Assessment of White Matter Changes Using Quantitative T1ρ Mapping in an Open-Field Low-Intensity Blast Mouse Model of Mild Traumatic Brain Injury (mTBI)
Abstract
1. Introduction
2. Results
3. Discussion
4. Methods and Materials
4.1. Animals
4.2. MRI Data Acquisition
4.3. Histological Staining
4.4. Data Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
References
- Tovar, M.A.; Bell, R.S.; Neal, C.J. Epidemiology of Blast Neurotrauma: A Meta-Analysis of Blast Injury Patterns in the Military and Civilian Populations. World Neurosurg. 2021, 146, 308–314.e3. [Google Scholar] [CrossRef] [PubMed]
- Mahoney, S.O.; Chowdhury, N.F.; Ngo, V.; Imms, P.; Irimia, A. Mild Traumatic Brain Injury Results in Significant and Lasting Cortical Demyelination. Front. Neurol. 2022, 13, 854396. [Google Scholar] [CrossRef] [PubMed]
- Walz, W. Traumatic Brain Injury; Springer: Berlin/Heidelberg, Germany, 2024. [Google Scholar] [CrossRef]
- National Academies of Sciences, Engineering, and Medicine; Board on Health Care Services; Committee on the Review of the Department of Veterans Affairs Examinations for Traumatic Brain Injury. Diagnosis and Assessment of Traumatic Brain Injury; National Academies Press: Washington, DC, USA, 2019. [Google Scholar]
- Irimia, A.; Van Horn, J.D. Functional Neuroimaging of Traumatic Brain Injury: Advances and Clinical Utility. Neuropsychiatr. Dis. Treat. 2015, 11, 2355–2365. [Google Scholar] [CrossRef] [PubMed]
- Petersen, R.C.; Stevens, J.C.; Ganguli, M.; Tangalos, E.G.; Cummings, J.L.; DeKosky, S.T. Practice Parameter: Early Detection of Dementia: Mild Cognitive Impairment (an Evidence-Based Review) [Retired]. Neurology 2001, 56, 1133–1142. [Google Scholar] [CrossRef] [PubMed]
- Hicks, R.R.; Fertig, S.J.; Desrocher, R.E.; Koroshetz, W.J.; Pancrazio, J.J. Neurological Effects of Blast Injury. J. Trauma 2010, 68, 1257–1263. [Google Scholar] [CrossRef] [PubMed]
- Phipps, H.; Mondello, S.; Wilson, A.; Dittmer, T.; Rohde, N.N.; Schroeder, P.J.; Nichols, J.; McGirt, C.; Hoffman, J.; Tanksley, K.; et al. Characteristics and Impact of U.S. Military Blast-Related Mild Traumatic Brain Injury: A Systematic Review. Front. Neurol. 2020, 11, 559318. [Google Scholar] [CrossRef]
- Agoston, D.V. Modeling the Long-Term Consequences of Repeated Blast-Induced Mild Traumatic Brain Injuries. J. Neurotrauma 2017, 34 (Suppl. S1), S-44–S-52. [Google Scholar] [CrossRef]
- Douglas, D.B.; Ro, T.; Toffoli, T.; Krawchuk, B.; Muldermans, J.; Gullo, J.; Dulberger, A.; Anderson, A.E.; Douglas, P.K.; Wintermark, M. Neuroimaging of Traumatic Brain Injury. Med. Sci. 2018, 7, 2. [Google Scholar] [CrossRef]
- Mittl, R.L.; Grossman, R.I.; Hiehle, J.F.; Hurst, R.W.; Kauder, D.R.; Gennarelli, T.A.; Alburger, G.W. Prevalence of MR Evidence of Diffuse Axonal Injury in Patients with Mild Head Injury and Normal Head CT Findings. AJNR Am. J. Neuroradiol. 1994, 15, 1583–1589. [Google Scholar]
