MicroRNAs in Preeclampsia: An Overview of Biomarkers and Potential Therapeutic Targets
Abstract
1. Introduction
2. Altered miRNA Patterns in PE
3. Altered miRNA in the Placenta
Type of Sample | Cohort | miRNA | Target Gene | Observation | Reference |
---|---|---|---|---|---|
Placenta | PE, healthy pregnancies | ↑miR-17, -miR-20a, miR-20b | ↓ephrin-B2 | Angiogenesis | [15] |
Placenta | PE (n = 12), healthy pregnancies (n = 12) | ↓miR-126 | ↑PIK3R2 | Diagnostic biomarker | [34] |
Placenta | PE (n = 20) healthy pregnancies (n = 20) | ↑miR-155 | ↓FOXO3 | Inflammatory pathogenesis of PE | [35] |
Placenta | PE (n = 20), healthy pregnancies (n = 20) | ↑miR-155 | ↓CYR61 | Pathogenesis of PE | [20] |
Placenta | PE (n = 59) healthy pregnancies (n = 40) | ↑miR-155 | - | Pathogenesis of PE; prognostic biomarker | [22] |
Placenta | Sever PE (n = 20), healthy pregnancies (n = 20) | ↑miR-181 | - | Trophoblast dysfunction, PE pathogenesis | [36] |
Placenta | PE (n = 30), healthy pregnancies (n = 30) | ↑miR-181a-5p | ↓MMP-9 | Severe PE correlated with adverse outcomes | [29] |
Placenta | Sever PE (n = 30), healthy pregnancies (n = 30) | ↓miR-424 | - | Prognostic biomarker associated with severe PE | [37] |
Placenta | PE (n = 20), healthy pregnancies (n = 20) | ↓miR-454 | ↑EPHB4 | Regulating trophoblast cell proliferation, apoptosis, and invasion function | [30] |
Placenta | PE (n = 20), healthy pregnancies (n = 20) | ↑miR-494 | ↓SIRT1 | Senescence | [38] |
Placenta | PE (n = 5), healthy pregnancies (n = 5) | ↑miR-512-3p | ↓USF2/PPP3R, VEGF | Extravillous trophoblast functions | [32] |
Placenta | PE (n = 31), healthy pregnancies (n = 28) | ↓miR-325 | - | Pathogenesis of PE | [39] |
Placenta and PBMC | - | ↑miR-153-3p | ↓HMOX1 | Diagnostic potential | [40] |
Placenta and serum | PE (n = 20), healthy pregnancies (n = 20) | ↑miR-16 | ↓VEGFA | Diagnostic biomarker for severe PE | [41] |
Placenta and serum | PE (n = 175) compared to control group (n = 350), | ↑miR-155 | - | Correlated with severe clinical features | [24] |
Placenta and serum | PE (n = 200) healthy pregnancies (n = 50) | ↑miR-296 | - | Diagnostic biomarker for PE | [31] |
Placenta and serum | PE (n = 15), healthy pregnancies (n = 15) | ↓miR-3935 | TRAF6/RGS2 | Prognostic biomarker and therapeutic target of EMT signaling | [33] |
Placental and myometrium tissue cohort | PE (n = 19), healthy pregnancies (n = 38) | ↑miR-206 | ↓IGF-1 | Prognostic biomarker | [21] |
Umbilical cord tissues and primary trophoblast cells | PE (n = 68), healthy pregnancies (n = 30) | ↑miR-495 | ↓HDAC2 | Accelerates cell proliferation, invasion, and migration, but reduces apoptosis via P53/PUMA | [42] |
4. Circulating miRNA in PE
Type of Samples and Cohort | miRNA | Target Gene | Observation | Reference |
---|---|---|---|---|
PE (n = 175), healthy pregnancies (n = 350) | ↑miR-155 | - | Prognostic biomarker | [24] |
PE compared to a control group, blood samples | ↑miR-155 | ↑VPO1, ↓MOTS-c | Markers of endothelial dysfunction | [49] |
PE (n = 50), healthy pregnancies (n = 25), plasma | ↑miR-155 | - | CYR61/miR-155 Ratio as a biomarker for Diagnosis and severity of PE | [28] |
PE (n = 15), healthy pregnancies (n = 29), plasma | ↑miR-125b | ↓KCNA1 and GPC1 | Inhibits cytotrophoblast invasion and impairs endothelial cell function; predictive marker and therapeutic target | [16] |
