An Innovative Bioremediation Approach to Heavy Metal Removal: Combined Application of Chlorella vulgaris and Amine-Functionalized MgFe2O4 Nanoparticles in Industrial Wastewater Treatment
Abstract
1. Introduction
2. Results
2.1. Characterization of the Amine-Functionalized Magnesium Ferrite Nanoparticles
2.2. Results of the Cobalt Adsorption Tests Using Chlorella vulgaris
3. Discussion
4. Materials and Methods
4.1. Materials
4.2. Synthesis of the Amine-Functionalized Magnesium Ferrite Nanoparticles
4.3. Cobalt Adsorption Tests
4.4. Magnetic Separation Tests of the Cobalt Adsorbed Algae
4.5. Characterization Techniques
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
HRTEM | High-resolution transmission electron microscopy |
FTIR | Fourier transform infrared spectroscopy |
SEM | Scanning electron microscopy |
VSM | Vibrating sample magnetometry |
NMC | Nickel manganese cobalt oxide |
NCA | Nickel cobalt aluminum oxide |
PDDA | Poly diallyldimethylammonium chloride |
PEI | Polyethylenimine |
APTES | 3-aminopropyl triethoxysilane |
SAED | Selected area electron diffraction |
HAADF | High-angle annular dark-field |
ICP-AES | Inductively coupled plasma atomic emission spectrometry |
References
- Gaines, L.; Richa, K.; Spangenberger, J. Key issues for Li-ion battery recycling. MRS Energy Sustain. 2018, 5, E14. [Google Scholar] [CrossRef]
- Battery University. BU-205: Types of Lithium-Ion. 2023. Available online: https://batteryuniversity.com/article/bu-205-types-of-lithium-ion (accessed on 7 November 2024).
- Melin, H.E. The Lithium-Ion Battery End-of-Life Market–A Baseline Study; World Economic Forum: Geneva, Switzerland, 2018. [Google Scholar]
- Tchounwou, P.B.; Yedjou, C.G.; Patlolla, A.K.; Sutton, D.J. Heavy metal toxicity and the environment. EXS 2012, 101, 133–164. [Google Scholar] [PubMed]
- Gunatilake, S.K. Methods of removing heavy metals from industrial wastewater. J. Multidiscip. Eng. Sci. Stud. 2015, 1, 12–18. [Google Scholar]
- Barakat, M.A. New trends in removing heavy metals from industrial wastewater. Arab. J. Chem. 2011, 4, 361–377. [Google Scholar] [CrossRef]
- Noman, E.A.; Ali Al-Gheethi, A.; Al-Sahari, M.; Yashni, G.; Mohamed, R.M.S.R.; Soon, C.F.; Vo, D.V.N. An insight into microelectronics industry wastewater treatment, current challenges, and future perspectives: A critical review. Appl. Water Sci. 2024, 14, 104. [Google Scholar] [CrossRef]
- Ribeiro, C.; Scheufele, F.B.; Espinoza-Quiñones, F.R.; Módenes, A.N.; Vieira, M.G.A.; Kroumov, A.D.; Borba, C.E. A comprehensive evaluation of heavy metals removal from battery industry wastewaters by applying bio-residue, mineral and commercial adsorbent materials. J. Mater. Sci. 2018, 53, 7976–7995. [Google Scholar] [CrossRef]
- Balzano, S.; Sardo, A.; Blasio, M.; Chahine, T.B.; Dell’Anno, F.; Sansone, C.; Brunet, C. Microalgal Metallothioneins and Phytochelatins and Their Potential Use in Bioremediation. Front. Microbiol. 2020, 11, 517. [Google Scholar] [CrossRef]
