Innovative Strategies: Use of Stromal Cell-Derived Secretome for Chronic Wound Therapy
Abstract
1. Introduction
2. MSCs and MSC-Derived Secretome Can Be Employed for Wound-Healing Therapy
2.1. Overview of MSCs
2.2. Constituents of MSC-Derived Secretome
2.2.1. Impact of Cell Culture Conditions on Soluble Fraction of MSC-Derived Secretome
2.2.2. Extracellular Vesicles: Nanocarriers Driving Wound-Healing Dynamics
3. Fibroblast-Derived Secretome—Alternative Cell-Free Therapy for Chronic Wounds
3.1. Similarities Between MSCs and Fibroblasts
3.2. Constituents of Fibroblast-Derived Secretome
4. Experimental Models for the Assessment of Cutaneous Wound Healing
4.1. In Vitro Models of Cutaneous Wound Healing
4.1.1. Two-Dimensional (2D) In Vitro Models of Cutaneous Wound Healing
4.1.2. Three-Dimensional (3D) In Vitro Models of Cutaneous Wound Healing
4.2. Ex Vivo Experimental Models of Cutaneous Wound Healing
4.3. In Vivo Experimental Models of Cutaneous Wound Healing
4.3.1. Rodent Models of Cutaneous Wound Healing
4.3.2. Rabbit Ear Model of Cutaneous Wound Healing
4.3.3. Porcine Models of Cutaneous Wound Healing
5. Wound-Healing Studies Using Stromal Cell-Derived Secretome
5.1. Studies Demonstrating the Effect of MSC-Derived Secretome on Wound-Healing Process
5.1.1. In Vitro Studies for the Evaluation of the Effects of MSC-Derived Secretome on Wound Healing
5.1.2. In Vivo Studies for the Evaluation of the Effects of MSC-Derived Secretome on Wound Healing
5.1.3. Clinical Studies for the Evaluation of the Effects of MSC-Derived Secretome on Wound Healing
5.2. Studies Demonstrating the Effects of Fibroblast-Derived Secretome on Wound-Healing Process
5.2.1. In Vitro Studies for the Evaluation of the Effects of Fb-Derived Secretome on Wound Healing
5.2.2. In Vivo Studies for the Evaluation of the Effects of Fb-Derived Secretome on Wound Healing
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
2D | Two-dimensional |
3D | Three-dimensional |
ADSCs | Adipose-derived stromal cells |
Ang-1 | Angiopoietin-1 |
ALI | Air–liquid interface |
CXCL5 | CXC motif chemokine ligand 5 |
CM | Conditioned medium |
DFs | Dermal fibroblasts |
ECM | Extracellular matrix |
EGF | Epidermal growth factor |
EE | Early endosome |
EVs | Extracellular vesicles |
Fbs | Fibroblasts |
FGF-2 | Fibroblast growth factor-2 |
GFs | Growth factors |
G-CSF | Granulocyte colony-stimulating factor |
GM-CSF | Granulocyte–macrophage colony-stimulating factor |
HGF | Hepatocyte growth factor |
HIF1-α | Hypoxia-inducible factor 1-alpha |
HSE | Human skin equivalent |
IGF-1 | Insulin-like growth factor-1 |
IL-6 | Interleukin 6 |
ILVs | Intraluminal vesicles |
iPSCs | Induced pluripotent stem cells |
KGF | Keratinocyte growth factor |
MMP-1 | Matrix metalloproteinase-1 |
MSCs | Mesenchymal stromal cells |
MVBs | Multivesicular bodies |
MVs | Microvesicles |
PDGF | Platelet-derived growth factor |
RHE | Reconstructed human epidermis |
TGF-β | Transforming growth factor beta |
SDF-1 | Stromal cell-derived factor-1 |
TIMP-1 | Tissue inhibitor of metalloproteinase-1 |
TNF-α | Tumor necrosis factor alpha |
VEGF | Vascular endothelial growth factor |
References
- Nwomeh, B.C.; Yager, D.R.; Cohen, I.K. Physiology of the chronic wound. Clin. Plast. Surg. 1998, 25, 341–356. [Google Scholar] [CrossRef]
- Ahangar, P.; Woodward, M.; Cowin, A.J. Advanced wound therapies. Wound Pract. Res. 2018, 26, 58–68. [Google Scholar]
- Cole-King, A.; Harding, K.G. Psychological factors and delayed healing in chronic wounds. Psychosom. Med. 2001, 63, 216–220. [Google Scholar] [CrossRef]
- GBD 2021 Diabetes Collaborators. Global, regional, and national burden of diabetes from 1990 to 2021, with projections of prevalence to 2050: A systematic analysis for the Global Burden of Disease Study 2021. Lancet 2023, 402, 203–234. [Google Scholar] [CrossRef]
- Park, N.J.; Allen, L.; Driver, V.R. Updating on understanding and managing chronic wound. Dermatol. Ther. 2013, 26, 236–256. [Google Scholar] [CrossRef]
- Armstrong, D.G.; Kanda, V.A.; Lavery, L.A.; Marston, W.; Mills, J.L.; Boulton, A.J.M. Mind the gap: Disparity between research funding and costs of care for diabetic foot ulcers. Diabetes Care 2013, 36, 1815–1817. [Google Scholar] [CrossRef]
- Qi, X.; Li, Y.; Xiang, Y.; Chen, Y.; Shi, Y.; Ge, X.; Zeng, B.; Shen, J. Hyperthermia-enhanced immunoregulation hydrogel for oxygenation and ROS neutralization in diabetic foot ulcers. Cell Biomater. 2025, 1, 100020. [Google Scholar] [CrossRef]
- Hu, M.S.; Borrelli, M.R.; Lorenz, H.P.; Longaker, M.T.; Wan, D.C. Mesenchymal stromal cells and cutaneous wound healing: A comprehensive review of the background, role, and therapeutic potential. Stem Cells Int. 2018, 2018, 6901983. [Google Scholar] [CrossRef]
- Foo, J.B.; Looi, Q.H.; Chong, P.P.; Hassan, N.H.; Yeo, G.E.C.; Ng, C.Y.; Koh, B.; How, C.W.; Lee, S.H.; Law, J.X. Comparing the therapeutic potential of stem cells and their secretory products in regenerative medicine. Stem Cells Int. 2021, 2021, 2616807. [Google Scholar] [CrossRef]
- González-González, A.; García-Sánchez, D.; Dotta, M.; Rodríguez-Rey, J.C.; Pérez-Campo, F.M. Mesenchymal stem cells secretome: The cornerstone of cell-free regenerative medicine. World J. Stem Cells 2020, 12, 1529–1552. [Google Scholar] [CrossRef]
- Driscoll, J.; Yan, I.K.; Patel, T. Development of a lyophilized off-the-shelf mesenchymal stem cell-derived acellular therapeutic. Pharmaceutics 2022, 14, 849. [Google Scholar] [CrossRef] [PubMed]
- Denu, R.A.; Nemcek, S.; Bloom, D.D.; Goodrich, A.D.; Kim, J.; Mosher, D.F.; Hematti, P. Fibroblasts and mesenchymal stromal/stem cells are phenotypically indistinguishable. Acta Haematol. 2016, 136, 85–97. [Google Scholar] [CrossRef] [PubMed]
- Ichim, T.E.; O’Heeron, P.; Kesari, S. Fibroblasts as a practical alternative to mesenchymal stem cells. J. Transl. Med. 2018, 16, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Soundararajan, M.; Kannan, S. Fibroblasts and mesenchymal stem cells: Two sides of the same coin? J. Cell Physiol. 2018, 233, 9099–9109. [Google Scholar] [CrossRef]
- Vangipuram, M.; Ting, D.; Kim, S.; Diaz, R.; Schüle, B. Skin punch biopsy explant culture for derivation of primary human fibroblasts. J. Vis. Exp. 2013, 77, e3779. [Google Scholar] [CrossRef]
- Friedenstein, A.J.; Chailakhyan, R.K.; Latsinik, N.V.; Panasyuk, A.F.; Keiliss-Borok, I.V. Stromal cells responsible for transferring the microenvironment of the hemopoietic tissues. Cloning in vitro and retransplantation in vivo. Transplantation 1974, 17, 331–340. [Google Scholar] [CrossRef]
- Keating, A. Mesenchymal stromal cells. Curr. Opin. Hematol. 2006, 13, 419–425. [Google Scholar] [CrossRef]
- Zou, J.-P.; Huang, S.; Peng, Y.; Liu, H.-W.; Cheng, B.; Fu, X.-B.; Xiang, X.-F. Mesenchymal stem cells/multipotent mesenchymal stromal cells (MSCs) potential role in healing cutaneous chronic wounds. Int. J. Low. Extrem. Wounds 2012, 11, 244–253. [Google Scholar] [CrossRef]
- Pittenger, M.F.; Discher, D.E.; Péault, B.M.; Phinney, D.G.; Hare, J.M.; Caplan, A.I. Mesenchymal stem cell perspective: Cell biology to clinical progress. NPJ Regen. Med. 2019, 4, 22. [Google Scholar] [CrossRef]
- Kosaric, N.; Kiwanuka, H.; Gurtner, G.C. Stem cell therapies for wound healing. Expert. Opin. Biol. Ther. 2019, 19, 575–585. [Google Scholar] [CrossRef]
- Bian, D.; Wu, Y.; Song, G.; Azizi, R.; Zamani, A. The application of mesenchymal stromal cells (MSCs) and their derivative exosome in skin wound healing: A comprehensive review. Stem Cell Res. Ther. 2022, 13, 24. [Google Scholar] [CrossRef] [PubMed]
- Available online: https://clinicaltrials.gov (accessed on 27 May 2025).