PE (n = 30), healthy pregnancies (n = 30), plasma | ↑miR-181a-5p | ↓MMP-9 | Associated with adverse outcomes in patients with severe PE | [29] |
PE (n = 82) compared to healthy pregnancies (n = 78), serum | ↑miR-29b | ↓SLC3A1, ↑TUG1, ↑H19, and ↑NEAT1 | Biomarker of PE severity | [45] |
PE (n = 18), healthy pregnancies (n = 18), plasma | ↑miR-206 | - | Diagnostic biomarker | [21] |
PE (n = 53) healthy pregnancies (n = 30), serum and blood | MiR-517 and miR-526 | - | Prognostic biomarker | [48] |
PE (n = 92) compared to healthy pregnancies (n = 78), serum | ↓miR-363 and ↑miR-17 | ↓MALAT1 | Biomarkers of PE risk, onset, and severity | [46] |
5. Altered Exosomal miRNA in PE
Type of Samples | Cohort | Method for Evaluation | miRNA | Observation | Reference |
---|---|---|---|---|---|
Sera exosomes | PE (n = 10) and normal pregnant women (n = 10) | ↑miR-26a-5p, miR-152, and miR-155; ↓miR-18a and miR-221-3p | Participates in the development and progression of PE by targeting trophoblast cells | [52] | |
Plasma exosomes and placenta | PE (n = 8) and normal pregnant women (n = 8) Placenta PE (n = 13) and normal pregnant women (n = 7) | ↑miR-210 | miR-210 is secreted from the trophoblast, regulated intercellular communication as Ago-bound miR-210 | [53] | |
Gestational hypertension (GH) and PE exosomes and placentar exososmes | PE (n = 15) and GH (n = 15) and normal pregnant women (n = 15) | qRT-PCR | ↑miR-155 and ↓miR-222 in PE but not in GH | miR-155 and miR-222 regulate different pathological pathways | [55] |
Plasma exosomes | Profiling PE (n = 5) and normal pregnant women (n = 5) | RNAseq (Illumina NextSeq 2000 platform) | ↑miR-122-5p, miR-4535-3p, miR-20a-5p, miR-302a-5p, miR-1-3p, miR-125b-2-3p, miR-144-5p ↓miR-144-3p, miR-143-3p, miR-183-5p, miR-185-5p, miR-186-5p, miR-501-3p, miR-30a-5p, miR-96-5p, miR-26b-5p | Not only suitable biomarker candidates, but also novel mechanistic insights related to PE | [50] |
Syncytiotrophoblast extracellular vesicle release (STB-EV) | Profiling PE (n = 6) and normal pregnant women (n = 6) | RNAseq (Illumina NextSeq 2000 platform) | ↑miR-4488, miR-3196, miR-4516, miR-193b-5p, miR-210-3p, miR-27a-5p, miR-3656, miR-113, miR-3960, miR-6089, miR-127-3p, miR-317, miR-338, let-7b-5p, miR-9-5p, miR-483-3p, miR-493-5p, miR-455-3p, miR-99a-5p, miR-370-3p, miR-10b-5p, let-7c-5p, miR-92b-3p ↓ miR-151a-5p, miR-26b-5p, miR-519d-3p, miR-877-5p, miR-421, miR-106b-5p, miR-93-5p, miR-222-3p, hsa-let-7e-5p, miR-374a-5p, miR-519b-3p, miR-30b-5p, miR-519c-3p, miR-194-5p, miR-221-3p, miR-652-3p, miR-324-5p | miR-9-5p as a potential biomarker | [54] |
6. miRNAs as Therapeutic Targets in PE
Testing System | miRNA | Target Gene | Observation | Reference |
---|---|---|---|---|
HUVEC, HTR-8/SVneo | miR-16 | VEGFA | Cell proliferation, EMT, and angiogenesis | [41] |
HTR-8/SVneo | miR-31-5p | SNHG5 | Trophoblast autophagy | [61] |
HTR-8/Svneo | miR-155-5p | cAMP/PKA | Regulated lipid metabolism by | [59] |
HTR-8/SVneo, JEG-3, 293T | miR-155-5p | FOXO3 | Cell viability, apoptosis, mobility, and oxidative stress | [35] |
HTR-8/SVneo, BeWo, HEK-293T | miR-155-5p | CYR61 | Trophoblast migration | [20] |