- Dewi, E.R.S.; Nuravivah, R. Potential of Microalgae Chlorella vulgaris as Bioremediation Agents of Heavy Metal Pb (Lead) on Culture Media. E3S Web Conf. 2018, 31, 05010. [Google Scholar] [CrossRef]
- Je, J.; Yang, C.; Xia, L. Protoplast Preparation for Algal Single-Cell Omics Sequencing. Microorganisms 2023, 1, 538. [Google Scholar] [CrossRef]
- Kőnig-Péter, A.; Kilár, F.; Felinger, A.; Pernyeszi, T. Biosorption Characteristics of Spirulina and Chlorella Cells to Accumulate Heavy Metals. J. Serb. Chem. Soc. 2014, 80, 407–419. [Google Scholar] [CrossRef]
- Veglio, F.; Beolchini, F. Removal of Metals by Biosorption: A Review. Hydrometallurgy 1997, 44, 301–316. [Google Scholar] [CrossRef]
- Liu, S.; Jiang, M.; Wu, J.; Li, X.; Zhu, J. Mechanism of Biological Transport and Transformation of Copper, Cadmium, and Zinc in Water by Chlorella. Water 2024, 16, 1906. [Google Scholar] [CrossRef]
- Fraile, A.; Penche, S.; González, F.; Blázquez, M.L.; Munoz, J.A.; Ballester, A. Biosorption of Copper, Zinc, Cadmium and Nickel by Chlorella vulgaris. Chem. Ecol. 2005, 21, 61–75. [Google Scholar] [CrossRef]
- Kumar, M.; Singh, A.K.; Sikandar, M. Biosorption of Hg(II) from Aqueous Solution Using Algal Biomass: Kinetics and Isotherm Studies. Heliyon 2020, 6, e03321. [Google Scholar] [CrossRef]
- Abdel-Raouf, N.; Sholkamy, E.N.; Bukhari, N.; Al-Enazi, N.M.; Alsamhary, K.I.; Al-Khiat, S.H.A.; Ibraheem, I.B.M. Bioremoval Capacity of Co2+ Using Phormidium tenue and Chlorella vulgaris as Biosorbents. Environ. Res. 2022, 204, 111630. [Google Scholar] [CrossRef]
- Ahalya, N.; Ramachandra, T.V.; Kanamadi, R.D. Biosorption of Heavy Metals. Res. J. Chem. Environ. 2003, 7, 71–79. [Google Scholar]
- Abo Markeb, A.; Llimós-Turet, J.; Ferrer, I.; Blánquez, P.; Alonso, A.; Sánchez, A.; Moral-Vico, J.; Font, X. The Use of Magnetic Iron Oxide Based Nanoparticles to Improve Microalgae Harvesting in Real Wastewater. Water Res. 2019, 159, 490–500. [Google Scholar] [CrossRef]
- Prochazkova, G.; Podolova, N.; Safarik, I.; Zachleder, V.; Branyik, T. Physicochemical Approach to Freshwater Microalgae Harvesting with Magnetic Particles. Colloids Surf. B Biointerfaces 2013, 112, 213–218. [Google Scholar] [CrossRef]
- Lee, H.; Suh, H.; Chang, T. Rapid Removal of Green Algae by the Magnetic Method. Environ. Eng. Res. 2012, 17, 151–156. [Google Scholar] [CrossRef]
- Eroglu, E.; Agarwal, V.; Bradshaw, M.; Chen, X.; Smith, S.M.; Raston, C.L.; Swaminathan Iyer, K. Nitrate Removal from Liquid Effluents Using Microalgae Immobilized on Chitosan Nanofiber Mats. Green Chem. 2012, 14, 2682–2685. [Google Scholar] [CrossRef]
- Hu, Y.R.; Guo, C.; Wang, F.; Wang, S.K.; Pan, F.; Liu, C.Z. Improvement of Microalgae Harvesting by Magnetic Nanocomposites Coated with Polyethylenimine. Chem. Eng. J. 2014, 242, 341–347. [Google Scholar] [CrossRef]
- Prochazkova, G.; Safarik, I.; Branyik, T. Harvesting Microalgae with Microwave Synthesized Magnetic Microparticles. Bioresour. Technol. 2013, 130, 472–477. [Google Scholar] [CrossRef] [PubMed]