- Park, S.R.; Kim, J.W.; Jun, H.S.; Roh, J.Y.; Lee, H.Y.; Hong, I.S. Stem cell secretome and its effect on cellular mechanisms relevant to wound healing. Mol. Ther. 2018, 26, 606–617. [Google Scholar] [CrossRef]
- Zarei, F.; Soleimaninejad, M. Role of growth factors and biomaterials in wound healing. Artif. Cells Nanomed. Biotechnol. 2018, 46, 906–911. [Google Scholar] [CrossRef]
- Guillamat-Prats, R. The Role of MSC in Wound Healing, Scarring and Regeneration. Cells 2021, 10, 1729. [Google Scholar] [CrossRef]
- Ahangar, P.; Mills, S.J.; Cowin, A.J. Mesenchymal stem cell secretome as an emerging cell-free alternative for improving wound repair. Int. J. Mol. Sci. 2020, 21, 7038. [Google Scholar] [CrossRef]
- Maguire, G. Stem cell therapy without the cells. Commun. Integr. Biol. 2013, 6, e26631. [Google Scholar] [CrossRef]
- Zhou, T.; Yuan, Z.; Weng, J.; Pei, D.; Du, X.; He, C.; Lai, P. Challenges and advances in clinical applications of mesenchymal stromal cells. J. Hematol. Oncol. 2021, 14, 24. [Google Scholar] [CrossRef]
- Cocucci, E.; Racchetti, G.; Meldolesi, J. Shedding microvesicles: Artefacts no more. Trends Cell Biol. 2008, 19, 43–51. [Google Scholar] [CrossRef]
- Chen, Y.; Li, G.; Liu, M.L. Microvesicles as emerging biomarkers and therapeutic targets in cardiometabolic diseases. Genom. Proteom. Bioinform. 2018, 16, 50–62. [Google Scholar] [CrossRef]
- Collins, K.L.; Gates, E.M.; Gilchrist, C.L.; Hoffman, B.D. Bio-Instructive Cues in Scaffolds for Musculoskeletal Tissue Engineering and Regenerative Medicine. In Bio-Instructive Scaffolds for Musculoskeletal Tissue Engineering and Regenerative Medicine; Brown, J.L., Kumbar, S.G., Banik, B.L., Eds.; Academic Press: London, UK, 2017; Volume 1, pp. 1–25. [Google Scholar]
- Gruenberg, J. Life in the lumen: The multivesicular endosome. Traffic 2020, 21, 76–93. [Google Scholar] [CrossRef]
- Sedgwick, A.E.; D’Souza-Schorey, C. The biology of extracellular microvesicles. Traffic 2018, 19, 319–327. [Google Scholar] [CrossRef] [PubMed]
- Clancy, J.W.; Schmidtmann, M.; D’Souza-Schorey, C. The ins and outs of microvesicles. FASEB BioAdvances 2021, 3, 399–406. [Google Scholar] [CrossRef] [PubMed]
- György, B.; Szabó, T.G.; Pásztói, M.; Pál, Z.; Misják, B.; Aradi, B.; László, E.; Pállinger, E.; Pap, A.; Kittel, G.; et al. Membrane vesicles, current state-of-the-art: Emerging role of extracellular vesicles. Cell. Mol. Life Sci. 2011, 68, 2667–2688. [Google Scholar] [CrossRef] [PubMed]
- Liu, D.; Kou, X.; Chen, C.; Liu, S.; Liu, Y.; Yu, W.; Yu, T.; Yang, R.; Wang, R.; Zhou, Y.; et al. Circulating apoptotic bodies maintain mesenchymal stem cell homeostasis and ameliorate osteopenia via transferring multiple cellular factors. Cell Res. 2018, 28, 918–933. [Google Scholar] [CrossRef]
- Vizoso, F.J.; Eiro, N.; Cid, S.; Schneider, J.; Perez-Fernandez, R. Mesenchymal stem cell secretome: Toward cell-free therapeutic strategies in regenerative medicine. Int. J. Mol. Sci. 2017, 18, 1852. [Google Scholar] [CrossRef]
- Lu, K.; Li, H.Y.; Yang, K.; Wu, J.L.; Cai, X.W.; Zhou, Y.; Zhang, L.; Li, X.; Yang, S.; Li, Q.; et al. Exosomes as potential alternatives to stem cell therapy for intervertebral disc degeneration: In-vitro study on exosomes in interaction of nucleus pulposus cells and bone marrow mesenchymal stem cells. Stem Cell Res. Ther. 2017, 8, 108. [Google Scholar] [CrossRef]
- Ha, D.H.; Kim, H.K.; Lee, J.; Kwon, H.H.; Park, G.H.; Yang, S.H.; Jung, J.Y.; Choi, H.; Lee, J.H.; Sung, S.; et al. Mesenchymal stem/stromal cell-derived exosomes for immunomodulatory therapeutics and skin regeneration. Cells 2020, 9, 1157. [Google Scholar] [CrossRef]
- Popowski, K.D.; Moatti, A.; Scull, G.; Silkstone, D.; Lutz, H.; López de Juan Abad, B.; George, A.; Belcher, E.; Zhu, D.; Mei, X.; et al. Inhalable dry powder mRNA vaccines based on extracellular vesicles. Matter 2022, 5, 2960–2974. [Google Scholar] [CrossRef]
- The Face & Neck Collection manufactured by Carmell Cosmetics. Available online: https://www.carmellcosmetics.com/products/face-neck-collection?srsltid=AfmBOorn02L0JovNLjFH6pPfm4jHukomKIqPgNSn4I_NdIvsdKsCuE4e/ (accessed on 30 May 2025).
- Exostem4Tech Product manufactured by Falon Labs. Available online: https://falonlabs.com/exostem4tech/ (accessed on 30 May 2025).
- Adiposecr product manufactured by Secretosome (Catalogue and Datasheet—Exosome Therapy). Available online: https://secretosome.com/index.php/catalogue-and-datasheet/ (accessed on 30 May 2025).
- Neogenesis Recovery Product. Available online: https://neogenesis.com/shop/by-product/recovery/ (accessed on 30 May 2025).
- Neogenesis Hair Thickening Serum. Available online: https://neogenesis.com/shop/by-product/hair-thickening-serum/ (accessed on 30 May 2025).