HTR-8/SVneo, JAR c | miR-181-5p | - | Proliferation, cell cycle progression, apoptosis, and invasion | [36] |
HTR-8/SVneo | miR-188-3p | HTRA1/Circ_0001326 | Cell growth, invasion, migration, and EMT | [64] |
JEG-3 | let-7a-3p | Bcl-xl and YAP1 | Regulates cell apoptosis in trophoblasts | [34] |
HTR-8/SVneo | miR-141 | CXCL12β/CXCR2/4 | Regulates trophoblast apoptosis, invasion, and vascularization by blocking signal transduction | [63] |
Primary cell culture placenta/cord blood | miR-126 | PI3K–Akt signaling Axis | Cell proliferation and differentiation; colony Formation and migration | [34] |
Trophoblast | miRNA-494 | SIRT1, NLRP3, IL-1β | Senescence | [38] |
HTR-8/SVneo | MiR-513c-5p | LRP6 | Proliferation, invasion migration, and promoted apoptosis | [62] |
PE mouse model | miR-155 | PKG1 | Cell invasion, migration, and apoptosis via NFκB pathway | [26] |
7. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Oancea, M.D.; Costin, N.; Pop, D.M.; Ciortea, R.; Mihu, D. Evaluation of serum β-hCG and PAPP-A levels in pregnant women at risk of developing preeclampsia. Clujul Med. 2013, 86, 347–351. [Google Scholar] [PubMed]
- Oancea, M.; Grigore, M.; Ciortea, R.; Diculescu, D.; Bodean, D.; Bucuri, C.; Strilciuc, S.; Rada, M.; Mihu, D. Uterine Artery Doppler Ultrasonography for First Trimester Prediction of Preeclampsia in Individuals at Risk from Low-Resource Settings. Medicina 2020, 56, 428. [Google Scholar] [CrossRef] [PubMed]
- Gathiram, P.; Moodley, J. Pre-eclampsia: Its pathogenesis and pathophysiolgy. Cardiovasc. J. Afr. 2016, 27, 71–78. [Google Scholar] [CrossRef]
- Opichka, M.A.; Rappelt, M.W.; Gutterman, D.D.; Grobe, J.L.; McIntosh, J.J. Vascular Dysfunction in Preeclampsia. Cells 2021, 10, 3055. [Google Scholar] [CrossRef]
- Hornakova, A.; Kolkova, Z.; Holubekova, V.; Loderer, D.; Lasabova, Z.; Biringer, K.; Halasova, E. Diagnostic Potential of MicroRNAs as Biomarkers in the Detection of Preeclampsia. Genet. Test. Mol. Biomark. 2020, 24, 321–327. [Google Scholar] [CrossRef]
- Ng, K.W.; Chaturvedi, N.; Coté, G.L.; Fisher, S.A.; Mabbott, S. Biomarkers and point of care screening approaches for the management of preeclampsia. Commun. Med. 2024, 4, 208. [Google Scholar] [CrossRef]
- Munjas, J.; Sopić, M.; Stefanović, A.; Košir, R.; Ninić, A.; Joksić, I.; Antonić, T.; Spasojević-Kalimanovska, V.; Prosenc Zmrzljak, U. Non-Coding RNAs in Preeclampsia-Molecular Mechanisms and Diagnostic Potential. Int. J. Mol. Sci. 2021, 22, 652. [Google Scholar] [CrossRef]
- Kannampuzha, S.; Ravichandran, M.; Mukherjee, A.G.; Wanjari, U.R.; Renu, K.; Vellingiri, B.; Iyer, M.; Dey, A.; George, A.; Gopalakrishnan, A.V. The mechanism of action of non-coding RNAs in placental disorders. Biomed. Pharmacother. 2022, 156, 113964. [Google Scholar] [CrossRef]
- Braicu, C.; Catana, C.; Calin, G.A.; Berindan-Neagoe, I. NCRNA combined therapy as future treatment option for cancer. Curr. Pharm. Des. 2014, 20, 6565–6574. [Google Scholar] [CrossRef]
- Braicu, C.; Calin, G.A.; Berindan-Neagoe, I. MicroRNAs and cancer therapy—From bystanders to major players. Curr. Med. Chem. 2013, 20, 3561–3573. [Google Scholar] [CrossRef]
