Scholar] [CrossRef]
- Kikuchi, N.; Narimatsu, H. Bioinformatics for comprehensive finding and analysis of glycosyltransferases. Biochim. Biophys. Acta 2006, 1760, 578–583. [Google Scholar] [CrossRef] [PubMed]
- Berg, S.; Edman, M.; Li, L.; Wikström, M.; Wieslander, A. Sequence properties of the 1,2-diacylglycerol 3-glucosyltransferase from Acholeplasma laidlawii membranes. Recognition of a large group of lipid glycosyltransferases in eubacteria and archaea. J. Biol. Chem. 2001, 276, 22056–22063. [Google Scholar] [CrossRef] [PubMed]
- Albesa-Jové, D.; Giganti, D.; Jackson, M.; Alzari, P.M.; Guerin, M.E. Structure-function relationships of membrane-associated GT-B glycosyltransferases. Glycobiology 2014, 24, 108–124. [Google Scholar] [CrossRef]
- Rossmann, M.G.; Moras, D.; Olsen, K.W. Chemical and biological evolution of nucleotide-binding protein. Nature 1974, 250, 194–199. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Yao, Y.; Yang, G.; Tang, J.; Ayala, G.J.; Li, X.; Zhang, W.; Han, Q.; Yang, T.; Wang, H.; et al. Co-crystal Structure of Thermosynechococcus elongatus Sucrose Phosphate Synthase With UDP and Sucrose-6-Phosphate Provides Insight Into Its Mechanism of Action Involving an Oxocarbenium Ion and the Glycosidic Bond. Front. Microbiol. 2020, 11, 1050. [Google Scholar] [CrossRef]
- Royer, C.J.; Cook, P.D. A structural and functional analysis of the glycosyltransferase BshA from Staphylococcus aureus: Insights into the reaction mechanism and regulation of bacillithiol production. Protein Sci. 2019, 28, 1083–1094. [Google Scholar] [CrossRef]
- Vetting, M.W.; Frantom, P.A.; Blanchard, J.S. Structural and enzymatic analysis of MshA from Corynebacterium glutamicum: Substrate-assisted catalysis. J. Biol. Chem. 2008, 283, 15834–15844. [Google Scholar] [CrossRef]
- Ruane, K.M.; Davies, G.J.; Martinez-Fleites, C. Crystal structure of a family GT4 glycosyltransferase from Bacillus anthracis ORF BA1558. Proteins 2008, 73, 784–787. [Google Scholar] [CrossRef]
- Wrabl, J.O.; Grishin, N.V. Homology between O-linked GlcNAc transferases and proteins of the glycogen phosphorylase superfamily. J. Mol. Biol. 2001, 314, 365–374. [Google Scholar] [CrossRef]
- Chua, T.K.; Bujnicki, J.M.; Tan, T.C.; Huynh, F.; Patel, B.K.; Sivaraman, J. The structure of sucrose phosphate synthase from Halothermothrix orenii reveals its mechanism of action and binding mode. Plant Cell 2008, 20, 1059–1072. [Google Scholar] [CrossRef]
- Gibson, R.P.; Turkenburg, J.P.; Charnock, S.J.; Lloyd, R.; Davies, G.J. Insights into trehalose synthesis provided by the structure of the retaining glucosyltransferase OtsA. Chem. Biol. 2002, 9, 1337–1346. [Google Scholar] [CrossRef] [PubMed]
- Schneewind, O.; Missiakas, D. Lipoteichoic acids, phosphate-containing polymers in the envelope of gram-positive bacteria. J. Bacteriol. 2014, 196, 1133–1142. [Google Scholar] [CrossRef] [PubMed]
- Hashimoto, K.; Madej, T.; Bryant, S.H.; Panchenko, A.R. Functional states of homooligomers: Insights from the evolution of glycosyltransferases. J. Mol. Biol. 2010, 399, 196–206. [Google Scholar] [CrossRef] [PubMed]
- Fulton, Z.; McAlister, A.; Wilce, M.C.J.; Brammananth, R.; Zaker-Tabrizi, L.; Perugini, M.A.; Bottomley, S.P.; Coppel, R.L.; Crellin, P.K.; Rossjohn, J.; et al. Crystal structure of a UDP-glucose-specific glycosyltransferase from a Mycobacterium species. J. Biol. Chem. 2008, 283, 27881–27890. [Google Scholar] [CrossRef]
- Flint, J.; Taylor, E.; Yang, M.; Bolam, D.N.; Tailford, L.E.; Martinez-Fleites, C.; Dodson, E.J.; Davis, B.G.; Gilbert, H.J.; Davies, G.J. Structural dissection and high-throughput screening of mannosylglycerate synthase. Nat. Struct. Mol. Biol. 2005, 12, 608–614. [Google Scholar] [CrossRef]
- Joyce, L.R.; Doran, K.S. Gram-positive bacterial membrane lipids at the host-pathogen interface. PLoS Pathog. 2023, 19, e1011026. [Google Scholar] [CrossRef]