- Park, J.W.; Hwang, S.R.; Yoon, I.S. Advanced growth factor delivery systems in wound management and skin regeneration. Molecules 2017, 22, 1259. [Google Scholar] [CrossRef]
- Moon, K.M.; Park, Y.H.; Lee, J.S. The effect of secretory factors of adipose-derived stem cells on human keratinocytes. Int. J. Mol. Sci. 2012, 13, 1239–1257. [Google Scholar] [CrossRef]
- Li, X.; Ma, T.; Sun, J.; Shen, M.; Xue, X.; Chen, Y.; Zhang, Z. Harnessing the secretome of adipose-derived stem cells in the treatment of ischemic heart diseases. Stem Cell Res. Ther. 2019, 10, 196. [Google Scholar] [CrossRef] [PubMed]
- Park, B.S.; Kim, W.S.; Choi, J.S.; Kim, H.K.; Won, J.H.; Ohkubo, F.; Fukuoka, H. Hair growth stimulated by conditioned medium of adipose-derived stem cells is enhanced by hypoxia: Evidence of increased growth factor secretion. Biomed. Res. 2010, 31, 27–34. [Google Scholar] [CrossRef] [PubMed]
- Li, P.; Guo, X. A review: Therapeutic potential of adipose-derived stem cells in cutaneous wound healing and regeneration. Stem Cell Res. Ther. 2018, 9, 302. [Google Scholar] [CrossRef]
- Yen, B.; Linju, H.; Hsieh, C.-C.; Hsu, P.-J.; Chang, L.-T.; Wang, M.-L.; Yen, M.-L. Three-Dimensional Spheroid Culture of Human Mesenchymal Stem Cells: Offering Therapeutic Advantages and In Vitro Glimpses of the In Vivo State. Stem Cells Transl. Med. 2023, 12, 235–244. [Google Scholar] [CrossRef]
- Han, H.-W.; Asano, S.; Hsu, S.-H. Cellular spheroids of mesenchymal stem cells and their perspectives in future healthcare. Appl. Sci. 2019, 9, 627. [Google Scholar] [CrossRef]
- Potapova, I.A.; Gaudette, G.R.; Brink, P.R.; Robinson, R.B.; Rosen, M.R.; Cohen, I.S.; Doronin, S.V. Mesenchymal stem cells support migration, extracellular matrix invasion, proliferation, and survival of endothelial cells in vitro. Stem Cells 2007, 25, 1761–1768. [Google Scholar] [CrossRef]
- Kim, M.H.; Wu, W.H.; Choi, J.H.; Kim, J.; Jun, J.H.; Ko, Y.; Lee, J.H. Galectin-1 from conditioned medium of three-dimensional culture of adipose-derived stem cells accelerates migration and proliferation of human keratinocytes and fibroblasts. Wound Repair Regen. 2018, 26, S9–S18. [Google Scholar] [CrossRef]
- Gangadaran, P.; Oh, E.J.; Rajendran, R.L.; Oh, J.M.; Kim, H.M.; Kwak, S.; Chung, H.Y.; Lee, J.; Ahn, B.C.; Hong, C.M. Three-dimensional culture conditioned bone marrow MSC secretome accelerates wound healing in a burn injury mouse model. Biochem. Biophys. Res. Commun. 2023, 673, 87–95. [Google Scholar] [CrossRef]
- Wang, Y.; Wu, J.; Chen, J.; Lu, C.; Liang, J.; Shan, Y.; Liu, J.; Li, Q.; Miao, L.; He, M.; et al. Mesenchymal stem cells paracrine proteins from three-dimensional dynamic culture system promoted wound healing in third-degree burn models. Bioeng. Transl. Med. 2023, 8, e10569. [Google Scholar] [CrossRef]
- Kordelas, L.; Rebmann, V.; Ludwig, A.K.; Radtke, S.; Ruesing, J.; Doeppner, T.R.; Epple, M.; Horn, P.A.; Beelen, D.W.; Giebel, B. MSC-derived exosomes: A novel tool to treat therapy-refractory graft-versus-host disease. Leukemia 2014, 28, 970–973. [Google Scholar] [CrossRef]
- McLaughlin, C.; Datta, P.; Singh, Y.P.; Lo, A.; Horchler, S.; Elcheva, I.A.; Ozbolat, I.T.; Ravnic, D.J.; Koduru, S.V. Mesenchymal Stem Cell-Derived Extracellular Vesicles for Therapeutic Use and in Bioengineering Applications. Cells 2022, 11, 3366. [Google Scholar] [CrossRef] [PubMed]
- Colombo, M.; Raposo, G.; Théry, C. Biogenesis, secretion, and intercellular interactions of exosomes and other extracellular vesicles. Annu. Rev. Cell Dev. Biol. 2014, 30, 255–289. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.J.; Wang, C. A review of the regulatory mechanisms of extracellular vesicles-mediated intercellular communication. Cell Commun. Signal. CCS 2023, 21, 77. [Google Scholar] [CrossRef] [PubMed]
- Hade, M.D.; Suire, C.N.; Suo, Z. Mesenchymal Stem Cell-Derived Exosomes: Applications in Regenerative Medicine. Cells 2021, 10, 1959. [Google Scholar] [CrossRef]
- Li, D.; Wu, N. Mechanism and application of exosomes in the wound healing process in diabetes mellitus. Diabetes Res. Clin. Pract. 2022, 187, 109882. [Google Scholar] [CrossRef]
- An, Y.; Lin, S.; Tan, X.; Zhu, S.; Nie, F.; Zhen, Y.; Gu, L.; Zhang, C.; Wang, B.; Wei, W.; et al. Exosomes from adipose-derived stem cells and application to skin wound healing. Cell Prolif. 2021, 54, e12993. [Google Scholar] [CrossRef]
- Dong, J.; Wu, B.; Tian, W. How to maximize the therapeutic effect of exosomes on skin wounds in diabetes mellitus: Review and discussion. Front. Endocrinol. 2023, 14, 1146991. [Google Scholar] [CrossRef]
- Du, Y.; Yan, S.; Sun, Y.; Han, X.; Shi, H.; Fan, W.; Liu, G. Extracellular vesicles secreted by bone marrow stem cells mediate angiogenesis for the treatment of diabetic ulcers: A systematic review and meta-analysis of preclinical studies. Heliyon 2024, 10, e25762. [Google Scholar] [CrossRef]
- Yuan, T.; Meijia, L.; Xinyao, C.; Xinyue, C.; Lijun, H. Exosome derived from human adipose-derived stem cells improve wound healing quality: A systematic review and meta-analysis of preclinical animal studies. Int. Wound J. 2023, 20, 2424–2439. [Google Scholar] [CrossRef]
- Wei, J.T.; He, T.; Shen, K.; Xu, Z.G.; Han, J.T.; Yang, X.K. Adipose stem cell-derived exosomes in the treatment of wound healing in preclinical animal models: A meta-analysis. Burn. Trauma 2024, 12, tkae025. [Google Scholar] [CrossRef]
- Song, Y.; You, Y.; Xu, X.; Lu, J.; Huang, X.; Zhang, J.; Zhu, L.; Hu, J.; Wu, X.; Xu, X.; et al. Adipose-Derived Mesenchymal Stem Cell-Derived Exosomes Biopotentiated Extracellular Matrix Hydrogels Accelerate Diabetic Wound Healing and Skin Regeneration. Adv. Sci. 2023, 10, e2304023. [Google Scholar] [CrossRef] [PubMed]
- Khalatbary, A.R.; Omraninava, M.; Nasiry, D.; Akbari, M.; Taghiloo, S.; Poorhassan, M.; Ebrahimpour-Malekshah, R.; Asadzadeh, M.; Raoofi, A. Exosomes derived from human adipose mesenchymal stem cells loaded bioengineered three-dimensional amniotic membrane-scaffold-accelerated diabetic wound healing. Arch. Dermatol. Res. 2023, 315, 2853–2870. [Google Scholar] [CrossRef] [PubMed]
- Ståhl, A.L.; Johansson, K.; Mossberg, M.; Kahn, R.; Karpman, D. Exosomes and microvesicles in normal physiology, pathophysiology, and renal diseases. Pediatr. Nephrol. 2019, 34, 11–30. [Google Scholar] [CrossRef]
- Camussi, G.; Deregibus, M.C.; Bruno, S.; Cantaluppi, V.; Biancone, L. Exosomes/Microvesicles as a Mechanism of Cell-to-Cell Communication. Kidney Int. 2010, 78, 838–848. [Google Scholar] [CrossRef]