- Cirkovic, A.; Stanisavljevic, D.; Milin-Lazovic, J.; Rajovic, N.; Pavlovic, V.; Milicevic, O.; Savic, M.; Kostic Peric, J.; Aleksic, N.; Milic, N.; et al. Preeclamptic Women Have Disrupted Placental microRNA Expression at the Time of Preeclampsia Diagnosis: Meta-Analysis. Front. Bioeng. Biotechnol. 2021, 9, 782845. [Google Scholar] [CrossRef] [PubMed]
- Braicu, C.; Cojocneanu-Petric, R.; Chira, S.; Truta, A.; Floares, A.; Petrut, B.; Achimas-Cadariu, P.; Berindan-Neagoe, I. Clinical and pathological implications of miRNA in bladder cancer. Int. J. Nanomed. 2015, 10, 791–800. [Google Scholar] [CrossRef] [PubMed]
- Ha, T.Y. MicroRNAs in Human Diseases: From Cancer to Cardiovascular Disease. Immune Netw. 2011, 11, 135–154. [Google Scholar] [CrossRef] [PubMed]
- Kolkova, Z.; Holubekova, V.; Grendar, M.; Nachajova, M.; Zubor, P.; Pribulova, T.; Loderer, D.; Zigo, I.; Biringer, K.; Hornakova, A. Association of Circulating miRNA Expression with Preeclampsia, Its Onset, and Severity. Diagnostics 2021, 11, 476. [Google Scholar] [CrossRef]
- Wang, W.; Feng, L.; Zhang, H.; Hachy, S.; Satohisa, S.; Laurent, L.C.; Parast, M.; Zheng, J.; Chen, D.B. Preeclampsia up-regulates angiogenesis-associated microRNA (i.e., miR-17, -20a, and -20b) that target ephrin-B2 and EPHB4 in human placenta. J. Clin. Endocrinol. Metab. 2012, 97, E1051–E1059. [Google Scholar] [CrossRef]
- Li, Q.; Han, Y.; Xu, P.; Yin, L.; Si, Y.; Zhang, C.; Meng, Y.; Feng, W.; Pan, Z.; Gao, Z.; et al. Elevated microRNA-125b inhibits cytotrophoblast invasion and impairs endothelial cell function in preeclampsia. Cell Death Discov. 2020, 6, 35. [Google Scholar] [CrossRef]
- Enquobahrie, D.A.; Abetew, D.F.; Sorensen, T.K.; Willoughby, D.; Chidambaram, K.; Williams, M.A. Placental microRNA expression in pregnancies complicated by preeclampsia. Am. J. Obstet. Gynecol. 2011, 204, 178.e12–178.e21. [Google Scholar] [CrossRef]
- Akgör, U.; Ayaz, L.; Çayan, F. Expression levels of maternal plasma microRNAs in preeclamptic pregnancies. J. Obstet. Gynaecol. 2021, 41, 910–914. [Google Scholar] [CrossRef]
- Zhang, H.; Xue, L.; Lv, Y.; Yu, X.; Zheng, Y.; Miao, Z.; Ding, H. Integrated microarray analysis of key genes and a miRNA-mRNA regulatory network of early-onset preeclampsia. Mol. Med. Rep. 2020, 22, 4772–4782. [Google Scholar] [CrossRef]
- Zhang, Y.; Diao, Z.; Su, L.; Sun, H.; Li, R.; Cui, H.; Hu, Y. MicroRNA-155 contributes to preeclampsia by down-regulating CYR61. Am. J. Obstet. Gynecol. 2010, 202, 466.e1–466.e7. [Google Scholar] [CrossRef]
- Akehurst, C.; Small, H.Y.; Sharafetdinova, L.; Forrest, R.; Beattie, W.; Brown, C.E.; Robinson, S.W.; McClure, J.D.; Work, L.M.; Carty, D.M.; et al. Differential expression of microRNA-206 and its target genes in preeclampsia. J. Hypertens. 2015, 33, 2068–2074. [Google Scholar] [CrossRef] [PubMed]
- Azizi, F.; Saleh Gargari, S.; Asadi Shahmirzadi, S.; Dodange, F.; Amiri, V.; Mirfakhraie, R.; Omrani, M.D. Evaluation of Placental mir-155-5p and Long Non-coding RNA sONE Expression in Patients with Severe Pre-eclampsia. Int. J. Mol. Cell. Med. 2017, 6, 22–30. [Google Scholar] [PubMed]
- Bao, S.; Zhou, T.; Yan, C.; Bao, J.; Yang, F.; Chao, S.; Zhou, M.; Xu, Z. A blood-based miRNA signature for early non-invasive diagnosis of preeclampsia. BMC Med. 2022, 20, 303. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Liu, D.; Dai, Y.; Li, R.; Zheng, Y.; Zhao, G.; Wang, J.; Diao, Z.; Cao, C.; Lv, H.; et al. Elevated Placental microRNA-155 Is a Biomarker of a Preeclamptic Subtype. Hypertension 2023, 80, 370–384. [Google Scholar] [CrossRef]