- Li, C.; Chen, S.; Siedhoff, H.R.; Grant, D.; Liu, P.; Balderrama, A.; Jackson, M.; Zuckerman, A.; Greenlief, C.M.; Kobeissy, F.; et al. Low-Intensity Open-Field Blast Exposure Effects on Neurovascular Unit Ultrastructure in Mice. Acta Neuropathol. Commun. 2023, 11, 144. [Google Scholar] [CrossRef]
- Maas, A.I.R.; Menon, D.K.; Manley, G.T.; Abrams, M.; Åkerlund, C.; Andelic, N.; Aries, M.; Bashford, T.; Bell, M.J.; Bodien, Y.G.; et al. Traumatic Brain Injury: Progress and Challenges in Prevention, Clinical Care, and Research. Lancet Neurol. 2022, 21, 1004–1060. [Google Scholar] [CrossRef]
- Tate, D.F.; Wade, B.S.C.; Velez, C.S.; Bigler, E.D.; Davenport, N.D.; Dennis, E.L.; Esopenko, C.; Hinds, S.R.; Kean, J.; Kennedy, E.; et al. Persistent MRI Findings Unique to Blast and Repetitive Mild TBI: Analysis of the CENC/LIMBIC Cohort Injury Characteristics. Mil. Med. 2024, 189, e1938–e1946. [Google Scholar] [CrossRef]
- Hunter, J.V.; Wilde, E.A.; Tong, K.A.; Holshouser, B.A. Emerging Imaging Tools for Use with Traumatic Brain Injury Research. J. Neurotrauma 2012, 29, 654–671. [Google Scholar] [CrossRef]
- Narayana, P.A. White Matter Changes in Patients with Mild Traumatic Brain Injury: MRI Perspective. Concussion 2017, 2, CNC35. [Google Scholar] [CrossRef] [PubMed]
- Aoki, Y.; Inokuchi, R.; Gunshin, M.; Yahagi, N.; Suwa, H. Diffusion Tensor Imaging Studies of Mild Traumatic Brain Injury: A Meta-Analysis. J. Neurol. Neurosurg. Psychiatry 2012, 83, 870–876. [Google Scholar] [CrossRef] [PubMed]
- Athertya, J.S.; Cheng, X.; Tang, Q.; Moazamian, D.; Chang, E.Y.; Johnson, C.E.; Cui, J.; Gu, Z.; Ma, Y.; Du, J. Myelin Quantification Using Ultrashort Echo Time Magnetization Transfer Ratio in a Mouse Model of Traumatic Brain Injury. J. Neuroimaging 2025, 35, e70029. [Google Scholar] [CrossRef] [PubMed]
- Yeo, R.A.; Gasparovic, C.; Merideth, F.; Ruhl, D.; Doezema, D.; Mayer, A.R. A Longitudinal Proton Magnetic Resonance Spectroscopy Study of Mild Traumatic Brain Injury. J. Neurotrauma 2011, 28, 1–11. [Google Scholar] [CrossRef]
- Shenton, M.; Hamoda, H.; Schneiderman, J.; Bouix, S.; Pasternak, O.; Rathi, Y.; Vu, M.-A.; Purohit, M.P.; Helmer, K.; Koerte, I.; et al. A Review of Magnetic Resonance Imaging and Diffusion Tensor Imaging Findings in Mild Traumatic Brain Injury. Brain Imaging Behav. 2012, 6, 137–192. [Google Scholar] [CrossRef]
- Mäkelä, H.I.; Gröhn, O.H.J.; Kettunen, M.I.; Kauppinen, R.A. Proton Exchange as a Relaxation Mechanism for T1 in the Rotating Frame in Native and Immobilized Protein Solutions. Biochem. Biophys. Res. Commun. 2001, 289, 813–818. [Google Scholar] [CrossRef]