- Turturici, G.; Tinnirello, R.; Sconzo, G.; Geraci, F. Extracellular Membrane Vesicles as a Mechanism of Cell-to-Cell Communication: Advantages and Disadvantages. Am. J. Physiol. Cell Physiol. 2014, 306, 621–633. [Google Scholar] [CrossRef]
- Samanta, S.; Rajasingh, S.; Drosos, N.; Zhou, Z.; Dawn, B.; Rajasingh, J. Exosomes: New Molecular Targets of Diseases. Acta Pharmacol. Sin. 2018, 39, 501–513. [Google Scholar] [CrossRef]
- Kakarla, R.; Hur, J.; Kim, Y.J.; Kim, J.; Chwae, Y.J. Apoptotic Cell-Derived Exosomes: Messages from Dying Cells. Exp. Mol. Med. 2020, 52, 1–6. [Google Scholar] [CrossRef]
- Machaliński, B.; Rogińska, D.; Szumilas, K.; Zawiślak, A.; Wilk, A.; Stecewicz, I.; Brodkiewicz, A.; Wiszniewska, B. Transcriptome Profile of Human Fibroblasts in an Ex Vivo Culture. Int. J. Med. Sci. 2020, 17, 125–136. [Google Scholar] [CrossRef]
- Chowdhury, S.R.; Lim, S.J.; Zolkafli, M.N.; Zarin, N.A.; Abdullah, W.M.; Mothar, N.A.; Maarof, M.; Abdullah, N.A. Exploring the potential of dermal fibroblast conditioned medium on skin wound healing and anti-ageing. Sains Malays. 2019, 48, 637–644. [Google Scholar] [CrossRef]
- Maarof, M.; Lokanathan, Y.; Ruszymah, H.I.; Saim, A.; Chowdhury, S.R. Proteomic Analysis of Human Dermal Fibroblast Conditioned Medium (DFCM). Protein J. 2018, 37, 589–607. [Google Scholar] [CrossRef]
- Suh, S.B.; Ahn, K.J.; Kim, E.J.; Suh, J.Y.; Cho, S.B. Proteomic Identification and Quantification of Secretory Proteins in Human Dermal Fibroblast-Conditioned Medium for Wound Repair and Hair Regeneration. Clin. Cosmet. Investig. Dermatol. 2023, 16, 1145–1157. [Google Scholar] [CrossRef] [PubMed]
- Man, R.C.; Idrus, R.B.H.; Ibrahim, W.I.W.; Saim, A.B.; Lokanathan, Y. Secretome Analysis of Human Nasal Fibroblast Identifies Proteins That Promote Wound Healing. Adv. Exp. Med. Biol. 2024, 1450, 59–76. [Google Scholar] [CrossRef] [PubMed]
- Maarof, M.; Law, J.X.; Chowdhury, S.R.; Khairoji, K.A.; Saim, A.B.; Idrus, R.B. Secretion of Wound Healing Mediators by Single and Bi-Layer Skin Substitutes. Cytotechnology 2016, 68, 1873–1884. [Google Scholar] [CrossRef] [PubMed]
- Hu, P.; Chiarini, A.; Wu, J.; Freddi, G.; Nie, K.; Armato, U.; Dal Prà, I.D. Exosomes of Adult Human Fibroblasts Cultured on 3D Silk Fibroin Nonwovens Intensely Stimulate Neoangiogenesis. Burn. Trauma 2021, 9, tkab003. [Google Scholar] [CrossRef]
- Hu, P.; Armato, U.; Freddi, G.; Chiarini, A.; Dal Prà, I. Human Keratinocytes and Fibroblasts Co-Cultured on Silk Fibroin Scaffolds Exosomally Overrelease Angiogenic and Growth Factors. Cells 2023, 12, 1827. [Google Scholar] [CrossRef]
- Carlson, M.W.; Dong, S.; Garlick, J.A.; Egles, C. Tissue-Engineered Models for the Study of Cutaneous Wound-Healing. In Studies in Mechanobiology, Tissue Engineering and Biomaterials; Gefen, A., Ed.; Springer: New York, NY, USA, 2009; Volume 1, pp. 263–280. [Google Scholar]
- Van den Broek, L.J.; Limandjaja, G.C.; Niessen, F.B.; Gibbs, S. Human Hypertrophic and Keloid Scar Models: Principles, Limitations and Future Challenges from a Tissue Engineering Perspective. Exp. Dermatol. 2014, 23, 382–386. [Google Scholar] [CrossRef]
- Liang, C.-C.; Park, A.Y.; Guan, J.-L. In Vitro Scratch Assay: A Convenient and Inexpensive Method for Analysis of Cell Migration In Vitro. Nat. Protoc. 2007, 2, 329–333. [Google Scholar] [CrossRef]
- Grada, A.; Otero-Vinas, M.; Prieto-Castrillo, F.; Obagi, Z.; Falanga, V. Research Techniques Made Simple: Analysis of Collective Cell Migration Using the Wound Healing Assay. J. Investig. Dermatol. 2017, 137, e11–e16. [Google Scholar] [CrossRef]
- Stamm, A.; Reimers, K.; Strauß, S.; Vogt, P.; Scheper, T.; Pepelanova, I. In Vitro Wound Healing Assays–State of the Art. BioNanoMaterials 2016, 17, 79–87. [Google Scholar] [CrossRef]
- Hodge, J.G.; Robinson, J.L.; Mellott, A.J. Tailoring the Secretome Composition of Mesenchymal Stem Cells to Augment Specific Functions of Epidermal Regeneration: An In Vitro Diabetic Model. Front. Med. Technol. 2023, 5, 1194314. [Google Scholar] [CrossRef]
- Pijuan, J.; Barceló, C.; Moreno, D.F.; Maiques, O.; Sisó, P.; Marti, R.M.; Macià, A.; Panosa, A. In Vitro Cell Migration, Invasion, and Adhesion Assays: From Cell Imaging to Data Analysis. Front. Cell Dev. Biol. 2019, 7, 107. [Google Scholar] [CrossRef] [PubMed]
- Sami, D.G.; Heiba, H.H.; Abdellatif, A. Wound Healing Models: A Systematic Review of Animal and Non-Animal Models. Wound Med. 2019, 24, 8–17. [Google Scholar] [CrossRef]
- Teimouri, A.; Yeung, P.; Agu, R. 2D vs. 3D Cell Culture Models for In Vitro Topical (Dermatological) Medication Testing. In Cell Culture; IntechOpen: London, UK, 2019. [Google Scholar] [CrossRef]
- Rosdy, M.; Clauss, L.C. Terminal Epidermal Differentiation of Human Keratinocytes Grown in Chemically Defined Medium on Inert Filter Substrates at the Air-Liquid Interface. J. Investig. Dermatol. 1990, 95, 409–414. [Google Scholar] [CrossRef] [PubMed]
- Loo, A.E.K.; Halliwell, B. Effects of hydrogen peroxide in a keratinocyte-fibroblast co-culture model of wound healing. Biochem. Biophys. Res. Commun. 2012, 423, 253–258. [Google Scholar] [CrossRef]
- Sriram, G.; Bigliardi, L.; Bigliardi-Qi, M. Fibroblast heterogeneity and its implications for engineering organotypic skin models in vitro. Eur. J. Cell Biol. 2015, 94, 483–512. [Google Scholar] [CrossRef]
- Parenteau, N.L.; Bilbo, P.; Nolte, C.J.; Mason, V.S.; Rosenberg, M. The organotypic culture of human skin keratinocytes and fibroblasts to achieve form and function. Cytotechnology 1992, 9, 163–171. [Google Scholar] [CrossRef]
- Rossi, A.; Appelt-Menzel, A.; Kurdyn, S.; Walles, H.; Groeber, F. Generation of a three-dimensional full thickness skin equivalent and automated wounding. J. Vis. Exp. 2015, 96, e52576. [Google Scholar] [CrossRef]
- Safferling, K.; Sütterlin, T.; Westphal, K.; Ernst, C.; Breuhahn, K.; James, M.; Jäger, D.; Halama, N.; Grabe, N. Wound healing revised: A novel reepithelialization mechanism revealed by in vitro and in silico models. J. Cell Biol. 2013, 203, 691–709. [Google Scholar] [CrossRef]
- Hofmann, A.T.; Slezak, P.; Neumann, S.; Ferguson, J.; Redl, H.; Mittermayr, R. Ischemia Impaired Wound Healing Model in the Rat—Demonstrating Its Ability to Test Proangiogenic Factors. Biomedicines 2023, 11, 1043. [Google Scholar] [CrossRef]
- Urciuolo, F.; Passariello, R.; Imparato, G.; Casale, C.; Netti, P.A. Bioengineered Wound Healing Skin Models: The Role of Immune Response and Endogenous ECM to Fully Replicate the Dynamic of Scar Tissue Formation In Vitro. Bioengineering 2022, 9, 233. [Google Scholar] [CrossRef]