- Srinivasan, S.; Treacy, R.; Herrero, T.; Olsen, R.; Leonardo, T.R.; Zhang, X.; DeHoff, P.; To, C.; Poling, L.G.; Fernando, A.; et al. Discovery and Verification of Extracellular miRNA Biomarkers for Non-invasive Prediction of Pre-eclampsia in Asymptomatic Women. Cell Rep. Med. 2020, 1, 100013. [Google Scholar] [CrossRef]
- Luo, X.; Guo, X.; Chen, N.; Peng, R.; Pan, C.; Li, Z.; Zhao, B.; Ji, R.; Li, S. miR-155 mediated regulation of PKG1 and its implications on cell invasion, migration, and apoptosis in preeclampsia through NF-κB pathway. Biol. Direct 2024, 19, 121. [Google Scholar] [CrossRef]
- Hocaoglu, M.; Demirer, S.; Karaalp, I.L.; Kaynak, E.; Attar, E.; Turgut, A.; Bayrak, E.K. Expression Profiles of Mir-155-5p and Mir-518b Micrornas in Circulating Leukocytes of the Pregnant Patients with Preeclampsia and Polycystic Ovary Syndrome. Acta Endocrinol. 2023, 19, 426–434. [Google Scholar] [CrossRef]
- Mamdouh Shoeib, S.; Elwy Abdeldaim, D.; Samir Mashal, S.; Raafat Ibrahim, R.; Mohamed Dawood, L.; Shatat, D.; Ibrahim El-Masry, Y.; Almeldin, A.; Mahamoud El Sharaby, R. The Ratio of Cysteine-Rich Angiogenic Inducer 61 to MicroRNA -155 Expression as a Preeclampsia Diagnostic Marker and Predictor of Its Severity. Rep. Biochem. Mol. Biol. 2023, 12, 332–339. [Google Scholar] [CrossRef]
- Zheng, Y.; Wang, L.; Niu, F.; Liu, Y.; Feng, L. MMP-9 and miR-181a-5p in serum and placenta are associated with adverse outcomes of patients with severe preeclampsia and their infants. J. Hum. Hypertens. 2022, 36, 1072–1077. [Google Scholar] [CrossRef]
- Wang, F.; Yan, J. MicroRNA-454 is involved in regulating trophoblast cell proliferation, apoptosis, and invasion in preeclampsia by modulating the expression of ephrin receptor B4. Biomed. Pharmacother. 2018, 107, 746–753. [Google Scholar] [CrossRef]
- Zhu, D.; Guo, T.; Xu, J.; Yuan, D.; Lin, M.; Yang, M. Elevated Expression of miR-296 in Human Placentas and Serum Samples From Pregnancies With Preeclampsia. Br. J. Biomed. Sci. 2023, 80, 11004. [Google Scholar] [CrossRef] [PubMed]
- Halari, C.D.; Nandi, P.; Sidhu, J.; Sbirnac, M.; Zheng, M.; Lala, P.K. Decorin-induced, preeclampsia-associated microRNA-512-3p restrains extravillous trophoblast functions by targeting USF2/PPP3R1 axis. Front. Cell Dev. Biol. 2022, 10, 1014672. [Google Scholar] [CrossRef] [PubMed]
- Jin, M.; Xu, S.; Li, J.; Yao, Y.; Tang, C. MicroRNA-3935 promotes human trophoblast cell epithelial-mesenchymal transition through tumor necrosis factor receptor-associated factor 6/regulator of G protein signaling 2 axis. Reprod. Biol. Endocrinol. 2021, 19, 134. [Google Scholar] [CrossRef]
- Yan, T.; Liu, Y.; Cui, K.; Hu, B.; Wang, F.; Zou, L. MicroRNA-126 regulates EPCs function: Implications for a role of miR-126 in preeclampsia. J. Cell. Biochem. 2013, 114, 2148–2159. [Google Scholar] [CrossRef]
- Luo, X.; Pan, C.; Guo, X.; Gu, C.; Huang, Y.; Guo, J.; Zeng, Y.; Yue, J.; Cui, S. Methylation Mediated Silencing of miR-155 Suppresses the Development of Preeclampsia In Vitro and In Vivo by Targeting FOXO3. Mediat. Inflamm. 2022, 2022, 4250621. [Google Scholar] [CrossRef]