- Wu, X.; Kirov, I.I.; Gonen, O.; Ge, Y.; Grossman, R.I.; Lui, Y.W. MR Imaging Applications in Mild Traumatic Brain Injury: An Imaging Update. Radiology 2016, 279, 693–707. [Google Scholar] [CrossRef]
- Turner, R.C.; Naser, Z.J.; Logsdon, A.F.; DiPasquale, K.H.; Jackson, G.J.; Robson, M.J.; Gettens, R.T.T.; Matsumoto, R.R.; Huber, J.D.; Rosen, C.L. Modeling Clinically Relevant Blast Parameters Based on Scaling Principles Produces Functional & Histological Deficits in Rats. Exp. Neurol. 2013, 248, 520–529. [Google Scholar] [CrossRef] [PubMed]
- Tompkins, P.; Tesiram, Y.; Lerner, M.; Gonzalez, L.P.; Lightfoot, S.; Rabb, C.H.; Brackett, D.J. Brain Injury: Neuro-Inflammation, Cognitive Deficit, and Magnetic Resonance Imaging in a Model of Blast Induced Traumatic Brain Injury. J. Neurotrauma 2013, 30, 1888–1897. [Google Scholar] [CrossRef] [PubMed]
- Kwon, S.-K.C.; Kovesdi, E.; Gyorgy, A.B.; Wingo, D.; Kamnaksh, A.; Walker, J.; Long, J.B.; Agoston, D.V. Stress and Traumatic Brain Injury: A Behavioral, Proteomics, and Histological Study. Front. Neurol. 2011, 2, 12. [Google Scholar] [CrossRef]
- Verma, S.K.; Kan, E.M.; Lu, J.; Ng, K.C.; Ling, E.A.; Seramani, S.; Kn, B.P.; Wong, Y.C.; Tan, M.H.; Velan, S.S. Multi-Echo Susceptibility-Weighted Imaging and Histology of Open-Field Blast-Induced Traumatic Brain Injury in a Rat Model. NMR Biomed. 2015, 28, 1069–1077. [Google Scholar] [CrossRef]
- Kim, J.H.; Goodrich, J.A.; Situ, R.; Rapuano, A.; Hetherington, H.; Du, F.; Parks, S.; Taylor, W.; Westmoreland, T.; Ling, G.; et al. Periventricular White Matter Alterations From Explosive Blast in a Large Animal Model: Mild Traumatic Brain Injury or “Subconcussive” Injury? J. Neuropathol. Exp. Neurol. 2020, 79, 605–617. [Google Scholar] [CrossRef] [PubMed]
- de Lanerolle, N.C.; Bandak, F.; Kang, D.; Li, A.Y.; Du, F.; Swauger, P.; Parks, S.; Ling, G.; Kim, J.H. Characteristics of an Explosive Blast-Induced Brain Injury in an Experimental Model. J. Neuropathol. Exp. Neurol. 2011, 70, 1046–1057. [Google Scholar] [CrossRef]
- Mierzwa, A.J.; Marion, C.M.; Sullivan, G.M.; McDaniel, D.P.; Armstrong, R.C. Components of Myelin Damage and Repair in the Progression of White Matter Pathology after Mild Traumatic Brain Injury. J. Neuropathol. Exp. Neurol. 2015, 74, 218–232. [Google Scholar] [CrossRef]
- Hetherington, H.; Bandak, A.; Ling, G.; Bandak, F.A. Advances in Imaging Explosive Blast Mild Traumatic Brain Injury. In Handbook of Clinical Neurology; Grafman, J., Salazar, A.M., Eds.; Traumatic Brain Injury, Part I; Elsevier: Amsterdam, The Netherlands, 2015; Volume 127, pp. 309–318. [Google Scholar] [CrossRef]
- Hetherington, H.P.; Hamid, H.; Kulas, J.; Ling, G.; Bandak, F.; de Lanerolle, N.C.; Pan, J.W. MRSI of the Medial Temporal Lobe at 7 T in Explosive Blast Mild Traumatic Brain Injury. Magn. Reson. Med. 2014, 71, 1358–1367. [Google Scholar] [CrossRef]