- Lorthois, I.; Simard, M.; Morin, S.; Pouliot, R. Infiltration of T cells into a three-dimensional psoriatic skin model mimics pathological key features. Int. J. Mol. Sci. 2019, 20, 1670. [Google Scholar] [CrossRef] [PubMed]
- Shin, J.U.; Abaci, H.E.; Herron, L.; Guo, Z.; Sallee, B.; Pappalardo, A.; Jackow, J.; Wang, E.H.C.; Doucet, Y.; Christiano, A.M. Recapitulating T cell infiltration in 3D psoriatic skin models for patient-specific drug testing. Sci. Rep. 2020, 10, 4123. [Google Scholar] [CrossRef] [PubMed]
- Maione, A.G.; Brudno, Y.; Stojadinovic, O.; Park, L.K.; Smith, A.; Tellechea, A.; Leal, E.C.; Kearney, C.J.; Veves, A.; Tomic-Canic, M.; et al. Three-dimensional human tissue models that incorporate diabetic foot ulcer-derived fibroblasts mimic in vivo features of chronic wounds. Tissue Eng. Part C Methods 2015, 21, 499–508. [Google Scholar] [CrossRef]
- Ozdogan, C.Y.; Kenar, H.; Davun, K.E.; Yucel, D.; Doger, E.; Alagoz, S. An in vitro 3D diabetic human skin model from diabetic primary cells. Biomater. Mater. 2020, 16, 015027. [Google Scholar] [CrossRef]
- Kim, Y.; Park, N.; Rim, Y.A.; Nam, Y.; Jung, H.; Lee, K.; Ju, J.H. Establishment of a complex skin structure via layered co-culture of keratinocytes and fibroblasts derived from induced pluripotent stem cells. Stem Cell Res. Ther. 2018, 9, 217. [Google Scholar] [CrossRef]
- Olejnik, A.; Semba, J.A.; Kulpa, A.; Dańczak-Pazdrowska, A.; Rybka, J.D.; Gornowicz-Porowska, J. 3D Bioprinting in Skin Related Research: Recent Achievements and Application Perspectives. ACS Synth. Biol. 2022, 11, 26–38. [Google Scholar] [CrossRef]
- Weng, T.; Zhang, W.; Xia, Y.; Wu, P.; Yang, M.; Jin, R.; Xia, S.; Wang, J.; You, C.; Han, C.; et al. 3D bioprinting for skin tissue engineering: Current status and perspectives. J. Tissue Eng. 2021, 12, 20417314211028574. [Google Scholar] [CrossRef]
- Kang, M.S.; Jang, J.; Jo, H.J.; Kim, W.-H.; Kim, B.; Chun, H.-J.; Lim, D.; Han, D.-W. Advances and Innovations of 3D Bioprinting Skin. Biomolecules 2023, 13, 55. [Google Scholar] [CrossRef]
- Flynn, K.; Mahmoud, N.N.; Sharifi, S.; Gould, L.J.; Mahmoudi, M. Chronic Wound Healing Models. ACS Pharmacol. Transl. Sci. 2023, 6, 783–801. [Google Scholar] [CrossRef]
- Zhai, X.; Hu, M.; Song, L.; Pan, X.; Lou, Y.; Zhang, X.; Dong, W.; Wei, W. Silk fibroin based bioinks for high-precision digital light processing 3D printing. Int. J. Biol. Macromol. 2025, 310, 143248. [Google Scholar] [CrossRef]
- Douillet, C.; Nicodeme, M.; Hermant, L.; Bergeron, V.; Guillemot, F.; Fricain, J.C.; Oliveira, H.; Garcia, M. From local to global matrix organization by fibroblasts: A 4D laser-assisted bioprinting approach. Biofabrication 2022, 14, 025006. [Google Scholar] [CrossRef] [PubMed]
- Jara, C.P.; Catarino, C.M.; Lei, Y.; Velloso, L.A.; Karande, P.; Velander, W.H.; de Araujo, E.P. Demonstration of Re-Epithelialization in a Bioprinted Human Skin Equivalent Wound Model. Bioprinting 2020, 24, e00102. [Google Scholar] [CrossRef]
- Sarmin, A.; El Moussaid, N.; Suntornnond, R.; Tyler, E.; Kim, Y.H.; Di Cio, S.; Megone, W.; Pearce, O.; Gautrot, J.; Dawson, J.; et al. Multi-scale analysis of the composition, structure, and function of decellularized extracellular matrix for human skin and wound healing models. Biomolecules 2022, 12, 837. [Google Scholar] [CrossRef] [PubMed]
- Kim, B.S.; Ahn, M.; Cho, W.-W.; Gao, G.; Jang, J.; Cho, D.-W. Engineering of diseased human skin equivalent using 3D cell printing for representing pathophysiological hallmarks of type 2 diabetes in vitro. Biomaterials 2021, 272, 120776. [Google Scholar] [CrossRef]
- Fernandez-Carro, E.; Angenent, M.; Gracia-Cazaña, T.; Gilaberte, Y.; Alcaine, C.; Ciriza, J. Modeling an Optimal 3D Skin-on-Chip within Microfluidic Devices for Pharmacological Studies. Pharmaceutics 2022, 14, 1417. [Google Scholar] [CrossRef]
- Ramadan, Q.; Ting, F.C.W. In vitro micro-physiological immune-competent model of the human skin. Lab. Chip 2016, 16, 1899–1908. [Google Scholar] [CrossRef]
- Biglari, S.; Le, T.Y.L.; Tan, R.P.; Wise, S.G.; Zambon, A.; Codolo, G.; Bernard, M.D.; Warkiani, M.; Schindeler, A.; Naficy, S.; et al. Simulating Inflammation in a Wound Microenvironment Using a Dermal Wound-on-a-Chip Model. Adv. Healthc. Mater. 2019, 8, e1801307. [Google Scholar] [CrossRef]
- Rakita, A.; Nikolić, N.; Mildner, M.; Matiasek, J.; Elbe-Bürger, A. Re-epithelialization and immune cell behaviour in an ex vivo human skin model. Sci. Rep. 2020, 10, 1. [Google Scholar] [CrossRef]
- Gherardini, J.; van Lessen, M.; Piccini, I.; Edelkamp, J.; Bertolini, M. Human Wound Healing Ex Vivo Model with Focus on Molecular Markers. Methods Mol. Biol. 2020, 2154, 249–254. [Google Scholar] [CrossRef]
- Wilkinson, H.N.; Kidd, A.S.; Roberts, E.R.; Hardman, M.J. Human Ex vivo Wound Model and Whole-Mount Staining Approach to Accurately Evaluate Skin Repair. J. Vis. Exp. 2021, 168, 62326. [Google Scholar] [CrossRef]
- Wong, V.W.; Sorkin, M.; Glotzbach, J.P.; Longaker, M.T.; Gurtner, G.C. Surgical approaches to create murine models of human wound healing. J. Biomed. Biotechnol. 2011, 2011, 969618. [Google Scholar] [CrossRef] [PubMed]
- Masson-Meyers, D.S.; Andrade, T.A.M.; Caetano, G.F.; Guimaraes, F.R.; Leite, M.N.; Leite, S.N.; Frade, M.A.C. Experimental models and methods for cutaneous wound healing assessment. Int. J. Exp. Pathol. 2020, 101, 21–37. [Google Scholar] [CrossRef] [PubMed]
- Parnell, L.K.S.; Volk, S.W. The Evolution of Animal Models in Wound Healing Research: 1993–2017. Adv. Wound Care 2019, 8, 692–702. [Google Scholar] [CrossRef]
- Gould, L.J.; Leong, M.; Sonstein, J.; Wilson, S. Optimization and validation of an ischemic wound model. Wound Repair Regen. 2005, 13, 576–582. [Google Scholar] [CrossRef]
- Smith, N.; Overland, J.; Greenwood, J. Local management of deep cavity wounds—Current and emerging therapies. Chronic Wound Care Manag. Res. 2015, 2015, 159–170. [Google Scholar] [CrossRef]
- Galiano, R.D.; Michaels, J.T.; Dobryansky, M.; Levine, J.P.; Gurtner, G.C. Quantitative and reproducible murine model of excisional wound healing. Wound Repair Regen. 2004, 12, 485–492. [Google Scholar] [CrossRef] [PubMed]
- Fang, R.C.; Mustoe, T.A. Animal models of wound healing: Utility in transgenic mice. J. Biomater. Sci. Polym. Ed. 2008, 19, 989–1005. [Google Scholar] [CrossRef]