- Huang, X.; Wu, L.; Zhang, G.; Tang, R.; Zhou, X. Elevated MicroRNA-181a-5p Contributes to Trophoblast Dysfunction and Preeclampsia. Reprod. Sci. 2019, 26, 1121–1129. [Google Scholar] [CrossRef]
- Tang, Q.; Gui, J.; Wu, X.; Wu, W. Downregulation of miR-424 in placenta is associated with severe preeclampsia. Pregnancy Hypertens. 2019, 17, 109–112. [Google Scholar] [CrossRef]
- Su, S.; Zhong, L.; Huang, S.; Deng, L.; Pang, L. MiRNA-494 induces trophoblast senescence by targeting SIRT1. Hypertens. Pregnancy 2023, 42, 2219774. [Google Scholar] [CrossRef]
- Lázár, L.; Nagy, B.; Molvarec, A.; Szarka, A.; Rigó, J., Jr. Role of hsa-miR-325 in the etiopathology of preeclampsia. Mol. Med. Rep. 2012, 6, 597–600. [Google Scholar] [CrossRef]
- Rahimi, S.; Rezvani, N.; Khazayel, S.; Jalilian, N.; Shakiba, E.; Khadir, F.; Yari, K.; Rahimi, Z. The study of HMOX1 DNA methylation and gene expression and the diagnostic potential of miR-153-3p in preeclampsia. Epigenomics 2024, 16, 389–401. [Google Scholar] [CrossRef]
- Wang, Y.; Fan, H.; Zhao, G.; Liu, D.; Du, L.; Wang, Z.; Hu, Y.; Hou, Y. miR-16 inhibits the proliferation and angiogenesis-regulating potential of mesenchymal stem cells in severe pre-eclampsia. FEBS J. 2012, 279, 4510–4524. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Zhao, G.; Li, W. MicroRNA-495 suppresses pre-eclampsia via activation of p53/PUMA axis. Cell Death Discov. 2022, 8, 132. [Google Scholar] [CrossRef] [PubMed]
- Giannubilo, S.R.; Cecati, M.; Marzioni, D.; Ciavattini, A. Circulating miRNAs and Preeclampsia: From Implantation to Epigenetics. Int. J. Mol. Sci. 2024, 25, 1418. [Google Scholar] [CrossRef]
- Vijayan, V.; Rajendran, K.; D’Souza, A.; Subhashini, Y.; Tarakeswari, S.; Reddy, B.R.; Vemuri, S. Profiling of MicroRNAs for the Identification of Unique and Common MicroRNAs in Preeclamptic Patients of South India Using Next-Generation Sequencing. Cureus 2024, 16, e70730. [Google Scholar] [CrossRef]
- Senousy, M.A.; Shaker, O.G.; Elmaasrawy, A.H.Z.; Ashour, A.M.; Alsufyani, S.E.; Arab, H.H.; Ayeldeen, G. Serum lncRNAs TUG1, H19, and NEAT1 and their target miR-29b/SLC3A1 axis as possible biomarkers of preeclampsia: Potential clinical insights. Noncoding RNA Res. 2024, 9, 995–1008. [Google Scholar] [CrossRef]
- Abdelazim, S.A.; Shaker, O.G.; Aly, Y.A.H.; Senousy, M.A. Uncovering serum placental-related non-coding RNAs as possible biomarkers of preeclampsia risk, onset and severity revealed MALAT-1, miR-363 and miR-17. Sci. Rep. 2022, 12, 1249. [Google Scholar] [CrossRef]
- Li, J.; Huang, H.; Sun, L.; Yang, M.; Pan, C.; Chen, W.; Wu, D.; Lin, Z.; Zeng, C.; Yao, Y.; et al. MiR-21 indicates poor prognosis in tongue squamous cell carcinomas as an apoptosis inhibitor. Clin. Cancer Res. 2009, 15, 3998–4008. [Google Scholar] [CrossRef]
- Kondracka, A.; Kondracki, B.; Jaszczuk, I.; Staniczek, J.; Kwasniewski, W.; Filip, A.; Kwasniewska, A. Diagnostic potential of microRNAs Mi 517 and Mi 526 as biomarkers in the detection of hypertension and preeclampsia in the first trimester. Ginekol. Pol. 2024, 95, 952–958. [Google Scholar] [CrossRef]
- Coskun, E.; Ekmekci, O.B.; Gungor, Z.; Tuten, A.; Oncul, M.; Hamzaoğlu, K.; Gok, K.; Ekmekci, H. Evaluation of vascular peroxidase 1, humanin, MOTS-c and miR-200c expression levels in untreated preeclampsia patients. Mol. Biol. Rep. 2024, 52, 66. [Google Scholar] [CrossRef]