- Levin, H.S.; Wilde, E.; Troyanskaya, M.; Petersen, N.J.; Scheibel, R.; Newsome, M.; Radaideh, M.; Wu, T.; Yallampalli, R.; Chu, Z.; et al. Diffusion Tensor Imaging of Mild to Moderate Blast-Related Traumatic Brain Injury and Its Sequelae. J. Neurotrauma 2010, 27, 683–694. [Google Scholar] [CrossRef]
- Delano-Wood, L.; Bangen, K.J.; Sorg, S.F.; Clark, A.L.; Schiehser, D.M.; Luc, N.; Bondi, M.W.; Werhane, M.; Kim, R.T.; Bigler, E.D. Brainstem White Matter Integrity Is Related to Loss of Consciousness and Postconcussive Symptomatology in Veterans with Chronic Mild to Moderate Traumatic Brain Injury. Brain Imaging Behav. 2015, 9, 500–512. [Google Scholar] [CrossRef]
- Miller, D.R.; Hayes, J.P.; Lafleche, G.; Salat, D.H.; Verfaellie, M. White Matter Abnormalities Are Associated with Chronic Postconcussion Symptoms in Blast-Related Mild Traumatic Brain Injury. Hum. Brain Mapp. 2015, 37, 220–229. [Google Scholar] [CrossRef] [PubMed]
- Davenport, N.D.; Lim, K.O.; Armstrong, M.T.; Sponheim, S.R. Diffuse and Spatially Variable White Matter Disruptions Are Associated with Blast-Related Mild Traumatic Brain Injury. NeuroImage 2012, 59, 2017–2024. [Google Scholar] [CrossRef] [PubMed]
- Michaeli, S.; Sorce, D.J.; Garwood, M. T2ρ and T1ρ Adiabatic Relaxations and Contrasts. Curr. Anal. Chem. 2008, 4, 8–25. [Google Scholar] [CrossRef]
- Sharafi, A.; Chang, G.; Regatte, R.R. Bi-Component T1ρ and T2 Relaxation Mapping of Skeletal Muscle In-Vivo. Sci. Rep. 2017, 7, 14115. [Google Scholar] [CrossRef]
- Zhao, F.; Zhou, N.; Wang, J.-L.; Zhou, H.; Zou, L.-Q.; Zhong, W.-X.; He, J.; Zheng, C.-J.; Yan, S.-X.; Wáng, Y.X.J. Collagen Deposition in the Liver Is Strongly and Positively Associated with T1rho Elongation While Fat Deposition Is Associated with T1rho Shortening: An Experimental Study of Methionine and Choline-Deficient (MCD) Diet Rat Model. Quant. Imaging Med. Surg. 2020, 10, 2307–2321. [Google Scholar] [CrossRef]
- Gröhn, O.H.J.; Kettunen, M.I.; Mäkelä, H.I.; Penttonen, M.; Pitkänen, A.; Lukkarinen, J.A.; Kauppinen, R.A. Early Detection of Irreversible Cerebral Ischemia in the Rat Using Dispersion of the Magnetic Resonance Imaging Relaxation Time, T1ρ. Magn. Reson. Imaging 2000, 18, 973–977. [Google Scholar] [CrossRef] [PubMed]
- Menezes, N. T2 and T1ρ MRI in Articular Cartilage Systems. Magn. Reson. Med. 2004, 51, 503–509. [Google Scholar] [CrossRef]
- Gonyea, J.V.; Watts, R.; Applebee, A.; Andrews, T.; Hipko, S.; Nickerson, J.P.; Thornton, L.; Filippi, C.G. In Vivo Quantitative Whole-Brain T1ρ MRI of Multiple Sclerosis. J. Magn. Reson. Imaging 2015, 42, 1623–1630. [Google Scholar] [CrossRef]
- Haris, M.; Singh, A.; Cai, K.; Davatzikos, C.; Trojanowski, J.Q.; Melhem, E.R.; Clark, C.M.; Borthakur, A. T1rho (T1ρ) MR Imaging in Alzheimer’s Disease and Parkinson’s Disease with and without Dementia. J. Neurol. 2011, 258, 380–385. [Google Scholar] [CrossRef]