- Grada, A.; Mervis, J.; Falanga, V. Research Techniques Made Simple: Animal Models of Wound Healing. J. Investig. Dermatol. 2018, 138, 2095–2105.e2091. [Google Scholar] [CrossRef]
- Yampolsky, M.; Bachelet, I.; Fuchs, Y. Reproducible strategy for excisional skin-wound-healing studies in mice. Nat. Protoc. 2024, 19, 184–206. [Google Scholar] [CrossRef]
- Ansell, D.M.; Holden, K.A.; Hardman, M.J. Animal models of wound repair: Are they cutting it? Exp. Dermatol. 2012, 21, 581–585. [Google Scholar] [CrossRef]
- Couturier, A.; Calissi, C.; Cracowski, J.L.; Sigaudo-Roussel, D.; Khouri, C.; Roustit, M. Mouse models of diabetes-related ulcers: A systematic review and network meta-analysis. EBioMedicine 2023, 98, 104856. [Google Scholar] [CrossRef] [PubMed]
- Kesarwani, A.; Nagpal, P.S.; Chhabra, H.S. Experimental animal modelling for pressure injury: A systematic review. J. Clin. Orthop. Trauma 2021, 17, 273–279. [Google Scholar] [CrossRef] [PubMed]
- Mukhtarovna, K.M.; Shamikh Al-Saedi, H.F.; Hameed, O.M.; Jassim Al-saray, M.; Hameed Jasim, H.; Alajeeli, F.; Ali Ahmed, B.; Wabdan, A.K.; Ainur Shamakhankyzy, Y.; Khurramov, A.; et al. Histological and Immunohistochemical Evaluation of Silver Nanoparticle-Mediated Wound Healing in Rabbits. J. Nanostruct. 2023, 13, 747–754. [Google Scholar] [CrossRef]
- Wang, J.; Wan, R.; Mo, Y.; Zhang, Q.; Sherwood, L.C.; Chien, S. Creating a long-term diabetic rabbit model. Exp. Diabetes Res. 2010, 2010, 289614. [Google Scholar] [CrossRef]
- Nunan, R.; Harding, K.G.; Martin, P. Clinical challenges of chronic wounds: Searching for an optimal animal model to recapitulate their complexity. Dis. Model. Mech. 2014, 7, 1205–1213. [Google Scholar] [CrossRef]
- Lovasova, V.; Bem, R.; Chlupac, J.; Dubsky, M.; Husakova, J.; Nemcova, A.; Fronek, J. Animal experimental models of ischemic wounds–A review of literature. Wound Repair Regen. 2022, 30, 268–281. [Google Scholar] [CrossRef]
- Ghazy, N.D.; Abu-Raghif, R.A. Effects of Apremilast on Induced Hypertrophic Scar of Rabbits. Arch. Razi Inst. 2021, 76, 1803–1813. [Google Scholar] [CrossRef]
- Li, J.; Wang, J.; Wang, Z.; Xia, Y.; Zhou, M.; Zhong, A.; Sun, J. Experimental models for cutaneous hypertrophic scar research. Wound Repair Regen. 2020, 28, 126–144. [Google Scholar] [CrossRef]
- Zhu, K.Q.; Carrougher, G.J.; Gibran, N.S.; Isik, F.F.; Engrav, L.H. Review of the female Duroc/Yorkshire pig model of human fibroproliferative scarring. Wound Repair Regen. 2007, 15, 32–39. [Google Scholar] [CrossRef]
- Sullivan, T.P.; Eaglstein, W.H.; Davis, S.C.; Mertz, P. The pig as a model for human wound healing. Wound Repair Regen. 2001, 9, 66–76. [Google Scholar] [CrossRef]
- Kuo, T.Y.; Huang, C.C.; Shieh, S.J.; Wang, Y.B.; Lin, M.J.; Wu, M.C.; Huang, L.L. Skin wound healing assessment via an optimized wound array model in miniature pigs. Sci. Rep. 2022, 12, 445. [Google Scholar] [CrossRef] [PubMed]
- Velander, P.; Theopold, C.; Hirsch, T.; Bleiziffer, O.; Zuhaili, B.; Fossum, M.; Hoeller, D.; Gheerardyn, R.; Chen, M.; Visovatti, S.; et al. Impaired wound healing in an acute diabetic pig model and the effects of local hyperglycemia. Wound Repair Regen. 2008, 16, 288–293. [Google Scholar] [CrossRef] [PubMed]
- Hirsch, T.; Spielmann, M.; Zuhaili, B.; Koehler, T.; Fossum, M.; Steinau, H.-U.; Yao, F.; Steinstraesser, L.; Onderdonk, A.B.; Eriksson, E. Enhanced susceptibility to infections in a diabetic wound healing model. BMC Surg. 2008, 8, 5. [Google Scholar] [CrossRef] [PubMed]
- Shiff, J.; Schwartz, K.; Hausman, B.; Seshadri, D.R.; Bogie, K.M. Development and use of a porcine model with clinically relevant chronic infected wounds. J. Tissue Viability 2023, 32, 527–535. [Google Scholar] [CrossRef]
- Saheli, M.; Bayat, M.; Ganji, R.; Hendudari, F.; Kheirjou, R.; Pakzad, M.; Najar, B.; Piryaei, A. Human mesenchymal stem cells-conditioned medium improves diabetic wound healing mainly through modulating fibroblast behaviors. Arch. Dermatol. Res. 2020, 312, 325–336. [Google Scholar] [CrossRef]
- Li, M.; Zhao, Y.; Hao, H.; Dai, H.; Han, Q.; Tong, C.; Liu, J.; Han, W.; Fu, X. Mesenchymal stem cell-conditioned medium improves the proliferation and migration of keratinocytes in a diabetes-like microenvironment. Int. J. Low. Extrem. Wounds 2015, 14, 73–86. [Google Scholar] [CrossRef]
- Lombardi, F.; Palumbo, P.; Augello, F.R.; Cifone, M.G.; Cinque, B.; Giuliani, M. Secretome of Adipose Tissue-Derived Stem Cells (ASCs) as a Novel Trend in Chronic Non-Healing Wounds: An Overview of Experimental In Vitro and In Vivo Studies and Methodological Variables. Int. J. Mol. Sci. 2019, 20, 3721. [Google Scholar] [CrossRef]
- Guo, X.; Schaudinn, C.; Blume-Peytavi, U.; Vogt, A.; Rancan, F. Effects of Adipose-Derived Stem Cells and Their Conditioned Medium in a Human Ex Vivo Wound Model. Cells 2022, 11, 1198. [Google Scholar] [CrossRef]
- Ma, H.; Lam, P.K.; Siu, W.S.; Tong, C.S.W.; Lo, K.K.Y.; Koon, C.M.; Wu, X.X.; Li, X.; Cheng, W.; Shum, W.T.; et al. Adipose Tissue-Derived Mesenchymal Stem Cells (ADMSCs) and ADMSC-Derived Secretome Expedited Wound Healing in a Rodent Model—A Preliminary Study. Clin. Cosmet. Investig. Dermatol. 2021, 14, 753–764. [Google Scholar] [CrossRef]
- Ahangar, P.; Mills, S.J.; Smith, L.E.; Strudwick, X.L.; Ting, A.E.; Vaes, B.; Cowin, A.J. Human multipotent adult progenitor cell-conditioned medium improves wound healing through modulating inflammation and angiogenesis in mice. Stem Cell Res. Ther. 2020, 11, 299. [Google Scholar] [CrossRef]
- Prasai, A.; Jay, J.W.; Jupiter, D.; Wolf, S.E.; El Ayadi, A. Role of Exosomes in Dermal Wound Healing: A Systematic Review. J. Investig. Dermatol. 2022, 142, 662–678.e8. [Google Scholar] [CrossRef] [PubMed]
- Hu, C.H.; Tseng, Y.W.; Chiou, C.Y.; Lan, K.C.; Chou, C.H.; Tai, C.S.; Huang, H.D.; Hu, C.W.; Liao, K.H.; Chuang, S.S.; et al. Bone marrow concentrate-induced mesenchymal stem cell conditioned medium facilitates wound healing and prevents hypertrophic scar formation in a rabbit ear model. Stem Cell Res. Ther. 2019, 10, 275. [Google Scholar] [CrossRef] [PubMed]
- Morris, D.E.; Wu, L.; Zhao, L.L.; Bolton, L.; Roth, S.I.; Ladin, D.A.; Mustoe, T.A. Acute and chronic animal models for excessive dermal scarring: Quantitative studies. Plast. Reconstr. Surg. 1997, 100, 674–681. [Google Scholar] [CrossRef] [PubMed]