- Gál, L.; Fóthi, Á.; Orosz, G.; Nagy, S.; Than, N.G.; Orbán, T.I. Exosomal small RNA profiling in first-trimester maternal blood explores early molecular pathways of preterm preeclampsia. Front. Immunol. 2024, 15, 1321191. [Google Scholar] [CrossRef]
- Popova, A.K.; Vashukova, E.S.; Illarionov, R.A.; Maltseva, A.R.; Pachuliia, O.V.; Postnikova, T.B.; Glotov, A.S. Extracellular Vesicles as Biomarkers of Pregnancy Complications. Int. J. Mol. Sci. 2024, 25, 11944. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; An, R.; Yuan, Y.; Chen, Y.; Zhao, J.; Zhu, X.; Ma, Y. Placenta-derived exosomes as carriers of non-coding RNAs in maternal circulation of patients with preeclampsia. Biotechnol. Genet. Eng. Rev. 2024, 40, 2683–2703. [Google Scholar] [CrossRef] [PubMed]
- Biró, O.; Fóthi, Á.; Alasztics, B.; Nagy, B.; Orbán, T.I.; Rigó, J., Jr. Circulating exosomal and Argonaute-bound microRNAs in preeclampsia. Gene 2019, 692, 138–144. [Google Scholar] [CrossRef] [PubMed]
- Awoyemi, T.; Jiang, S.; Rahbar, M.; Logentherian, P.; Collett, G.; Zhang, W.; Cribbs, A.; Cerdeira, S.; Vatish, M. MicroRNA analysis of medium/large placenta extracellular vesicles in normal and preeclampsia pregnancies. Front. Cardiovasc. Med. 2024, 11, 1371168. [Google Scholar] [CrossRef]
- Ntsethe, A.; Mackraj, I. An Investigation of Exosome Concentration and Exosomal microRNA (miR-155 and miR-222) Expression in Pregnant Women with Gestational Hypertension and Preeclampsia. Int. J. Women’s Health 2022, 14, 1681–1689. [Google Scholar] [CrossRef]
- Selvakumar, S.C.; Preethi, K.A.; Ross, K.; Sekar, D. The emerging role of microRNA-based therapeutics in the treatment of preeclampsia. Placenta 2024, 158, 38–47. [Google Scholar] [CrossRef]
- Seyhan, A.A. Trials and Tribulations of MicroRNA Therapeutics. Int. J. Mol. Sci. 2024, 25, 1469. [Google Scholar] [CrossRef]
- Diener, C.; Keller, A.; Meese, E. Emerging concepts of miRNA therapeutics: From cells to clinic. Trends Genet. 2022, 38, 613–626. [Google Scholar] [CrossRef]
- Gu, X.; Liu, H.; Luo, W.; Wang, X.; Wang, H.; Li, L. Di-2-ethylhexyl phthalate-induced miR-155-5p promoted lipid metabolism via inhibiting cAMP/PKA signaling pathway in human trophoblastic HTR-8/Svneo cells. Reprod. Toxicol. 2022, 114, 22–31. [Google Scholar] [CrossRef]
- Zha, W.; Guan, S.; Liu, N.; Li, Y.; Tian, Y.; Chen, Y.; Wang, Y.; Wu, F. Let-7a inhibits Bcl-xl and YAP1 expression to induce apoptosis of trophoblast cells in early-onset severe preeclampsia. Sci. Total Environ. 2020, 745, 139919. [Google Scholar] [CrossRef]
- Yang, L.; Liu, C.; Zhang, C.; Shang, R.; Zhang, Y.; Wu, S.; Long, Y. LncRNA small nucleolar RNA host gene 5 inhibits trophoblast autophagy in preeclampsia by targeting microRNA-31-5p and promoting the transcription of secreted protein acidic and rich in cysteine. Bioengineered 2022, 13, 7221–7237. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Q.; Li, H.; Zhang, Y.; Peng, W.; Hou, H.; Gu, M.; Zhang, F.; Wang, X.; Gu, X.; Li, L. MicroRNA-513c-5p is involved in the pathogenesis of preeclampsia by regulating of low-density lipoprotein receptor-associated protein 6. BMC Pregnancy Childbirth 2021, 21, 837. [Google Scholar] [CrossRef] [PubMed]