- Xu, L.; Guo, C.; Wang, F.; Zheng, S.; Liu, C.Z. A Simple and Rapid Harvesting Method for Microalgae by In Situ Magnetic Separation. Bioresour. Technol. 2011, 102, 10047–10051. [Google Scholar] [CrossRef] [PubMed]
- Fraga-Garcia, P.; Kubbutat, P.; Brammen, M.; Schwaminger, S.; Berensmeier, S. Bare Iron Oxide Nanoparticles for Magnetic Harvesting of Microalgae: From Interaction Behavior to Process Realization. Nanomaterials 2018, 8, 292. [Google Scholar] [CrossRef]
- Ilosvai, Á.M.; Gerzsenyi, T.B.; Sikora, E.; Harasztosi, L.; Kristály, F.; Viskolcz, B.; Vanyorek, L. Simplified Synthesis of the Amine-Functionalized Magnesium Ferrite Magnetic Nanoparticles and Their Application in DNA Purification Method. Int. J. Mol. Sci. 2023, 24, 4190. [Google Scholar] [CrossRef]
- Aoopngan, C.; Nonkumwong, J.; Phumying, S.; Promjantuek, W.; Maensiri, S.; Noisa, P.; Srisombat, L. Amine-Functionalized and Hydroxyl-Functionalized Magnesium Ferrite Nanoparticles for Congo Red Adsorption. ACS Appl. Nano Mater. 2019, 2, 5329–5341. [Google Scholar] [CrossRef]
- Zhou, B.; Zhang, Y.W.; Liao, C.S.; Yan, C.H.; Chen, L.Y.; Wang, S.Y. Rare-Earth-Mediated Magnetism and Magneto-Optical Kerr Effects in Nanocrystalline CoFeMn0.9RE0.1O4 Thin Films. J. Magn. Magn. Mater. 2004, 280, 327–333. [Google Scholar] [CrossRef]
- Wang, H.; Su, W.; Tan, M. Endogenous Fluorescence Carbon Dots Derived from Food Items. Innovation 2020, 1, 100009. [Google Scholar] [CrossRef]
- Bruce, I.J.; Taylor, J.; Todd, M.; Davies, M.J.; Borioni, E.; Sangregorio, C.; Sen, T. Synthesis, Characterisation and Application of Silica-Magnetite Nanocomposites. J. Magn. Magn. Mater. 2004, 284, 145–160. [Google Scholar] [CrossRef]
- Aslibeiki, B.; Varvaro, G.; Peddis, D.; Kameli, P. Particle size, spin wave and surface effects on magnetic properties of MgFe2O4 nanoparticles. J. Magn. Magn. Mater. 2017, 422, 7–12. [Google Scholar] [CrossRef]
- Araújo, J.; Araujo-Barbosa, S.; Souza, A.L.R. Tuning Structural, Magnetic, Electrical, and Dielectric Properties of MgFe2O4 Synthesized by Sol–Gel Followed by Heat Treatment. J. Phys. Chem. Solids 2021, 154, 110051. [Google Scholar] [CrossRef]
- Naik, M.Z.; Salker, A.V. Tailoring the Super-Paramagnetic Nature of MgFe2O4 Nanoparticles by In3+ Incorporation. Mater. Sci. Eng. B 2016, 211, 37–44. [Google Scholar] [CrossRef]
- Kulkarni, R.G.; Joshi, H.H. Comparison of Magnetic Properties of MgFe2O4 Prepared by Wet-Chemical and Ceramic Methods. J. Solid State Chem. 1986, 64, 141–147. [Google Scholar] [CrossRef]
- Naaz, F.; Dubey, H.K.; Kumari, C.; Lahiri, P. Structural and Magnetic Properties of MgFe2O4 Nanopowder Synthesized via Co-Precipitation Route. SN Appl. Sci. 2020, 2, 808. [Google Scholar] [CrossRef]
- Lapeñas, L.A.; Peña-Bahamonde, J.; Nguyen, H.; de Luna, M.D.G.; Rodrigues, D.F. Manganese Ferrite Nanoparticle–Algal Cell Interaction Mechanisms for Potential Application in Microalgae Harvesting. Cleaner Chem. Eng. 2022, 4, 100061. [Google Scholar] [CrossRef]