- Borthakur, A.; Sochor, M.; Davatzikos, C.; Trojanowski, J.Q.; Clark, C.M. T1ρ MRI of Alzheimer’s Disease. NeuroImage 2008, 41, 1199–1205. [Google Scholar] [CrossRef]
- Chen, W. Errors in Quantitative T1rho Imaging and the Correction Methods. Quant. Imaging Med. Surg. 2015, 5, 583–591. [Google Scholar] [CrossRef] [PubMed]
- Shao, H.; Pauli, C.; Li, S.; Ma, Y.; Tadros, A.S.; Chang, E.Y.; Tang, G.; Du, J. Magic Angle Effect Plays a Major Role in Both T1ρ and T2 Relaxation in Articular Cartilage. Osteoarthr. Cartil. 2017, 25, 2022–2030. [Google Scholar] [CrossRef]
- Hänninen, N.; Rautiainen, J.; Rieppo, L.; Saarakkala, S.; Nissi, M.J. Orientation Anisotropy of Quantitative MRI Relaxation Parameters in Ordered Tissue. Sci. Rep. 2017, 7, 9606. [Google Scholar] [CrossRef]
- Wu, M.; Ma, Y.; Kasibhatla, A.; Chen, M.; Jang, H.; Jerban, S.; Chang, E.Y.; Du, J. Convincing Evidence for Magic Angle Less-Sensitive Quantitative T1ρ Imaging of Articular Cartilage Using the 3D Ultrashort Echo Time Cones Adiabatic T1ρ (3D UTE Cones-AdiabT1ρ) Sequence. Magn. Reson. Med. 2020, 84, 2551–2560. [Google Scholar] [CrossRef]
- Michaeli, S.; Öz, G.; Sorce, D.J.; Garwood, M.; Ugurbil, K.; Majestic, S.; Tuite, P. Assessment of Brain Iron and Neuronal Integrity in Patients with Parkinson’s Disease Using Novel MRI Contrasts. Mov. Disord. 2007, 22, 334–340. [Google Scholar] [CrossRef] [PubMed]
- Tuite, P.J.; Mangia, S.; Tyan, A.E.; Lee, M.K.; Garwood, M.; Michaeli, S. Magnetization Transfer and Adiabatic R1ρ MRI in the Brainstem of Parkinson’s Disease. Park. Relat. Disord. 2012, 18, 623–625. [Google Scholar] [CrossRef]
- Sierra, A.; Michaeli, S.; Niskanen, J.-P.; Valonen, P.K.; Gröhn, H.I.; Ylä-Herttuala, S.; Garwood, M.; Gröhn, O.H. Water Spin Dynamics during Apoptotic Cell Death in Glioma Gene Therapy Probed by T1ρ and T2ρ. Magn. Reson. Med. 2008, 59, 1311–1319. [Google Scholar] [CrossRef] [PubMed]
- Jokivarsi, K.T.; Niskanen, J.-P.; Michaeli, S.; Gröhn, H.I.; Garwood, M.; Kauppinen, R.A.; Gröhn, O.H. Quantitative Assessment of Water Pools by T1ρ and T2ρ MRI in Acute Cerebral Ischemia of the Rat. J. Cereb. Blood Flow Metab. 2009, 29, 206–216. [Google Scholar] [CrossRef] [PubMed]
- Michaeli, S.; Burns, T.C.; Kudishevich, E.; Hanson, T.; Sorce, D.J.; Garwood, M.; Low, W.C. Detection of Neuronal Loss Using T1ρ MRI Assessment of ¹H₂O Spin Dynamics in the Aphakia Mouse. J. Neurosci. Methods 2009, 177, 160–167. [Google Scholar] [CrossRef]
- Rubovitch, V.; Ten-Bosch, M.; Zohar, O.; Harrison, C.R.; Tempel-Brami, C.; Stein, E.; Hoffer, B.J.; Balaban, C.D.; Schreiber, S.; Chiu, W.-T.; et al. A Mouse Model of Blast-Induced Mild Traumatic Brain Injury. Exp. Neurol. 2011, 232, 280–289. [Google Scholar] [CrossRef]