- Wu, D.; Chen, X.; Wang, L.; Chen, F.; Cen, H.; Shi, L. Hypoxia-induced microRNA-141 regulates trophoblast apoptosis, invasion, and vascularization by blocking CXCL12β/CXCR2/4 signal transduction. Biomed. Pharmacother. 2019, 116, 108836. [Google Scholar] [CrossRef] [PubMed]
- Gao, X.; Qu, H.; Zhang, Y. Circ_0001326 suppresses trophoblast cell proliferation, invasion, migration and epithelial-mesenchymal transition progression in preeclampsia by miR-188-3p/HtrA serine peptidase 1 axis. J. Hypertens. 2023, 41, 587–596. [Google Scholar] [CrossRef]
Patient Cohort | Altered Signature | Reference |
---|---|---|
PE (n = 10) and control pregnancies (n = 10), placenta, microarray | ↑miR-20b, miR-516a-5p, miR-512–3p, miR-2277, miR-524-3p; ↓miR-151-3p, miR-146a, miR-192, miR-34c-5p; validation by in situ hybridization of miR-17, miR-20a, and miR-20b | [15] |
PE (n = 6) and control pregnancies (n = 6), plasma, miRNA microarray | ↑ let-7a-5p, miR-15a-5p, miR-92a-1-3p, miR-106a, miR-125b, miR-130a-3p, miR-191-5p, miR-374a-5p, miR-574-5p; ↓miR-22–5p, miR-93-5p, miR-126-3p, miR-204-3p, miR-365a-3p, miR-559-5p, miR-4264-5p | [16] |
PE (n = 20) and control pregnancies (n = 20), placenta miRNA microarray | ↑miR-210; ↓miR-328, miR-584, miR-139-5p, miR-500, miR-1247, miR-34c-5p and miR-1 | [17] |
PE (n = 31) compared to healthy pregnancies (n = 32), 32 miRNA profiling using qRT-PCR, plasma | ↑miR-210, miR-375, miR-197-3p, miR-132-3p, miR-29a-3p, miR-328, miR-24-3p, and miR-218-5p; ↓miR-302b-3p, miR-191-5p, and miR-17-5p | [18] |
Early-onset PE (EOPE) GSE103542, GSE74341, and GSE44711 | ↑miR-1914, miR-431, miR-485-3p, miR-500b, miR-145*, miR-3941, miR-367*, miR-875-3p; ↓miR-542-3p, miR-2276-126*, miR-544b, miR-3652, miR-937, miR-3907, miR-3190, miR-4253, miR-1274a, miR-3942, miR-1471, miR-148b*, miR-218, miR-1537, miR-3943, miR-19a*, miR-3646, miR-302a, miR-30a | [19] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Oancea, M.; Mihu, D.; Braicu, C.; Isachesku, E.; Nati, I.-D.; Boitor-Borza, D.; Diculescu, D.M.; Strilciuc, S.; Pană, A. MicroRNAs in Preeclampsia: An Overview of Biomarkers and Potential Therapeutic Targets. Int. J. Mol. Sci. 2025, 26, 5607. https://doi.org/10.3390/ijms26125607
Oancea M, Mihu D, Braicu C, Isachesku E, Nati I-D, Boitor-Borza D, Diculescu DM, Strilciuc S, Pană A. MicroRNAs in Preeclampsia: An Overview of Biomarkers and Potential Therapeutic Targets. International Journal of Molecular Sciences. 2025; 26(12):5607. https://doi.org/10.3390/ijms26125607
Chicago/Turabian StyleOancea, Mihaela, Dan Mihu, Cornelia Braicu, Ekaterina Isachesku, Ionel-Daniel Nati, Dan Boitor-Borza, Doru Mihai Diculescu, Stefan Strilciuc, and Adrian Pană. 2025. "MicroRNAs in Preeclampsia: An Overview of Biomarkers and Potential Therapeutic Targets" International Journal of Molecular Sciences 26, no. 12: 5607. https://doi.org/10.3390/ijms26125607
APA StyleOancea, M., Mihu, D., Braicu, C., Isachesku, E., Nati, I.-D., Boitor-Borza, D., Diculescu, D. M., Strilciuc, S., & Pană, A. (2025). MicroRNAs in Preeclampsia: An Overview of Biomarkers and Potential Therapeutic Targets. International Journal of Molecular Sciences, 26(12), 5607. https://doi.org/10.3390/ijms26125607