- Irons, R.F.; Cahill, K.W.; Rattigan, D.A.; Marcotte, J.H.; Fromer, M.W.; Chang, S.; Zhang, P.; Behling, E.M.; Behling, K.C.; Caputo, F.J. Acceleration of diabetic wound healing with adipose-derived stem cells, endothelial-differentiated stem cells, and topical conditioned medium therapy in a swine model. J. Vasc. Surg. 2018, 68, 115S–125S. [Google Scholar] [CrossRef]
- Zhou, B.R.; Zhang, T.; Bin Jameel, A.A.; Xu, Y.; Xu, Y.; Guo, S.L.; Wang, Y.; Permatasari, F.; Luo, D. The efficacy of conditioned media of adipose-derived stem cells combined with ablative carbon dioxide fractional resurfacing for atrophic acne scars and skin rejuvenation. J. Cosmet. Laser Ther. 2016, 18, 138–148. [Google Scholar] [CrossRef]
- Kim, J.; Kim, B.; Kim, S.; Lee, Y.I.; Kim, J.; Lee, J.H. The effect of human umbilical cord blood-derived mesenchymal stem cell media containing serum on recovery after laser treatment: A double-blinded, randomized, split-face controlled study. J. Cosmet. Dermatol. 2020, 19, 651–656. [Google Scholar] [CrossRef]
- Abdel-Maguid, E.M.; Awad, S.M.; Hassan, Y.S.; El-Mokhtar, M.A.; El-Deek, H.E.; Mekkawy, M.M. Efficacy of stem cell-conditioned medium vs. platelet-rich plasma as an adjuvant to ablative fractional CO2 laser resurfacing for atrophic post-acne scars: A split-face clinical trial. J. Dermatolog. Treat. 2021, 32, 242–249. [Google Scholar] [CrossRef]
- Prakoeswa, C.R.S.; Natallya, F.R.; Harnindya, D.; Thohiroh, A.; Oktaviyanti, R.N.; Pratiwi, K.D.; Rubianti, M.A.; Yogatri, B.; Primasari, P.I.; Herwanto, N.; et al. The efficacy of topical human amniotic membrane-mesenchymal stem cell-conditioned medium (hAMMSC-CM) and a mixture of topical hAMMSC-CM + vitamin C and hAMMSC-CM + vitamin E on chronic plantar ulcers in leprosy: A randomized control trial. J. Dermatol. Treat. 2018, 29, 835–840. [Google Scholar] [CrossRef]
- Alinda, M.D.; Christopher, P.M.; Listiawan, M.Y.; Endaryanto, A.; Suroto, H.; Rantam, F.A.; Hendradi, E.; Notobroto, H.B.; Menaldi, S.L.S.W.; Prakoeswa, C.R.S. Comparative efficacy of topical adipocyte-derived mesenchymal stem cells-conditioned medium (ADMSC-CM) and amniotic membrane mesenchymal stem cells-conditioned medium (AMSC-CM) on chronic plantar ulcers in leprosy: A randomized controlled trial. Bali Med. J. 2021, 10, 958–963. [Google Scholar] [CrossRef]
- Chowdhury, S.R.; Aminuddin, B.S.; Ruszymah, B.H. Effect of supplementation of dermal fibroblasts conditioned medium on expansion of keratinocytes through enhancing attachment. Indian. J. Exp. Biol. 2012, 50, 332–339. [Google Scholar]
- Abdul Ghani, N.; Razali, R.A.; Chowdhury, S.R.; Fauzi, M.B.; Bin Saim, A.; Ruszymah, B.H.I.; Maarof, M. Effect of Different Collection Times of Dermal Fibroblast Conditioned Medium (DFCM) on In Vitro Re-Epithelialisation Process. Biomedicines 2022, 10, 3203. [Google Scholar] [CrossRef] [PubMed]
- Maarof, M.; Mh Busra, M.F.; Lokanathan, Y.; Bt Hj Idrus, R.; Rajab, N.F.; Chowdhury, S.R. Safety and efficacy of dermal fibroblast conditioned medium (DFCM) fortified collagen hydrogel as acellular 3D skin patch. Drug Deliv. Transl. Res. 2019, 9, 144–161. [Google Scholar] [CrossRef] [PubMed]
- Maarof, M.; Chowdhury, S.R.; Saim, A.; Bt Hj Idrus, R.; Lokanathan, Y. Concentration dependent effect of human dermal fibroblast conditioned medium (DFCM) from three various origins on keratinocytes wound healing. Int. J. Mol. Sci. 2020, 21, 2929. [Google Scholar] [CrossRef]
- Ahangar, P.; Mills, S.J.; Smith, L.E.; Gronthos, S.; Cowin, A.J. Human gingival fibroblast secretome accelerates wound healing through anti-inflammatory and pro-angiogenic mechanisms. NPJ Regen. Med. 2020, 5, 24. [Google Scholar] [CrossRef]
- Topouzi, H.; Boyle, C.J.; Williams, G.; Higgins, C.A. Harnessing the secretome of hair follicle fibroblasts to accelerate ex vivo healing of human skin wounds. J. Investig. Dermatol. 2020, 140, 1075–1084.e1011. [Google Scholar] [CrossRef]
- Gabrielyan, A.; Neumann, E.; Gelinsky, M.; Rösen-Wolff, A. Metabolically conditioned media derived from bone marrow stromal cells or human skin fibroblasts act as effective chemoattractants for mesenchymal stem cells. Stem Cell Res. Ther. 2017, 8, 212. [Google Scholar] [CrossRef]
- Caneparo, C.; Baratange, C.; Chabaud, S.; Bolduc, S. Conditioned Medium Produced by Fibroblasts Cultured in Low Oxygen Pressure Allows the Formation of Highly Structured Capillary-Like Networks in Fibrin Gels. Sci. Rep. 2020, 10, 9291. [Google Scholar] [CrossRef]
- Fadilah, N.I.M.; Fauzi, M.B.; Maarof, M. Effect of multiple-cycle collections of conditioned media from different cell sources towards fibroblasts in in vitro wound healing model. Pharmaceutics 2024, 16, 767. [Google Scholar] [CrossRef]
- Maarof, M.; Mohd Nadzir, M.; Sin Mun, L.; Fauzi, M.B.; Chowdhury, S.R.; Idrus, R.B.H.; Lokanathan, Y. Hybrid collagen hydrogel/chondroitin-4-sulphate fortified with dermal fibroblast conditioned medium for skin therapeutic application. Polymers 2021, 13, 508. [Google Scholar] [CrossRef]
- Subramaniam, T.; Shaiful Hadi, N.; Sulaiman, S.; Fauzi, M.B.; Hj Idrus, R.B.; Chowdhury, S.R.; Law, J.X.; Maarof, M. Comparison of three different skin substitutes in promoting wound healing in an ovine model. Burns 2022, 48, 1198–1208. [Google Scholar] [CrossRef]
- Singh, N.; Choonara, Y.E.; Kumar, P. Method standardization of secretome production, collection, and characterization: New insights and challenges. Regen. Ther. 2025, 29, 466–473. [Google Scholar] [CrossRef]
Fibroblast Type | Generation of Conditioned Medium (CM)/Exosomes/Acellular Skin Substitute | Effects on Wound Healing | Growth Factor Content | Ref. |
---|---|---|---|---|
Dermal fibroblasts (DFs) | Defined keratinocyte serum-free and Fb-specific serum-free media | Enhanced expansion of keratinocytes | Protein analysis not performed. | [159] |
DFs | CM harvested after culturing the cells in hypoxic versus metabolic conditions | Similar efficiency to BM-MSC-derived CM in BM-MSC migration 2D assay | High concentrations of angiogenic factors. A higher number of angiogenic factors secreted compared to BM-MSCs. | [165] |
DFs | Collagen mixed with CM harvested from cells grown in Fb and keratinocyte media | Higher protein release when Fb medium was used for CM generation | Protein analysis not performed. | [161] |
DFs | CM harvested after culturing Fbs in keratinocyte-specific medium, Fb-specific medium with/without growth factors (GFs)—FGF, EGF, and insulin | Improvement in keratinocyte migration and expansion | A higher concentration of proteins and a consistent effect on the growth and migration rate when the Fb medium supplemented with GFs was used. Protein analysis not performed. | [76] |