- Sava, I.G.; Heikens, E.; Huebner, J. Pathogenesis and immunity in enterococcal infections. Clin. Microbiol. Infect. 2010, 16, 533–540. [Google Scholar] [CrossRef]
- Aslanidis, S.F.; de Jong, P.J. Ligation-independent cloning of PCR products (LIC-PCR). Nucleic Acids Res. 1990, 18, 6069–6074. [Google Scholar] [CrossRef]
- Abramson, J.; Adler, J.; Dunger, J.; Evans, R.; Green, T.; Pritzel, A.; Ronneberger, O.; Willmore, L.; Ballard, A.J.; Bambrick, J.; et al. Accurate structure prediction of biomolecular interactions with AlphaFold 3. Nature 2024, 630, 493–500. [Google Scholar] [CrossRef]
- Eisenberg, D.; Lüthy, R.; Bowie, J.U. VERIFY3D: Assessment of Protein Models with Three-Dimensional Profiles. Methods Enzymol. 1997, 277, 396–404. [Google Scholar] [CrossRef]
- Ravindranath, P.A.; Forli, S.; Goodsell, D.S.; Olson, A.J.; Sanner, M.F. AutoDockFR: Advances in Protein-Ligand Docking with Explicitly Specified Binding Site Flexibility. PLoS Comput. Biol. 2015, 11, e1004586. [Google Scholar] [CrossRef] [PubMed]
- Tamura, K.; Stecher, G.; Kumar, S. MEGA11: Molecular Evolutionary Genetics Analysis Version 11. Mol. Biol. Evol. 2021, 38, 3022–3027. [Google Scholar] [CrossRef]
- Cantarel, B.L.; Coutinho, P.M.; Rancurel, C.; Bernard, T.; Lombard, V.; Henrissat, B. The Carbohydrate-Active EnZymes Database (CAZy): An Expert Resource for Glycogenomics. Nucleic Acids Res. 2009, 37, D233–D238. [Google Scholar] [CrossRef] [PubMed]
- Hall, B.G.; Acar, H.; Nandipati, A.; Barlow, M. Growth rates made easy. Mol. Biol. Evol. 2014, 31, 232–238. [Google Scholar] [CrossRef] [PubMed]
- Qin, N.; Tan, X.; Jiao, Y.; Liu, L.; Zhao, W.; Yang, S.; Jia, A. RNA-Seq-based transcriptome analysis of methicillin-resistant Staphylococcus aureus biofilm inhibition by ursolic acid and resveratrol. Sci. Rep. 2014, 4, 5467. [Google Scholar] [CrossRef]
- Carrasco, L.D.M.; Dabul, A.N.G.; Boralli, C.M.D.S.; Righetto, G.M.; Carvalho, I.S.E.; Dornelas, J.V.; Martins da Mata, C.P.S.; de Araújo, C.A.; Leite, E.M.M.; Lincopan, N.; et al. Polymyxin Resistance Among XDR ST1 Carbapenem-Resistant Acinetobacter baumannii Clone Expanding in a Teaching Hospital. Front. Microbiol. 2021, 12, 622704. [Google Scholar] [CrossRef]
- Gaca, A.O.; Abranches, J.; Kajfasz, J.K.; Lemos, J.A. Global Transcriptional Analysis of the Stringent Response in Enterococcus faecalis. Microbiology 2012, 158 Pt 8, 1994–2004. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Esquén, P.I.H.; Leonardo, D.A.; Manzine, L.R.; Farro, E.S.; Kajfasz, J.K.; Mello, S.S.; Nogueira, M.C.L.; Muniz, J.R.; Nascimento, A.S.; Gilmore, M.S.; et al. Exploring Daptomycin Hypersensitivity in Enterococcus faecium: The Impact of LafB Mutation on Bacterial Virulence. Int. J. Mol. Sci. 2025, 26, 5935. https://doi.org/10.3390/ijms26135935
Esquén PIH, Leonardo DA, Manzine LR, Farro ES, Kajfasz JK, Mello SS, Nogueira MCL, Muniz JR, Nascimento AS, Gilmore MS, et al. Exploring Daptomycin Hypersensitivity in Enterococcus faecium: The Impact of LafB Mutation on Bacterial Virulence. International Journal of Molecular Sciences. 2025; 26(13):5935. https://doi.org/10.3390/ijms26135935
Chicago/Turabian StyleEsquén, Pamela I. Huanambal, Diego A. Leonardo, Livia R. Manzine, Erick Suclupe Farro, Jessica K. Kajfasz, Suelen S. Mello, Mara C. L. Nogueira, João Renato Muniz, Alessandro S. Nascimento, Michael S. Gilmore, and et al. 2025. "Exploring Daptomycin Hypersensitivity in Enterococcus faecium: The Impact of LafB Mutation on Bacterial Virulence" International Journal of Molecular Sciences 26, no. 13: 5935. https://doi.org/10.3390/ijms26135935
APA StyleEsquén, P. I. H., Leonardo, D. A., Manzine, L. R., Farro, E. S., Kajfasz, J. K., Mello, S. S., Nogueira, M. C. L., Muniz, J. R., Nascimento, A. S., Gilmore, M. S., Abranches, J., Lemos, J. A., & Camargo, I. L. B. C. (2025). Exploring Daptomycin Hypersensitivity in Enterococcus faecium: The Impact of LafB Mutation on Bacterial Virulence. International Journal of Molecular Sciences, 26(13), 5935. https://doi.org/10.3390/ijms26135935