- El-Sheekh, M.M.; Morsi, H.H.; Hassan, L.H.; Ali, S.S. The Efficient Role of Algae as Green Factories for Nanotechnology and Their Vital Applications. Microbiol. Res. 2022, 263, 127111. [Google Scholar] [CrossRef]
- Ye, F.; Jiang, W.; Ren, X.; Xu, J.; Guo, Z.; Li, C. Mathematical Model of Ilmenite Separation Efficiency Using a High Gradient Plate Magnetic Separator. Minerals 2022, 12, 833. [Google Scholar] [CrossRef]
- Ku, J.; Wang, K.; Wang, Q.; Lei, Z. Application of Magnetic Separation Technology in Resource Utilization and Environmental Treatment. Separations 2024, 11, 130. [Google Scholar] [CrossRef]
- Nonkumwong, J.; Ananta, S.; Srisombat, L. Effective Removal of Lead(II) from Wastewater by Amine-Functionalized Magnesium Ferrite Nanoparticles. RSC Adv. 2016, 6, 47382–47393. [Google Scholar] [CrossRef]
- Xu, Q.; Hou, G.; Chen, J.; Wang, H.; Yuan, L.; Han, D.; Jin, H. Heterotrophically Ultrahigh-Cell-Density Cultivation of a High Protein-Yielding Unicellular Alga Chlorella with a Novel Nitrogen-Supply Strategy. Front. Bioeng. Biotechnol. 2021, 9, 774854. [Google Scholar] [CrossRef]
- Fathi, A.A.; Afkar, E.; Ababna, H. Toxicological Response of the Green Alga Chlorella vulgaris to Some Heavy Metals. Am. J. Environ. Sci. 2010, 6, 230. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fóris, T.; Koska, P.; Ilosvai, Á.M.; Kristály, F.; Daróczi, L.; Vanyorek, L.; Viskolcz, B. An Innovative Bioremediation Approach to Heavy Metal Removal: Combined Application of Chlorella vulgaris and Amine-Functionalized MgFe2O4 Nanoparticles in Industrial Wastewater Treatment. Int. J. Mol. Sci. 2025, 26, 5467. https://doi.org/10.3390/ijms26125467
Fóris T, Koska P, Ilosvai ÁM, Kristály F, Daróczi L, Vanyorek L, Viskolcz B. An Innovative Bioremediation Approach to Heavy Metal Removal: Combined Application of Chlorella vulgaris and Amine-Functionalized MgFe2O4 Nanoparticles in Industrial Wastewater Treatment. International Journal of Molecular Sciences. 2025; 26(12):5467. https://doi.org/10.3390/ijms26125467
Chicago/Turabian StyleFóris, Tímea, Péter Koska, Ágnes Maria Ilosvai, Ferenc Kristály, Lajos Daróczi, László Vanyorek, and Béla Viskolcz. 2025. "An Innovative Bioremediation Approach to Heavy Metal Removal: Combined Application of Chlorella vulgaris and Amine-Functionalized MgFe2O4 Nanoparticles in Industrial Wastewater Treatment" International Journal of Molecular Sciences 26, no. 12: 5467. https://doi.org/10.3390/ijms26125467
APA StyleFóris, T., Koska, P., Ilosvai, Á. M., Kristály, F., Daróczi, L., Vanyorek, L., & Viskolcz, B. (2025). An Innovative Bioremediation Approach to Heavy Metal Removal: Combined Application of Chlorella vulgaris and Amine-Functionalized MgFe2O4 Nanoparticles in Industrial Wastewater Treatment. International Journal of Molecular Sciences, 26(12), 5467. https://doi.org/10.3390/ijms26125467