- Siedhoff, H.R.; Chen, S.; Balderrama, A.; Sun, G.Y.; Koopmans, B.; DePalma, R.G.; Cui, J.; Gu, Z. Long-Term Effects of Low-Intensity Blast Non-Inertial Brain Injury on Anxiety-Like Behaviors in Mice: Home-Cage Monitoring Assessments. Neurotrauma Rep. 2022, 3, 27–38. [Google Scholar] [CrossRef] [PubMed]
- Mao, H.; Jin, X.; Zhang, L.; Yang, K.H.; Igarashi, T.; Noble-Haeusslein, L.J.; King, A.I. Finite element analysis of controlled cortical impact-induced cell loss. J. Neurotrauma 2010, 27, 877–888. [Google Scholar] [CrossRef] [PubMed]
- McKee, A.C.; Daneshvar, D.H. The neuropathology of traumatic brain injury. Handb. Clin. Neurol. 2015, 127, 45–66. [Google Scholar] [CrossRef] [PubMed]
- Einarsen, C.E.; Moen, K.G.; Håberg, A.K.; Eikenes, L.; Kvistad, K.A.; Xu, J.; Moe, H.K.; Tollefsen, M.H.; Vik, A.; Skandsen, T. Patients with Mild Traumatic Brain Injury Recruited from Both Hospital and Primary Care Settings: A Controlled Longitudinal Magnetic Resonance Imaging Study. J. Neurotrauma 2019, 36, 3172–3182. [Google Scholar] [CrossRef]
- Garwood, M.; DelaBarre, L. The return of the frequency sweep: Designing adiabatic pulses for contemporary NMR. J. Magn. Reson. 2001, 153, 155–177. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Moazamian, D.; Xie, S.; Athertya, J.S.; Tang, Q.; Lee, R.R.; Chang, E.Y.; Tomlin, J.M.; Johnson, C.E.; Du, J.; Ma, Y. Assessment of White Matter Changes Using Quantitative T1ρ Mapping in an Open-Field Low-Intensity Blast Mouse Model of Mild Traumatic Brain Injury (mTBI). Int. J. Mol. Sci. 2025, 26, 5431. https://doi.org/10.3390/ijms26125431
Moazamian D, Xie S, Athertya JS, Tang Q, Lee RR, Chang EY, Tomlin JM, Johnson CE, Du J, Ma Y. Assessment of White Matter Changes Using Quantitative T1ρ Mapping in an Open-Field Low-Intensity Blast Mouse Model of Mild Traumatic Brain Injury (mTBI). International Journal of Molecular Sciences. 2025; 26(12):5431. https://doi.org/10.3390/ijms26125431
Chicago/Turabian StyleMoazamian, Dina, Shengwen Xie, Jiyo S. Athertya, Qingbo Tang, Roland R. Lee, Eric Y. Chang, Jeffrey M. Tomlin, Catherine E. Johnson, Jiang Du, and Yajun Ma. 2025. "Assessment of White Matter Changes Using Quantitative T1ρ Mapping in an Open-Field Low-Intensity Blast Mouse Model of Mild Traumatic Brain Injury (mTBI)" International Journal of Molecular Sciences 26, no. 12: 5431. https://doi.org/10.3390/ijms26125431
APA StyleMoazamian, D., Xie, S., Athertya, J. S., Tang, Q., Lee, R. R., Chang, E. Y., Tomlin, J. M., Johnson, C. E., Du, J., & Ma, Y. (2025). Assessment of White Matter Changes Using Quantitative T1ρ Mapping in an Open-Field Low-Intensity Blast Mouse Model of Mild Traumatic Brain Injury (mTBI). International Journal of Molecular Sciences, 26(12), 5431. https://doi.org/10.3390/ijms26125431