DFs | CM harvested after 72 h of incubation in keratinocyte- and Fb-specific media | Enhancement in keratinocyte proliferation and migration for all the concentrations used when Fb medium was used | Up-regulated genes that encoded proteins such as ECM structural constituents and remodelling enzymes, various GFs, cytokines, and chemokines or cell adhesion molecules. | [162] |
Gingival Fbs | CM harvested after 24 h of incubation in Fb-specific medium | Enhanced proliferation and migration of human Fbs, keratinocytes, and endothelial cells and angiogenic function | The presence of FGF-2, HGF, VEGF, Ang-1, Ang-2, MMP-2, MMP-9, and TIMP-1. High levels of inflammation-related cytokines including IL-6 and IL-8. | [163] |
DFs | CM obtained after exposure to hypoxia conditions for 1, 2, or 3 weeks—harvested three times a week and pooled | Promotion of endothelial cell proliferation and migration; stimulation of highly structured capillary-like network formation and maturation in fibrin gels | Overexpression of EGF and FGF-2. Up-regulated EGF, leptin, GM-CSF (granulocyte–macrophage colony-stimulating factor), and CXCL5 after exposure in hypoxic conditions. Unchanged amount of VEGF-A after exposure to hypoxia. PDGF-BB, Ang-1, and Ang-2 down-regulation. | [166] |
Dermal papilla Fbs derived from hair follicles | CM harvested after 48 h of culture in keratinocyte medium | Dermal papilla Fbs derived from hair follicles accelerated re-epithelialization faster than interfollicular Fb subtypes, as shown by the scratch wound closure in vitro and punch wound closure ex vivo | Increased levels of cytokine sAXL (the soluble form of cell surface receptor tyrosine kinase) and CCL19 (chemokine ligand 19) when CM derived from dermal papilla Fbs was used. | [164] |
DFs | Exosomes released by DFs cultured in a 3D system represented by silk fibroin nonwovens | Increased endothelial cell angiogenesis: a significantly increased number of tubes in vitro | Higher content of Ang-1, Ang-2, MMP-1, IL-1α, IL-4, and IL-8 present in the exosomal fraction of DFs cultured in 3D cultures, compared to those cultured in monolayers. | [81] |
DFs | DF-derived CM added to acellular skin substitute based on collagen hydrogels mixed with chondroitin-4-sulphate | Suitable system for loading and delivery by slowly releasing essential mediators for wound healing from CM composition; the constructs maintain the characteristics of native collagen (swelling and degradation properties); the chondroitin-4-sulphate enhances the mechanical strength of the hydrogel; the efficacy in enhancing skin regeneration and its therapeutic application were not investigated | Protein analysis not performed. | [168] |
DFs | CM collection after three days of incubation in serum-free conditions: defined keratinocyte serum-free and Fb-specific serum-free media | Enhanced attachment when keratinocyte-specific medium was used; enhanced re-epithelialization when Fb-specific serum-free medium was used; enhancement in keratinocyte attachment, proliferation, migration, and differentiation | 12 wound-healing mediators detected (GFs, cytokines, and chemokines). | [160] |
DFs | Five repeated cycles of CM collection from DFs versus Wharton Jelly-derived MSCs | Lower Fb attachment with CM from both cell sources compared to the control; increased Fb cell migration, compared to Wharton Jelly-derived MSCs-CM; similar Fb proliferation and protein release profiles to collagen hydrogel fortified with CM obtained from DFs and Wharton Jelly-derived MSCs | DFs released more proteins into the culture medium than Wharton Jelly-derived MSCs. | [167] |
Fibroblast Type | Generation of Conditioned Medium (CM) | In Vivo Model | Wound-Healing-Related Effects | Growth Factor Content | Ref. |
---|---|---|---|---|---|
Dermal fibroblasts (DFs) | DFs-CM-fortified collagen hydrogel (skin patch); CM harvested from DFs grown in Fb and keratinocyte media | Mice full-thickness skin wound model | DF-CM-supplemented collagen hydrogel (400 µg/mL total protein concentration) induced a faster healing rate than the collagen-only group on day 7 after implantation. The integrity and maturity of the regenerated skin (keratinocytes expressing cytokeratin 10 and involucrin revealed by immunostaining). | Protein analysis not performed | [161] |
Gingival Fbs | CM harvested after 24 h of culture in serum-free medium; intradermal injection delivery around the margins of the wound | Murine excisional wound in vivo model | Reduction in average wound area and width on days 3, 7, and 14 of healing, accelerated re-epithelialization and resolution of inflammation, enhanced angiogenesis, and collagen deposition. | The presence of FGF-2, HGF, VEGF, Ang-1, Ang-2, MMP-2, MMP-9, and TIMP-1 | [163] |
DFs | Acellular skin patch made of collagen hydrogel with DF-CM versus collagen sponge scaffold with freshly harvested skin cells and a platelet-rich plasma gel with freshly harvested skin cells | Full-thickness wound ovine model | A thinner epidermis in all analysed conditions, as shown by histological evaluation. The integrity and maturity of the regenerated skin and keratinocytes expressing cytokeratin 10 and involucrin, as revealed by immunohistochemistry analysis. Fastest healing in the presence of DF-CM compared to the collagen scaffold (with freshly harvested skin cells) and controls. | Protein analysis not performed | [169] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ghetu, D.-M.; Raymond, K.; Titorencu, I.; Simionescu, M. Innovative Strategies: Use of Stromal Cell-Derived Secretome for Chronic Wound Therapy. Int. J. Mol. Sci. 2025, 26, 5609. https://doi.org/10.3390/ijms26125609
Ghetu D-M, Raymond K, Titorencu I, Simionescu M. Innovative Strategies: Use of Stromal Cell-Derived Secretome for Chronic Wound Therapy. International Journal of Molecular Sciences. 2025; 26(12):5609. https://doi.org/10.3390/ijms26125609
Chicago/Turabian StyleGhetu, Daniela-Madalina, Karine Raymond, Irina Titorencu, and Maya Simionescu. 2025. "Innovative Strategies: Use of Stromal Cell-Derived Secretome for Chronic Wound Therapy" International Journal of Molecular Sciences 26, no. 12: 5609. https://doi.org/10.3390/ijms26125609
APA StyleGhetu, D.-M., Raymond, K., Titorencu, I., & Simionescu, M. (2025). Innovative Strategies: Use of Stromal Cell-Derived Secretome for Chronic Wound Therapy. International Journal of Molecular Sciences, 26(12), 5609. https://doi.org/10.3390/ijms26125609